Process.h 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #pragma once
  7. #include <AK/Checked.h>
  8. #include <AK/Concepts.h>
  9. #include <AK/HashMap.h>
  10. #include <AK/IntrusiveList.h>
  11. #include <AK/NonnullOwnPtrVector.h>
  12. #include <AK/NonnullRefPtrVector.h>
  13. #include <AK/String.h>
  14. #include <AK/Userspace.h>
  15. #include <AK/WeakPtr.h>
  16. #include <AK/Weakable.h>
  17. #include <Kernel/API/Syscall.h>
  18. #include <Kernel/AtomicEdgeAction.h>
  19. #include <Kernel/FileSystem/FileDescription.h>
  20. #include <Kernel/FileSystem/InodeMetadata.h>
  21. #include <Kernel/Forward.h>
  22. #include <Kernel/FutexQueue.h>
  23. #include <Kernel/Lock.h>
  24. #include <Kernel/PerformanceEventBuffer.h>
  25. #include <Kernel/ProcessGroup.h>
  26. #include <Kernel/StdLib.h>
  27. #include <Kernel/Thread.h>
  28. #include <Kernel/ThreadTracer.h>
  29. #include <Kernel/UnixTypes.h>
  30. #include <Kernel/UnveilNode.h>
  31. #include <Kernel/VM/AllocationStrategy.h>
  32. #include <Kernel/VM/RangeAllocator.h>
  33. #include <Kernel/VM/Space.h>
  34. #include <LibC/elf.h>
  35. #include <LibC/signal_numbers.h>
  36. namespace Kernel {
  37. Time kgettimeofday();
  38. #define ENUMERATE_PLEDGE_PROMISES \
  39. __ENUMERATE_PLEDGE_PROMISE(stdio) \
  40. __ENUMERATE_PLEDGE_PROMISE(rpath) \
  41. __ENUMERATE_PLEDGE_PROMISE(wpath) \
  42. __ENUMERATE_PLEDGE_PROMISE(cpath) \
  43. __ENUMERATE_PLEDGE_PROMISE(dpath) \
  44. __ENUMERATE_PLEDGE_PROMISE(inet) \
  45. __ENUMERATE_PLEDGE_PROMISE(id) \
  46. __ENUMERATE_PLEDGE_PROMISE(proc) \
  47. __ENUMERATE_PLEDGE_PROMISE(ptrace) \
  48. __ENUMERATE_PLEDGE_PROMISE(exec) \
  49. __ENUMERATE_PLEDGE_PROMISE(unix) \
  50. __ENUMERATE_PLEDGE_PROMISE(recvfd) \
  51. __ENUMERATE_PLEDGE_PROMISE(sendfd) \
  52. __ENUMERATE_PLEDGE_PROMISE(fattr) \
  53. __ENUMERATE_PLEDGE_PROMISE(tty) \
  54. __ENUMERATE_PLEDGE_PROMISE(chown) \
  55. __ENUMERATE_PLEDGE_PROMISE(chroot) \
  56. __ENUMERATE_PLEDGE_PROMISE(thread) \
  57. __ENUMERATE_PLEDGE_PROMISE(video) \
  58. __ENUMERATE_PLEDGE_PROMISE(accept) \
  59. __ENUMERATE_PLEDGE_PROMISE(settime) \
  60. __ENUMERATE_PLEDGE_PROMISE(sigaction) \
  61. __ENUMERATE_PLEDGE_PROMISE(setkeymap) \
  62. __ENUMERATE_PLEDGE_PROMISE(prot_exec) \
  63. __ENUMERATE_PLEDGE_PROMISE(map_fixed) \
  64. __ENUMERATE_PLEDGE_PROMISE(getkeymap)
  65. enum class Pledge : u32 {
  66. #define __ENUMERATE_PLEDGE_PROMISE(x) x,
  67. ENUMERATE_PLEDGE_PROMISES
  68. #undef __ENUMERATE_PLEDGE_PROMISE
  69. };
  70. enum class VeilState {
  71. None,
  72. Dropped,
  73. Locked,
  74. };
  75. typedef HashMap<FlatPtr, RefPtr<FutexQueue>> FutexQueues;
  76. struct LoadResult;
  77. class ProtectedProcessBase {
  78. protected:
  79. ProcessID m_pid { 0 };
  80. ProcessID m_ppid { 0 };
  81. SessionID m_sid { 0 };
  82. uid_t m_euid { 0 };
  83. gid_t m_egid { 0 };
  84. uid_t m_uid { 0 };
  85. gid_t m_gid { 0 };
  86. uid_t m_suid { 0 };
  87. gid_t m_sgid { 0 };
  88. Vector<gid_t> m_extra_gids;
  89. bool m_dumpable { false };
  90. bool m_has_promises { false };
  91. u32 m_promises { 0 };
  92. bool m_has_execpromises { false };
  93. u32 m_execpromises { 0 };
  94. mode_t m_umask { 022 };
  95. VirtualAddress m_signal_trampoline;
  96. Atomic<u32> m_thread_count { 0 };
  97. IntrusiveList<Thread, RawPtr<Thread>, &Thread::m_process_thread_list_node> m_thread_list;
  98. u8 m_termination_status { 0 };
  99. u8 m_termination_signal { 0 };
  100. };
  101. class ProcessBase : public ProtectedProcessBase {
  102. protected:
  103. // Without the alignas specifier here the compiler places this class into
  104. // the parent class' padding which then causes the members for the RefCounted
  105. // class to be placed within the first page of the Process class.
  106. alignas(ProtectedProcessBase) u8 m_process_base_padding[PAGE_SIZE - sizeof(ProtectedProcessBase)];
  107. };
  108. static_assert(sizeof(ProcessBase) == PAGE_SIZE);
  109. class Process
  110. : public ProcessBase
  111. , public RefCounted<Process>
  112. , public Weakable<Process> {
  113. AK_MAKE_NONCOPYABLE(Process);
  114. AK_MAKE_NONMOVABLE(Process);
  115. MAKE_ALIGNED_ALLOCATED(Process, PAGE_SIZE);
  116. friend class Thread;
  117. friend class CoreDump;
  118. friend class ProcFSProcessFileDescriptions;
  119. // Helper class to temporarily unprotect a process's protected data so you can write to it.
  120. class ProtectedDataMutationScope {
  121. public:
  122. explicit ProtectedDataMutationScope(Process& process)
  123. : m_process(process)
  124. {
  125. m_process.unprotect_data();
  126. }
  127. ~ProtectedDataMutationScope() { m_process.protect_data(); }
  128. private:
  129. Process& m_process;
  130. };
  131. public:
  132. inline static Process* current()
  133. {
  134. auto current_thread = Processor::current_thread();
  135. return current_thread ? &current_thread->process() : nullptr;
  136. }
  137. template<typename EntryFunction>
  138. static void kernel_process_trampoline(void* data)
  139. {
  140. EntryFunction* func = reinterpret_cast<EntryFunction*>(data);
  141. (*func)();
  142. delete func;
  143. }
  144. template<typename EntryFunction>
  145. static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, EntryFunction entry, u32 affinity = THREAD_AFFINITY_DEFAULT)
  146. {
  147. auto* entry_func = new EntryFunction(move(entry));
  148. return create_kernel_process(first_thread, move(name), &Process::kernel_process_trampoline<EntryFunction>, entry_func, affinity);
  149. }
  150. static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data = nullptr, u32 affinity = THREAD_AFFINITY_DEFAULT);
  151. static RefPtr<Process> create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t, gid_t, ProcessID ppid, int& error, Vector<String>&& arguments = Vector<String>(), Vector<String>&& environment = Vector<String>(), TTY* = nullptr);
  152. static void register_new(Process&);
  153. ~Process();
  154. static Vector<ProcessID> all_pids();
  155. static NonnullRefPtrVector<Process> all_processes();
  156. template<typename EntryFunction>
  157. RefPtr<Thread> create_kernel_thread(EntryFunction entry, u32 priority, const String& name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true)
  158. {
  159. auto* entry_func = new EntryFunction(move(entry));
  160. return create_kernel_thread([](void* data) {
  161. EntryFunction* func = reinterpret_cast<EntryFunction*>(data);
  162. (*func)();
  163. delete func;
  164. },
  165. priority, name, affinity, joinable);
  166. }
  167. RefPtr<Thread> create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, const String& name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true);
  168. bool is_profiling() const { return m_profiling; }
  169. void set_profiling(bool profiling) { m_profiling = profiling; }
  170. bool should_core_dump() const { return m_should_dump_core; }
  171. void set_dump_core(bool dump_core) { m_should_dump_core = dump_core; }
  172. bool is_dead() const { return m_dead; }
  173. bool is_stopped() const { return m_is_stopped; }
  174. bool set_stopped(bool stopped) { return m_is_stopped.exchange(stopped); }
  175. bool is_kernel_process() const { return m_is_kernel_process; }
  176. bool is_user_process() const { return !m_is_kernel_process; }
  177. static RefPtr<Process> from_pid(ProcessID);
  178. static SessionID get_sid_from_pgid(ProcessGroupID pgid);
  179. const String& name() const { return m_name; }
  180. ProcessID pid() const { return m_pid; }
  181. SessionID sid() const { return m_sid; }
  182. bool is_session_leader() const { return m_sid.value() == m_pid.value(); }
  183. ProcessGroupID pgid() const { return m_pg ? m_pg->pgid() : 0; }
  184. bool is_group_leader() const { return pgid().value() == m_pid.value(); }
  185. const Vector<gid_t>& extra_gids() const { return m_extra_gids; }
  186. uid_t euid() const { return m_euid; }
  187. gid_t egid() const { return m_egid; }
  188. uid_t uid() const { return m_uid; }
  189. gid_t gid() const { return m_gid; }
  190. uid_t suid() const { return m_suid; }
  191. gid_t sgid() const { return m_sgid; }
  192. ProcessID ppid() const { return m_ppid; }
  193. bool is_dumpable() const { return m_dumpable; }
  194. void set_dumpable(bool);
  195. mode_t umask() const { return m_umask; }
  196. bool in_group(gid_t) const;
  197. // Breakable iteration functions
  198. template<IteratorFunction<Process&> Callback>
  199. static void for_each(Callback);
  200. template<IteratorFunction<Process&> Callback>
  201. static void for_each_in_pgrp(ProcessGroupID, Callback);
  202. template<IteratorFunction<Process&> Callback>
  203. void for_each_child(Callback);
  204. template<IteratorFunction<Thread&> Callback>
  205. IterationDecision for_each_thread(Callback);
  206. template<IteratorFunction<Thread&> Callback>
  207. IterationDecision for_each_thread(Callback callback) const;
  208. // Non-breakable iteration functions
  209. template<VoidFunction<Process&> Callback>
  210. static void for_each(Callback);
  211. template<VoidFunction<Process&> Callback>
  212. static void for_each_in_pgrp(ProcessGroupID, Callback);
  213. template<VoidFunction<Process&> Callback>
  214. void for_each_child(Callback);
  215. template<VoidFunction<Thread&> Callback>
  216. IterationDecision for_each_thread(Callback);
  217. template<VoidFunction<Thread&> Callback>
  218. IterationDecision for_each_thread(Callback callback) const;
  219. void die();
  220. void finalize();
  221. ThreadTracer* tracer() { return m_tracer.ptr(); }
  222. bool is_traced() const { return !!m_tracer; }
  223. KResult start_tracing_from(ProcessID tracer);
  224. void stop_tracing();
  225. void tracer_trap(Thread&, const RegisterState&);
  226. KResultOr<FlatPtr> sys$emuctl();
  227. KResultOr<FlatPtr> sys$yield();
  228. KResultOr<FlatPtr> sys$sync();
  229. KResultOr<FlatPtr> sys$beep();
  230. KResultOr<FlatPtr> sys$get_process_name(Userspace<char*> buffer, size_t buffer_size);
  231. KResultOr<FlatPtr> sys$set_process_name(Userspace<const char*> user_name, size_t user_name_length);
  232. KResultOr<FlatPtr> sys$create_inode_watcher(u32 flags);
  233. KResultOr<FlatPtr> sys$inode_watcher_add_watch(Userspace<const Syscall::SC_inode_watcher_add_watch_params*> user_params);
  234. KResultOr<FlatPtr> sys$inode_watcher_remove_watch(int fd, int wd);
  235. KResultOr<FlatPtr> sys$dbgputch(u8);
  236. KResultOr<FlatPtr> sys$dbgputstr(Userspace<const u8*>, size_t);
  237. KResultOr<FlatPtr> sys$dump_backtrace();
  238. KResultOr<FlatPtr> sys$gettid();
  239. KResultOr<FlatPtr> sys$setsid();
  240. KResultOr<FlatPtr> sys$getsid(pid_t);
  241. KResultOr<FlatPtr> sys$setpgid(pid_t pid, pid_t pgid);
  242. KResultOr<FlatPtr> sys$getpgrp();
  243. KResultOr<FlatPtr> sys$getpgid(pid_t);
  244. KResultOr<FlatPtr> sys$getuid();
  245. KResultOr<FlatPtr> sys$getgid();
  246. KResultOr<FlatPtr> sys$geteuid();
  247. KResultOr<FlatPtr> sys$getegid();
  248. KResultOr<FlatPtr> sys$getpid();
  249. KResultOr<FlatPtr> sys$getppid();
  250. KResultOr<FlatPtr> sys$getresuid(Userspace<uid_t*>, Userspace<uid_t*>, Userspace<uid_t*>);
  251. KResultOr<FlatPtr> sys$getresgid(Userspace<gid_t*>, Userspace<gid_t*>, Userspace<gid_t*>);
  252. KResultOr<FlatPtr> sys$umask(mode_t);
  253. KResultOr<FlatPtr> sys$open(Userspace<const Syscall::SC_open_params*>);
  254. KResultOr<FlatPtr> sys$close(int fd);
  255. KResultOr<FlatPtr> sys$read(int fd, Userspace<u8*>, size_t);
  256. KResultOr<FlatPtr> sys$readv(int fd, Userspace<const struct iovec*> iov, int iov_count);
  257. KResultOr<FlatPtr> sys$write(int fd, Userspace<const u8*>, size_t);
  258. KResultOr<FlatPtr> sys$writev(int fd, Userspace<const struct iovec*> iov, int iov_count);
  259. KResultOr<FlatPtr> sys$fstat(int fd, Userspace<stat*>);
  260. KResultOr<FlatPtr> sys$stat(Userspace<const Syscall::SC_stat_params*>);
  261. KResultOr<FlatPtr> sys$lseek(int fd, Userspace<off_t*>, int whence);
  262. KResultOr<FlatPtr> sys$ftruncate(int fd, Userspace<off_t*>);
  263. KResultOr<FlatPtr> sys$kill(pid_t pid_or_pgid, int sig);
  264. [[noreturn]] void sys$exit(int status);
  265. KResultOr<FlatPtr> sys$sigreturn(RegisterState& registers);
  266. KResultOr<FlatPtr> sys$waitid(Userspace<const Syscall::SC_waitid_params*>);
  267. KResultOr<FlatPtr> sys$mmap(Userspace<const Syscall::SC_mmap_params*>);
  268. KResultOr<FlatPtr> sys$mremap(Userspace<const Syscall::SC_mremap_params*>);
  269. KResultOr<FlatPtr> sys$munmap(Userspace<void*>, size_t);
  270. KResultOr<FlatPtr> sys$set_mmap_name(Userspace<const Syscall::SC_set_mmap_name_params*>);
  271. KResultOr<FlatPtr> sys$mprotect(Userspace<void*>, size_t, int prot);
  272. KResultOr<FlatPtr> sys$madvise(Userspace<void*>, size_t, int advice);
  273. KResultOr<FlatPtr> sys$msyscall(Userspace<void*>);
  274. KResultOr<FlatPtr> sys$purge(int mode);
  275. KResultOr<FlatPtr> sys$select(Userspace<const Syscall::SC_select_params*>);
  276. KResultOr<FlatPtr> sys$poll(Userspace<const Syscall::SC_poll_params*>);
  277. KResultOr<FlatPtr> sys$get_dir_entries(int fd, Userspace<void*>, size_t);
  278. KResultOr<FlatPtr> sys$getcwd(Userspace<char*>, size_t);
  279. KResultOr<FlatPtr> sys$chdir(Userspace<const char*>, size_t);
  280. KResultOr<FlatPtr> sys$fchdir(int fd);
  281. KResultOr<FlatPtr> sys$adjtime(Userspace<const timeval*>, Userspace<timeval*>);
  282. KResultOr<FlatPtr> sys$gettimeofday(Userspace<timeval*>);
  283. KResultOr<FlatPtr> sys$clock_gettime(clockid_t, Userspace<timespec*>);
  284. KResultOr<FlatPtr> sys$clock_settime(clockid_t, Userspace<const timespec*>);
  285. KResultOr<FlatPtr> sys$clock_nanosleep(Userspace<const Syscall::SC_clock_nanosleep_params*>);
  286. KResultOr<FlatPtr> sys$gethostname(Userspace<char*>, size_t);
  287. KResultOr<FlatPtr> sys$sethostname(Userspace<const char*>, size_t);
  288. KResultOr<FlatPtr> sys$uname(Userspace<utsname*>);
  289. KResultOr<FlatPtr> sys$readlink(Userspace<const Syscall::SC_readlink_params*>);
  290. KResultOr<FlatPtr> sys$ttyname(int fd, Userspace<char*>, size_t);
  291. KResultOr<FlatPtr> sys$ptsname(int fd, Userspace<char*>, size_t);
  292. KResultOr<FlatPtr> sys$fork(RegisterState&);
  293. KResultOr<FlatPtr> sys$execve(Userspace<const Syscall::SC_execve_params*>);
  294. KResultOr<FlatPtr> sys$dup2(int old_fd, int new_fd);
  295. KResultOr<FlatPtr> sys$sigaction(int signum, Userspace<const sigaction*> act, Userspace<sigaction*> old_act);
  296. KResultOr<FlatPtr> sys$sigprocmask(int how, Userspace<const sigset_t*> set, Userspace<sigset_t*> old_set);
  297. KResultOr<FlatPtr> sys$sigpending(Userspace<sigset_t*>);
  298. KResultOr<FlatPtr> sys$getgroups(size_t, Userspace<gid_t*>);
  299. KResultOr<FlatPtr> sys$setgroups(size_t, Userspace<const gid_t*>);
  300. KResultOr<FlatPtr> sys$pipe(int pipefd[2], int flags);
  301. KResultOr<FlatPtr> sys$killpg(pid_t pgrp, int sig);
  302. KResultOr<FlatPtr> sys$seteuid(uid_t);
  303. KResultOr<FlatPtr> sys$setegid(gid_t);
  304. KResultOr<FlatPtr> sys$setuid(uid_t);
  305. KResultOr<FlatPtr> sys$setgid(gid_t);
  306. KResultOr<FlatPtr> sys$setreuid(uid_t, uid_t);
  307. KResultOr<FlatPtr> sys$setresuid(uid_t, uid_t, uid_t);
  308. KResultOr<FlatPtr> sys$setresgid(gid_t, gid_t, gid_t);
  309. KResultOr<FlatPtr> sys$alarm(unsigned seconds);
  310. KResultOr<FlatPtr> sys$access(Userspace<const char*> pathname, size_t path_length, int mode);
  311. KResultOr<FlatPtr> sys$fcntl(int fd, int cmd, u32 extra_arg);
  312. KResultOr<FlatPtr> sys$ioctl(int fd, unsigned request, FlatPtr arg);
  313. KResultOr<FlatPtr> sys$mkdir(Userspace<const char*> pathname, size_t path_length, mode_t mode);
  314. KResultOr<FlatPtr> sys$times(Userspace<tms*>);
  315. KResultOr<FlatPtr> sys$utime(Userspace<const char*> pathname, size_t path_length, Userspace<const struct utimbuf*>);
  316. KResultOr<FlatPtr> sys$link(Userspace<const Syscall::SC_link_params*>);
  317. KResultOr<FlatPtr> sys$unlink(Userspace<const char*> pathname, size_t path_length);
  318. KResultOr<FlatPtr> sys$symlink(Userspace<const Syscall::SC_symlink_params*>);
  319. KResultOr<FlatPtr> sys$rmdir(Userspace<const char*> pathname, size_t path_length);
  320. KResultOr<FlatPtr> sys$mount(Userspace<const Syscall::SC_mount_params*>);
  321. KResultOr<FlatPtr> sys$umount(Userspace<const char*> mountpoint, size_t mountpoint_length);
  322. KResultOr<FlatPtr> sys$chmod(Userspace<const char*> pathname, size_t path_length, mode_t);
  323. KResultOr<FlatPtr> sys$fchmod(int fd, mode_t);
  324. KResultOr<FlatPtr> sys$chown(Userspace<const Syscall::SC_chown_params*>);
  325. KResultOr<FlatPtr> sys$fchown(int fd, uid_t, gid_t);
  326. KResultOr<FlatPtr> sys$socket(int domain, int type, int protocol);
  327. KResultOr<FlatPtr> sys$bind(int sockfd, Userspace<const sockaddr*> addr, socklen_t);
  328. KResultOr<FlatPtr> sys$listen(int sockfd, int backlog);
  329. KResultOr<FlatPtr> sys$accept4(Userspace<const Syscall::SC_accept4_params*>);
  330. KResultOr<FlatPtr> sys$connect(int sockfd, Userspace<const sockaddr*>, socklen_t);
  331. KResultOr<FlatPtr> sys$shutdown(int sockfd, int how);
  332. KResultOr<FlatPtr> sys$sendmsg(int sockfd, Userspace<const struct msghdr*>, int flags);
  333. KResultOr<FlatPtr> sys$recvmsg(int sockfd, Userspace<struct msghdr*>, int flags);
  334. KResultOr<FlatPtr> sys$getsockopt(Userspace<const Syscall::SC_getsockopt_params*>);
  335. KResultOr<FlatPtr> sys$setsockopt(Userspace<const Syscall::SC_setsockopt_params*>);
  336. KResultOr<FlatPtr> sys$getsockname(Userspace<const Syscall::SC_getsockname_params*>);
  337. KResultOr<FlatPtr> sys$getpeername(Userspace<const Syscall::SC_getpeername_params*>);
  338. KResultOr<FlatPtr> sys$socketpair(Userspace<const Syscall::SC_socketpair_params*>);
  339. KResultOr<FlatPtr> sys$sched_setparam(pid_t pid, Userspace<const struct sched_param*>);
  340. KResultOr<FlatPtr> sys$sched_getparam(pid_t pid, Userspace<struct sched_param*>);
  341. KResultOr<FlatPtr> sys$create_thread(void* (*)(void*), Userspace<const Syscall::SC_create_thread_params*>);
  342. [[noreturn]] void sys$exit_thread(Userspace<void*>, Userspace<void*>, size_t);
  343. KResultOr<FlatPtr> sys$join_thread(pid_t tid, Userspace<void**> exit_value);
  344. KResultOr<FlatPtr> sys$detach_thread(pid_t tid);
  345. KResultOr<FlatPtr> sys$set_thread_name(pid_t tid, Userspace<const char*> buffer, size_t buffer_size);
  346. KResultOr<FlatPtr> sys$get_thread_name(pid_t tid, Userspace<char*> buffer, size_t buffer_size);
  347. KResultOr<FlatPtr> sys$rename(Userspace<const Syscall::SC_rename_params*>);
  348. KResultOr<FlatPtr> sys$mknod(Userspace<const Syscall::SC_mknod_params*>);
  349. KResultOr<FlatPtr> sys$halt();
  350. KResultOr<FlatPtr> sys$reboot();
  351. KResultOr<FlatPtr> sys$realpath(Userspace<const Syscall::SC_realpath_params*>);
  352. KResultOr<FlatPtr> sys$getrandom(Userspace<void*>, size_t, unsigned int);
  353. KResultOr<FlatPtr> sys$getkeymap(Userspace<const Syscall::SC_getkeymap_params*>);
  354. KResultOr<FlatPtr> sys$setkeymap(Userspace<const Syscall::SC_setkeymap_params*>);
  355. KResultOr<FlatPtr> sys$module_load(Userspace<const char*> path, size_t path_length);
  356. KResultOr<FlatPtr> sys$module_unload(Userspace<const char*> name, size_t name_length);
  357. KResultOr<FlatPtr> sys$profiling_enable(pid_t, u64);
  358. KResultOr<FlatPtr> sys$profiling_disable(pid_t);
  359. KResultOr<FlatPtr> sys$profiling_free_buffer(pid_t);
  360. KResultOr<FlatPtr> sys$futex(Userspace<const Syscall::SC_futex_params*>);
  361. KResultOr<FlatPtr> sys$chroot(Userspace<const char*> path, size_t path_length, int mount_flags);
  362. KResultOr<FlatPtr> sys$pledge(Userspace<const Syscall::SC_pledge_params*>);
  363. KResultOr<FlatPtr> sys$unveil(Userspace<const Syscall::SC_unveil_params*>);
  364. KResultOr<FlatPtr> sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2);
  365. KResultOr<FlatPtr> sys$get_stack_bounds(Userspace<FlatPtr*> stack_base, Userspace<size_t*> stack_size);
  366. KResultOr<FlatPtr> sys$ptrace(Userspace<const Syscall::SC_ptrace_params*>);
  367. KResultOr<FlatPtr> sys$sendfd(int sockfd, int fd);
  368. KResultOr<FlatPtr> sys$recvfd(int sockfd, int options);
  369. KResultOr<FlatPtr> sys$sysconf(int name);
  370. KResultOr<FlatPtr> sys$disown(ProcessID);
  371. KResultOr<FlatPtr> sys$allocate_tls(Userspace<const char*> initial_data, size_t);
  372. KResultOr<FlatPtr> sys$prctl(int option, FlatPtr arg1, FlatPtr arg2);
  373. KResultOr<FlatPtr> sys$set_coredump_metadata(Userspace<const Syscall::SC_set_coredump_metadata_params*>);
  374. KResultOr<FlatPtr> sys$anon_create(size_t, int options);
  375. KResultOr<FlatPtr> sys$statvfs(Userspace<const Syscall::SC_statvfs_params*> user_params);
  376. KResultOr<FlatPtr> sys$fstatvfs(int fd, statvfs* buf);
  377. template<bool sockname, typename Params>
  378. int get_sock_or_peer_name(const Params&);
  379. static void initialize();
  380. [[noreturn]] void crash(int signal, FlatPtr ip, bool out_of_memory = false);
  381. [[nodiscard]] siginfo_t wait_info();
  382. const TTY* tty() const { return m_tty; }
  383. void set_tty(TTY*);
  384. u32 m_ticks_in_user { 0 };
  385. u32 m_ticks_in_kernel { 0 };
  386. u32 m_ticks_in_user_for_dead_children { 0 };
  387. u32 m_ticks_in_kernel_for_dead_children { 0 };
  388. Custody& current_directory();
  389. Custody* executable() { return m_executable.ptr(); }
  390. const Custody* executable() const { return m_executable.ptr(); }
  391. const Vector<String>& arguments() const { return m_arguments; };
  392. const Vector<String>& environment() const { return m_environment; };
  393. KResult exec(String path, Vector<String> arguments, Vector<String> environment, int recusion_depth = 0);
  394. KResultOr<LoadResult> load(NonnullRefPtr<FileDescription> main_program_description, RefPtr<FileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header);
  395. bool is_superuser() const { return euid() == 0; }
  396. void terminate_due_to_signal(u8 signal);
  397. KResult send_signal(u8 signal, Process* sender);
  398. u8 termination_signal() const { return m_termination_signal; }
  399. u16 thread_count() const
  400. {
  401. return m_thread_count.load(AK::MemoryOrder::memory_order_relaxed);
  402. }
  403. Lock& big_lock() { return m_big_lock; }
  404. Lock& ptrace_lock() { return m_ptrace_lock; }
  405. Custody& root_directory();
  406. Custody& root_directory_relative_to_global_root();
  407. void set_root_directory(const Custody&);
  408. bool has_promises() const { return m_has_promises; }
  409. bool has_promised(Pledge pledge) const { return m_promises & (1u << (u32)pledge); }
  410. VeilState veil_state() const
  411. {
  412. return m_veil_state;
  413. }
  414. const UnveilNode& unveiled_paths() const
  415. {
  416. return m_unveiled_paths;
  417. }
  418. bool wait_for_tracer_at_next_execve() const
  419. {
  420. return m_wait_for_tracer_at_next_execve;
  421. }
  422. void set_wait_for_tracer_at_next_execve(bool val)
  423. {
  424. m_wait_for_tracer_at_next_execve = val;
  425. }
  426. KResultOr<u32> peek_user_data(Userspace<const u32*> address);
  427. KResult poke_user_data(Userspace<u32*> address, u32 data);
  428. void disowned_by_waiter(Process& process);
  429. void unblock_waiters(Thread::WaitBlocker::UnblockFlags, u8 signal = 0);
  430. Thread::WaitBlockCondition& wait_block_condition() { return m_wait_block_condition; }
  431. HashMap<String, String>& coredump_metadata() { return m_coredump_metadata; }
  432. const HashMap<String, String>& coredump_metadata() const { return m_coredump_metadata; }
  433. void set_coredump_metadata(const String& key, String value);
  434. const NonnullRefPtrVector<Thread>& threads_for_coredump(Badge<CoreDump>) const { return m_threads_for_coredump; }
  435. PerformanceEventBuffer* perf_events() { return m_perf_event_buffer; }
  436. Space& space() { return *m_space; }
  437. const Space& space() const { return *m_space; }
  438. VirtualAddress signal_trampoline() const { return m_signal_trampoline; }
  439. private:
  440. friend class MemoryManager;
  441. friend class Scheduler;
  442. friend class Region;
  443. friend class PerformanceManager;
  444. bool add_thread(Thread&);
  445. bool remove_thread(Thread&);
  446. Process(const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty);
  447. static RefPtr<Process> create(RefPtr<Thread>& first_thread, const String& name, uid_t, gid_t, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd = nullptr, RefPtr<Custody> executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
  448. KResult attach_resources(RefPtr<Thread>& first_thread, Process* fork_parent);
  449. static ProcessID allocate_pid();
  450. void kill_threads_except_self();
  451. void kill_all_threads();
  452. bool dump_core();
  453. bool dump_perfcore();
  454. bool create_perf_events_buffer_if_needed();
  455. void delete_perf_events_buffer();
  456. KResult do_exec(NonnullRefPtr<FileDescription> main_program_description, Vector<String> arguments, Vector<String> environment, RefPtr<FileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header);
  457. KResultOr<FlatPtr> do_write(FileDescription&, const UserOrKernelBuffer&, size_t);
  458. KResultOr<FlatPtr> do_statvfs(String path, statvfs* buf);
  459. KResultOr<RefPtr<FileDescription>> find_elf_interpreter_for_executable(const String& path, const ElfW(Ehdr) & elf_header, int nread, size_t file_size);
  460. KResult do_kill(Process&, int signal);
  461. KResult do_killpg(ProcessGroupID pgrp, int signal);
  462. KResult do_killall(int signal);
  463. KResult do_killself(int signal);
  464. KResultOr<siginfo_t> do_waitid(idtype_t idtype, int id, int options);
  465. KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(const char* user_path, size_t path_length) const;
  466. KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(Userspace<const char*> user_path, size_t path_length) const
  467. {
  468. return get_syscall_path_argument(user_path.unsafe_userspace_ptr(), path_length);
  469. }
  470. KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(const Syscall::StringArgument&) const;
  471. bool has_tracee_thread(ProcessID tracer_pid);
  472. void clear_futex_queues_on_exec();
  473. void setup_socket_fd(int fd, NonnullRefPtr<FileDescription> description, int type);
  474. inline PerformanceEventBuffer* current_perf_events_buffer()
  475. {
  476. if (g_profiling_all_threads)
  477. return g_global_perf_events;
  478. else if (m_profiling)
  479. return m_perf_event_buffer.ptr();
  480. else
  481. return nullptr;
  482. }
  483. IntrusiveListNode<Process> m_list_node;
  484. String m_name;
  485. OwnPtr<Space> m_space;
  486. RefPtr<ProcessGroup> m_pg;
  487. AtomicEdgeAction<u32> m_protected_data_refs;
  488. void protect_data();
  489. void unprotect_data();
  490. OwnPtr<ThreadTracer> m_tracer;
  491. public:
  492. class FileDescriptionAndFlags {
  493. friend class FileDescriptionRegistrar;
  494. public:
  495. operator bool() const { return !!m_description; }
  496. bool is_valid() const { return !m_description.is_null(); }
  497. FileDescription* description() { return m_description; }
  498. const FileDescription* description() const { return m_description; }
  499. InodeIndex global_procfs_inode_index() const { return m_global_procfs_inode_index; }
  500. u32 flags() const { return m_flags; }
  501. void set_flags(u32 flags) { m_flags = flags; }
  502. void clear();
  503. void set(NonnullRefPtr<FileDescription>&&, u32 flags = 0);
  504. void refresh_inode_index();
  505. private:
  506. RefPtr<FileDescription> m_description;
  507. u32 m_flags { 0 };
  508. // Note: This is needed so when we generate inodes for ProcFS, we know that
  509. // we assigned a global Inode index to it so we can use it later
  510. InodeIndex m_global_procfs_inode_index;
  511. };
  512. class FileDescriptions {
  513. friend class Process;
  514. public:
  515. ALWAYS_INLINE const FileDescriptionAndFlags& operator[](size_t i) const { return at(i); }
  516. ALWAYS_INLINE FileDescriptionAndFlags& operator[](size_t i) { return at(i); }
  517. FileDescriptions& operator=(const Kernel::Process::FileDescriptions& other)
  518. {
  519. ScopedSpinLock lock(m_fds_lock);
  520. ScopedSpinLock lock_other(other.m_fds_lock);
  521. m_fds_metadatas = other.m_fds_metadatas;
  522. for (auto& file_description_metadata : m_fds_metadatas) {
  523. file_description_metadata.refresh_inode_index();
  524. }
  525. return *this;
  526. }
  527. const FileDescriptionAndFlags& at(size_t i) const;
  528. FileDescriptionAndFlags& at(size_t i);
  529. void enumerate(Function<void(const FileDescriptionAndFlags&)>) const;
  530. void change_each(Function<void(FileDescriptionAndFlags&)>);
  531. int allocate(int first_candidate_fd = 0);
  532. size_t open_count() const;
  533. bool try_resize(size_t size) { return m_fds_metadatas.try_resize(size); }
  534. size_t max_open() const
  535. {
  536. return m_max_open_file_descriptors;
  537. }
  538. void clear()
  539. {
  540. ScopedSpinLock lock(m_fds_lock);
  541. m_fds_metadatas.clear();
  542. }
  543. // FIXME: Consider to remove this somehow
  544. RefPtr<FileDescription> file_description(int fd) const;
  545. int fd_flags(int fd) const;
  546. private:
  547. FileDescriptions() = default;
  548. static constexpr size_t m_max_open_file_descriptors { FD_SETSIZE };
  549. mutable SpinLock<u8> m_fds_lock;
  550. Vector<FileDescriptionAndFlags> m_fds_metadatas;
  551. };
  552. FileDescriptions& fds() { return m_fds; }
  553. const FileDescriptions& fds() const { return m_fds; }
  554. private:
  555. FileDescriptions m_fds;
  556. mutable RecursiveSpinLock m_thread_list_lock;
  557. const bool m_is_kernel_process;
  558. bool m_dead { false };
  559. bool m_profiling { false };
  560. Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_is_stopped { false };
  561. bool m_should_dump_core { false };
  562. RefPtr<Custody> m_executable;
  563. RefPtr<Custody> m_cwd;
  564. RefPtr<Custody> m_root_directory;
  565. RefPtr<Custody> m_root_directory_relative_to_global_root;
  566. Vector<String> m_arguments;
  567. Vector<String> m_environment;
  568. RefPtr<TTY> m_tty;
  569. WeakPtr<Region> m_master_tls_region;
  570. size_t m_master_tls_size { 0 };
  571. size_t m_master_tls_alignment { 0 };
  572. Lock m_big_lock { "Process" };
  573. Lock m_ptrace_lock { "ptrace" };
  574. RefPtr<Timer> m_alarm_timer;
  575. VeilState m_veil_state { VeilState::None };
  576. UnveilNode m_unveiled_paths { "/", { .full_path = "/" } };
  577. OwnPtr<PerformanceEventBuffer> m_perf_event_buffer;
  578. FutexQueues m_futex_queues;
  579. SpinLock<u8> m_futex_lock;
  580. // This member is used in the implementation of ptrace's PT_TRACEME flag.
  581. // If it is set to true, the process will stop at the next execve syscall
  582. // and wait for a tracer to attach.
  583. bool m_wait_for_tracer_at_next_execve { false };
  584. Thread::WaitBlockCondition m_wait_block_condition;
  585. HashMap<String, String> m_coredump_metadata;
  586. NonnullRefPtrVector<Thread> m_threads_for_coredump;
  587. public:
  588. using List = IntrusiveList<Process, RawPtr<Process>, &Process::m_list_node>;
  589. };
  590. extern Process::List* g_processes;
  591. extern RecursiveSpinLock g_processes_lock;
  592. template<IteratorFunction<Process&> Callback>
  593. inline void Process::for_each(Callback callback)
  594. {
  595. VERIFY_INTERRUPTS_DISABLED();
  596. ScopedSpinLock lock(g_processes_lock);
  597. for (auto it = g_processes->begin(); it != g_processes->end();) {
  598. auto& process = *it;
  599. ++it;
  600. if (callback(process) == IterationDecision::Break)
  601. break;
  602. }
  603. }
  604. template<IteratorFunction<Process&> Callback>
  605. inline void Process::for_each_child(Callback callback)
  606. {
  607. VERIFY_INTERRUPTS_DISABLED();
  608. ProcessID my_pid = pid();
  609. ScopedSpinLock lock(g_processes_lock);
  610. for (auto it = g_processes->begin(); it != g_processes->end();) {
  611. auto& process = *it;
  612. ++it;
  613. if (process.ppid() == my_pid || process.has_tracee_thread(pid())) {
  614. if (callback(process) == IterationDecision::Break)
  615. break;
  616. }
  617. }
  618. }
  619. template<IteratorFunction<Thread&> Callback>
  620. inline IterationDecision Process::for_each_thread(Callback callback) const
  621. {
  622. ScopedSpinLock thread_list_lock(m_thread_list_lock);
  623. for (auto& thread : m_thread_list) {
  624. IterationDecision decision = callback(thread);
  625. if (decision != IterationDecision::Continue)
  626. return decision;
  627. }
  628. return IterationDecision::Continue;
  629. }
  630. template<IteratorFunction<Thread&> Callback>
  631. inline IterationDecision Process::for_each_thread(Callback callback)
  632. {
  633. ScopedSpinLock thread_list_lock(m_thread_list_lock);
  634. for (auto& thread : m_thread_list) {
  635. IterationDecision decision = callback(thread);
  636. if (decision != IterationDecision::Continue)
  637. return decision;
  638. }
  639. return IterationDecision::Continue;
  640. }
  641. template<IteratorFunction<Process&> Callback>
  642. inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
  643. {
  644. VERIFY_INTERRUPTS_DISABLED();
  645. ScopedSpinLock lock(g_processes_lock);
  646. for (auto it = g_processes->begin(); it != g_processes->end();) {
  647. auto& process = *it;
  648. ++it;
  649. if (!process.is_dead() && process.pgid() == pgid) {
  650. if (callback(process) == IterationDecision::Break)
  651. break;
  652. }
  653. }
  654. }
  655. template<VoidFunction<Process&> Callback>
  656. inline void Process::for_each(Callback callback)
  657. {
  658. return for_each([&](auto& item) {
  659. callback(item);
  660. return IterationDecision::Continue;
  661. });
  662. }
  663. template<VoidFunction<Process&> Callback>
  664. inline void Process::for_each_child(Callback callback)
  665. {
  666. return for_each_child([&](auto& item) {
  667. callback(item);
  668. return IterationDecision::Continue;
  669. });
  670. }
  671. template<VoidFunction<Thread&> Callback>
  672. inline IterationDecision Process::for_each_thread(Callback callback) const
  673. {
  674. ScopedSpinLock thread_list_lock(m_thread_list_lock);
  675. for (auto& thread : m_thread_list)
  676. callback(thread);
  677. return IterationDecision::Continue;
  678. }
  679. template<VoidFunction<Thread&> Callback>
  680. inline IterationDecision Process::for_each_thread(Callback callback)
  681. {
  682. ScopedSpinLock thread_list_lock(m_thread_list_lock);
  683. for (auto& thread : m_thread_list)
  684. callback(thread);
  685. return IterationDecision::Continue;
  686. }
  687. template<VoidFunction<Process&> Callback>
  688. inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
  689. {
  690. return for_each_in_pgrp(pgid, [&](auto& item) {
  691. callback(item);
  692. return IterationDecision::Continue;
  693. });
  694. }
  695. inline bool InodeMetadata::may_read(const Process& process) const
  696. {
  697. return may_read(process.euid(), process.egid(), process.extra_gids());
  698. }
  699. inline bool InodeMetadata::may_write(const Process& process) const
  700. {
  701. return may_write(process.euid(), process.egid(), process.extra_gids());
  702. }
  703. inline bool InodeMetadata::may_execute(const Process& process) const
  704. {
  705. return may_execute(process.euid(), process.egid(), process.extra_gids());
  706. }
  707. inline ProcessID Thread::pid() const
  708. {
  709. return m_process->pid();
  710. }
  711. #define REQUIRE_NO_PROMISES \
  712. do { \
  713. if (Process::current()->has_promises()) { \
  714. dbgln("Has made a promise"); \
  715. Process::current()->crash(SIGABRT, 0); \
  716. VERIFY_NOT_REACHED(); \
  717. } \
  718. } while (0)
  719. #define REQUIRE_PROMISE(promise) \
  720. do { \
  721. if (Process::current()->has_promises() \
  722. && !Process::current()->has_promised(Pledge::promise)) { \
  723. dbgln("Has not pledged {}", #promise); \
  724. Process::current()->coredump_metadata().set( \
  725. "pledge_violation", #promise); \
  726. Process::current()->crash(SIGABRT, 0); \
  727. VERIFY_NOT_REACHED(); \
  728. } \
  729. } while (0)
  730. }
  731. inline static String copy_string_from_user(const Kernel::Syscall::StringArgument& string)
  732. {
  733. return copy_string_from_user(string.characters, string.length);
  734. }
  735. inline static KResultOr<NonnullOwnPtr<KString>> try_copy_kstring_from_user(const Kernel::Syscall::StringArgument& string)
  736. {
  737. return try_copy_kstring_from_user(string.characters, string.length);
  738. }
  739. template<>
  740. struct AK::Formatter<Kernel::Process> : AK::Formatter<String> {
  741. void format(FormatBuilder& builder, const Kernel::Process& value)
  742. {
  743. return AK::Formatter<String>::format(builder, String::formatted("{}({})", value.name(), value.pid().value()));
  744. }
  745. };