MemoryManager.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Process.h"
  8. //#define MM_DEBUG
  9. #define SCRUB_DEALLOCATED_PAGE_TABLES
  10. static MemoryManager* s_the;
  11. MemoryManager& MM
  12. {
  13. return *s_the;
  14. }
  15. MemoryManager::MemoryManager()
  16. {
  17. m_kernel_page_directory = (PageDirectory*)0x4000;
  18. m_pageTableZero = (dword*)0x6000;
  19. m_pageTableOne = (dword*)0x7000;
  20. m_next_laddr.set(0xd0000000);
  21. initializePaging();
  22. }
  23. MemoryManager::~MemoryManager()
  24. {
  25. }
  26. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  27. {
  28. memset(&page_directory, 0, sizeof(PageDirectory));
  29. page_directory.entries[0] = m_kernel_page_directory->entries[0];
  30. page_directory.entries[1] = m_kernel_page_directory->entries[1];
  31. }
  32. void MemoryManager::release_page_directory(PageDirectory& page_directory)
  33. {
  34. ASSERT_INTERRUPTS_DISABLED();
  35. #ifdef MM_DEBUG
  36. dbgprintf("MM: release_page_directory for PD K%x\n", &page_directory);
  37. #endif
  38. for (size_t i = 0; i < 1024; ++i) {
  39. auto page_table = page_directory.physical_addresses[i];
  40. if (!page_table.is_null()) {
  41. #ifdef MM_DEBUG
  42. dbgprintf("MM: deallocating process page table [%u] P%x @ %p\n", i, page_table.get(), &process.m_page_directory->physical_addresses[i]);
  43. #endif
  44. deallocate_page_table(page_table);
  45. }
  46. }
  47. #ifdef SCRUB_DEALLOCATED_PAGE_TABLES
  48. memset(&page_directory, 0xc9, sizeof(PageDirectory));
  49. #endif
  50. }
  51. void MemoryManager::initializePaging()
  52. {
  53. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  54. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  55. memset(m_pageTableZero, 0, PAGE_SIZE);
  56. memset(m_pageTableOne, 0, PAGE_SIZE);
  57. memset(m_kernel_page_directory, 0, sizeof(PageDirectory));
  58. #ifdef MM_DEBUG
  59. kprintf("MM: Kernel page directory @ %p\n", m_kernel_page_directory);
  60. #endif
  61. // Make null dereferences crash.
  62. protectMap(LinearAddress(0), PAGE_SIZE);
  63. // The bottom 4 MB are identity mapped & supervisor only. Every process shares these mappings.
  64. create_identity_mapping(LinearAddress(PAGE_SIZE), 4 * MB);
  65. // The physical pages 4 MB through 8 MB are available for Zone allocation.
  66. for (size_t i = (4 * MB) + PAGE_SIZE; i < (8 * MB); i += PAGE_SIZE)
  67. m_freePages.append(PhysicalAddress(i));
  68. asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory));
  69. asm volatile(
  70. "movl %cr0, %eax\n"
  71. "orl $0x80000001, %eax\n"
  72. "movl %eax, %cr0\n"
  73. );
  74. }
  75. PhysicalAddress MemoryManager::allocate_page_table()
  76. {
  77. auto ppages = allocatePhysicalPages(1);
  78. dword address = ppages[0].get();
  79. create_identity_mapping(LinearAddress(address), PAGE_SIZE);
  80. memset((void*)address, 0, PAGE_SIZE);
  81. return PhysicalAddress(address);
  82. }
  83. void MemoryManager::deallocate_page_table(PhysicalAddress paddr)
  84. {
  85. ASSERT(!m_freePages.contains_slow(paddr));
  86. remove_identity_mapping(LinearAddress(paddr.get()), PAGE_SIZE);
  87. m_freePages.append(paddr);
  88. }
  89. void MemoryManager::remove_identity_mapping(LinearAddress laddr, size_t size)
  90. {
  91. InterruptDisabler disabler;
  92. // FIXME: ASSERT(laddr is 4KB aligned);
  93. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  94. auto pte_address = laddr.offset(offset);
  95. auto pte = ensurePTE(m_kernel_page_directory, pte_address);
  96. pte.setPhysicalPageBase(0);
  97. pte.setUserAllowed(false);
  98. pte.setPresent(true);
  99. pte.setWritable(true);
  100. flushTLB(pte_address);
  101. }
  102. }
  103. auto MemoryManager::ensurePTE(PageDirectory* page_directory, LinearAddress laddr) -> PageTableEntry
  104. {
  105. ASSERT_INTERRUPTS_DISABLED();
  106. dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
  107. dword page_table_index = (laddr.get() >> 12) & 0x3ff;
  108. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory->entries[page_directory_index]);
  109. if (!pde.isPresent()) {
  110. #ifdef MM_DEBUG
  111. dbgprintf("MM: PDE %u not present, allocating\n", page_directory_index);
  112. #endif
  113. if (page_directory_index == 0) {
  114. ASSERT(page_directory == m_kernel_page_directory);
  115. pde.setPageTableBase((dword)m_pageTableZero);
  116. pde.setUserAllowed(false);
  117. pde.setPresent(true);
  118. pde.setWritable(true);
  119. } else if (page_directory_index == 1) {
  120. ASSERT(page_directory == m_kernel_page_directory);
  121. pde.setPageTableBase((dword)m_pageTableOne);
  122. pde.setUserAllowed(false);
  123. pde.setPresent(true);
  124. pde.setWritable(true);
  125. } else {
  126. auto page_table = allocate_page_table();
  127. #ifdef MM_DEBUG
  128. dbgprintf("MM: PD K%x (%s) allocated page table #%u (for L%x) at P%x\n",
  129. page_directory,
  130. page_directory == m_kernel_page_directory ? "Kernel" : "User",
  131. page_directory_index,
  132. laddr.get(),
  133. page_table);
  134. #endif
  135. page_directory->physical_addresses[page_directory_index] = page_table;
  136. pde.setPageTableBase(page_table.get());
  137. pde.setUserAllowed(true);
  138. pde.setPresent(true);
  139. pde.setWritable(true);
  140. }
  141. }
  142. return PageTableEntry(&pde.pageTableBase()[page_table_index]);
  143. }
  144. void MemoryManager::protectMap(LinearAddress linearAddress, size_t length)
  145. {
  146. InterruptDisabler disabler;
  147. // FIXME: ASSERT(linearAddress is 4KB aligned);
  148. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  149. auto pteAddress = linearAddress.offset(offset);
  150. auto pte = ensurePTE(m_kernel_page_directory, pteAddress);
  151. pte.setPhysicalPageBase(pteAddress.get());
  152. pte.setUserAllowed(false);
  153. pte.setPresent(false);
  154. pte.setWritable(false);
  155. flushTLB(pteAddress);
  156. }
  157. }
  158. void MemoryManager::create_identity_mapping(LinearAddress laddr, size_t size)
  159. {
  160. InterruptDisabler disabler;
  161. // FIXME: ASSERT(laddr is 4KB aligned);
  162. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  163. auto pteAddress = laddr.offset(offset);
  164. auto pte = ensurePTE(m_kernel_page_directory, pteAddress);
  165. pte.setPhysicalPageBase(pteAddress.get());
  166. pte.setUserAllowed(false);
  167. pte.setPresent(true);
  168. pte.setWritable(true);
  169. flushTLB(pteAddress);
  170. }
  171. }
  172. void MemoryManager::initialize()
  173. {
  174. s_the = new MemoryManager;
  175. }
  176. PageFaultResponse MemoryManager::handlePageFault(const PageFault& fault)
  177. {
  178. ASSERT_INTERRUPTS_DISABLED();
  179. kprintf("MM: handlePageFault(%w) at L%x\n", fault.code(), fault.address().get());
  180. if (fault.isNotPresent()) {
  181. kprintf(" >> NP fault!\n");
  182. } else if (fault.isProtectionViolation()) {
  183. kprintf(" >> PV fault!\n");
  184. }
  185. return PageFaultResponse::ShouldCrash;
  186. }
  187. void MemoryManager::registerZone(Zone& zone)
  188. {
  189. ASSERT_INTERRUPTS_DISABLED();
  190. m_zones.set(&zone);
  191. #ifdef MM_DEBUG
  192. for (size_t i = 0; i < zone.m_pages.size(); ++i)
  193. dbgprintf("MM: allocated to zone: P%x\n", zone.m_pages[i].get());
  194. #endif
  195. }
  196. void MemoryManager::unregisterZone(Zone& zone)
  197. {
  198. ASSERT_INTERRUPTS_DISABLED();
  199. #ifdef MM_DEBUG
  200. for (size_t i = 0; i < zone.m_pages.size(); ++i)
  201. dbgprintf("MM: deallocated from zone: P%x\n", zone.m_pages[i].get());
  202. #endif
  203. m_zones.remove(&zone);
  204. m_freePages.append(move(zone.m_pages));
  205. }
  206. Zone::Zone(Vector<PhysicalAddress>&& pages)
  207. : m_pages(move(pages))
  208. {
  209. MM.registerZone(*this);
  210. }
  211. Zone::~Zone()
  212. {
  213. MM.unregisterZone(*this);
  214. }
  215. RetainPtr<Zone> MemoryManager::createZone(size_t size)
  216. {
  217. InterruptDisabler disabler;
  218. auto pages = allocatePhysicalPages(ceilDiv(size, PAGE_SIZE));
  219. if (pages.isEmpty()) {
  220. kprintf("MM: createZone: no physical pages for size %u\n", size);
  221. return nullptr;
  222. }
  223. return adopt(*new Zone(move(pages)));
  224. }
  225. Vector<PhysicalAddress> MemoryManager::allocatePhysicalPages(size_t count)
  226. {
  227. InterruptDisabler disabler;
  228. if (count > m_freePages.size())
  229. return { };
  230. Vector<PhysicalAddress> pages;
  231. pages.ensureCapacity(count);
  232. for (size_t i = 0; i < count; ++i) {
  233. pages.append(m_freePages.takeLast());
  234. #ifdef MM_DEBUG
  235. dbgprintf("MM: allocate_physical_pages vending P%x\n", pages.last());
  236. #endif
  237. }
  238. return pages;
  239. }
  240. void MemoryManager::enter_kernel_paging_scope()
  241. {
  242. InterruptDisabler disabler;
  243. current->m_tss.cr3 = (dword)m_kernel_page_directory;
  244. asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory):"memory");
  245. }
  246. void MemoryManager::enter_process_paging_scope(Process& process)
  247. {
  248. InterruptDisabler disabler;
  249. current->m_tss.cr3 = (dword)process.m_page_directory;
  250. asm volatile("movl %%eax, %%cr3"::"a"(process.m_page_directory):"memory");
  251. }
  252. void MemoryManager::flushEntireTLB()
  253. {
  254. asm volatile(
  255. "mov %cr3, %eax\n"
  256. "mov %eax, %cr3\n"
  257. );
  258. }
  259. void MemoryManager::flushTLB(LinearAddress laddr)
  260. {
  261. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
  262. }
  263. void MemoryManager::map_region_at_address(PageDirectory* page_directory, Region& region, LinearAddress laddr, bool user_allowed)
  264. {
  265. InterruptDisabler disabler;
  266. auto& zone = *region.zone;
  267. for (size_t i = 0; i < zone.m_pages.size(); ++i) {
  268. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  269. auto pte = ensurePTE(page_directory, page_laddr);
  270. pte.setPhysicalPageBase(zone.m_pages[i].get());
  271. pte.setPresent(true);
  272. pte.setWritable(true);
  273. pte.setUserAllowed(user_allowed);
  274. flushTLB(page_laddr);
  275. #ifdef MM_DEBUG
  276. dbgprintf("MM: >> map_region_at_address (PD=%x) L%x => P%x\n", page_directory, page_laddr, zone.m_pages[i].get());
  277. #endif
  278. }
  279. }
  280. void MemoryManager::unmap_range(PageDirectory* page_directory, LinearAddress laddr, size_t size)
  281. {
  282. ASSERT((size % PAGE_SIZE) == 0);
  283. InterruptDisabler disabler;
  284. size_t numPages = size / PAGE_SIZE;
  285. for (size_t i = 0; i < numPages; ++i) {
  286. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  287. auto pte = ensurePTE(page_directory, page_laddr);
  288. pte.setPhysicalPageBase(0);
  289. pte.setPresent(false);
  290. pte.setWritable(false);
  291. pte.setUserAllowed(false);
  292. flushTLB(page_laddr);
  293. #ifdef MM_DEBUG
  294. dbgprintf("MM: << unmap_range L%x =/> 0\n", page_laddr);
  295. #endif
  296. }
  297. }
  298. LinearAddress MemoryManager::allocate_linear_address_range(size_t size)
  299. {
  300. ASSERT((size % PAGE_SIZE) == 0);
  301. // FIXME: Recycle ranges!
  302. auto laddr = m_next_laddr;
  303. m_next_laddr.set(m_next_laddr.get() + size);
  304. return laddr;
  305. }
  306. byte* MemoryManager::create_kernel_alias_for_region(Region& region)
  307. {
  308. InterruptDisabler disabler;
  309. #ifdef MM_DEBUG
  310. dbgprintf("MM: create_kernel_alias_for_region region=%p (L%x size=%u)\n", &region, region.linearAddress.get(), region.size);
  311. #endif
  312. auto laddr = allocate_linear_address_range(region.size);
  313. map_region_at_address(m_kernel_page_directory, region, laddr, false);
  314. #ifdef MM_DEBUG
  315. dbgprintf("MM: Created alias L%x for L%x\n", laddr.get(), region.linearAddress.get());
  316. #endif
  317. return laddr.asPtr();
  318. }
  319. void MemoryManager::remove_kernel_alias_for_region(Region& region, byte* addr)
  320. {
  321. #ifdef MM_DEBUG
  322. dbgprintf("remove_kernel_alias_for_region region=%p, addr=L%x\n", &region, addr);
  323. #endif
  324. unmap_range(m_kernel_page_directory, LinearAddress((dword)addr), region.size);
  325. }
  326. bool MemoryManager::unmapRegion(Process& process, Region& region)
  327. {
  328. InterruptDisabler disabler;
  329. auto& zone = *region.zone;
  330. for (size_t i = 0; i < zone.m_pages.size(); ++i) {
  331. auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
  332. auto pte = ensurePTE(process.m_page_directory, laddr);
  333. pte.setPhysicalPageBase(0);
  334. pte.setPresent(false);
  335. pte.setWritable(false);
  336. pte.setUserAllowed(false);
  337. flushTLB(laddr);
  338. #ifdef MM_DEBUG
  339. //dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, zone.m_pages[i].get());
  340. #endif
  341. }
  342. return true;
  343. }
  344. bool MemoryManager::mapRegion(Process& process, Region& region)
  345. {
  346. map_region_at_address(process.m_page_directory, region, region.linearAddress, true);
  347. return true;
  348. }
  349. bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
  350. {
  351. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  352. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  353. auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
  354. if (!pde.isPresent())
  355. return false;
  356. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  357. if (!pte.isPresent())
  358. return false;
  359. if (!pte.isUserAllowed())
  360. return false;
  361. return true;
  362. }
  363. bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
  364. {
  365. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  366. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  367. auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
  368. if (!pde.isPresent())
  369. return false;
  370. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  371. if (!pte.isPresent())
  372. return false;
  373. if (!pte.isUserAllowed())
  374. return false;
  375. if (!pte.isWritable())
  376. return false;
  377. return true;
  378. }
  379. RetainPtr<Region> Region::clone()
  380. {
  381. InterruptDisabler disabler;
  382. KernelPagingScope pagingScope;
  383. // FIXME: Implement COW regions.
  384. auto clone_zone = MM.createZone(zone->size());
  385. auto clone_region = adopt(*new Region(linearAddress, size, move(clone_zone), String(name)));
  386. // FIXME: It would be cool to make the src_alias a read-only mapping.
  387. byte* src_alias = MM.create_kernel_alias_for_region(*this);
  388. byte* dest_alias = MM.create_kernel_alias_for_region(*clone_region);
  389. memcpy(dest_alias, src_alias, size);
  390. MM.remove_kernel_alias_for_region(*clone_region, dest_alias);
  391. MM.remove_kernel_alias_for_region(*this, src_alias);
  392. return clone_region;
  393. }