APIC.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Assertions.h>
  27. #include <AK/Memory.h>
  28. #include <AK/Singleton.h>
  29. #include <AK/StringView.h>
  30. #include <AK/Types.h>
  31. #include <Kernel/ACPI/Parser.h>
  32. #include <Kernel/Arch/i386/CPU.h>
  33. #include <Kernel/Arch/i386/ProcessorInfo.h>
  34. #include <Kernel/Debug.h>
  35. #include <Kernel/IO.h>
  36. #include <Kernel/Interrupts/APIC.h>
  37. #include <Kernel/Interrupts/SpuriousInterruptHandler.h>
  38. #include <Kernel/Panic.h>
  39. #include <Kernel/Thread.h>
  40. #include <Kernel/Time/APICTimer.h>
  41. #include <Kernel/VM/MemoryManager.h>
  42. #include <Kernel/VM/PageDirectory.h>
  43. #include <Kernel/VM/TypedMapping.h>
  44. #define IRQ_APIC_TIMER (0xfc - IRQ_VECTOR_BASE)
  45. #define IRQ_APIC_IPI (0xfd - IRQ_VECTOR_BASE)
  46. #define IRQ_APIC_ERR (0xfe - IRQ_VECTOR_BASE)
  47. #define IRQ_APIC_SPURIOUS (0xff - IRQ_VECTOR_BASE)
  48. #define APIC_ICR_DELIVERY_PENDING (1 << 12)
  49. #define APIC_ENABLED (1 << 8)
  50. #define APIC_BASE_MSR 0x1b
  51. #define APIC_REG_EOI 0xb0
  52. #define APIC_REG_LD 0xd0
  53. #define APIC_REG_DF 0xe0
  54. #define APIC_REG_SIV 0xf0
  55. #define APIC_REG_TPR 0x80
  56. #define APIC_REG_ICR_LOW 0x300
  57. #define APIC_REG_ICR_HIGH 0x310
  58. #define APIC_REG_LVT_TIMER 0x320
  59. #define APIC_REG_LVT_THERMAL 0x330
  60. #define APIC_REG_LVT_PERFORMANCE_COUNTER 0x340
  61. #define APIC_REG_LVT_LINT0 0x350
  62. #define APIC_REG_LVT_LINT1 0x360
  63. #define APIC_REG_LVT_ERR 0x370
  64. #define APIC_REG_TIMER_INITIAL_COUNT 0x380
  65. #define APIC_REG_TIMER_CURRENT_COUNT 0x390
  66. #define APIC_REG_TIMER_CONFIGURATION 0x3e0
  67. namespace Kernel {
  68. static AK::Singleton<APIC> s_apic;
  69. class APICIPIInterruptHandler final : public GenericInterruptHandler {
  70. public:
  71. explicit APICIPIInterruptHandler(u8 interrupt_vector)
  72. : GenericInterruptHandler(interrupt_vector, true)
  73. {
  74. }
  75. virtual ~APICIPIInterruptHandler()
  76. {
  77. }
  78. static void initialize(u8 interrupt_number)
  79. {
  80. auto* handler = new APICIPIInterruptHandler(interrupt_number);
  81. handler->register_interrupt_handler();
  82. }
  83. virtual void handle_interrupt(const RegisterState&) override;
  84. virtual bool eoi() override;
  85. virtual HandlerType type() const override { return HandlerType::IRQHandler; }
  86. virtual const char* purpose() const override { return "IPI Handler"; }
  87. virtual const char* controller() const override { return nullptr; }
  88. virtual size_t sharing_devices_count() const override { return 0; }
  89. virtual bool is_shared_handler() const override { return false; }
  90. virtual bool is_sharing_with_others() const override { return false; }
  91. private:
  92. };
  93. class APICErrInterruptHandler final : public GenericInterruptHandler {
  94. public:
  95. explicit APICErrInterruptHandler(u8 interrupt_vector)
  96. : GenericInterruptHandler(interrupt_vector, true)
  97. {
  98. }
  99. virtual ~APICErrInterruptHandler()
  100. {
  101. }
  102. static void initialize(u8 interrupt_number)
  103. {
  104. auto* handler = new APICErrInterruptHandler(interrupt_number);
  105. handler->register_interrupt_handler();
  106. }
  107. virtual void handle_interrupt(const RegisterState&) override;
  108. virtual bool eoi() override;
  109. virtual HandlerType type() const override { return HandlerType::IRQHandler; }
  110. virtual const char* purpose() const override { return "SMP Error Handler"; }
  111. virtual const char* controller() const override { return nullptr; }
  112. virtual size_t sharing_devices_count() const override { return 0; }
  113. virtual bool is_shared_handler() const override { return false; }
  114. virtual bool is_sharing_with_others() const override { return false; }
  115. private:
  116. };
  117. bool APIC::initialized()
  118. {
  119. return s_apic.is_initialized();
  120. }
  121. APIC& APIC::the()
  122. {
  123. VERIFY(APIC::initialized());
  124. return *s_apic;
  125. }
  126. UNMAP_AFTER_INIT void APIC::initialize()
  127. {
  128. VERIFY(!APIC::initialized());
  129. s_apic.ensure_instance();
  130. }
  131. PhysicalAddress APIC::get_base()
  132. {
  133. u32 lo, hi;
  134. MSR msr(APIC_BASE_MSR);
  135. msr.get(lo, hi);
  136. return PhysicalAddress(lo & 0xfffff000);
  137. }
  138. void APIC::set_base(const PhysicalAddress& base)
  139. {
  140. u32 hi = 0;
  141. u32 lo = base.get() | 0x800;
  142. MSR msr(APIC_BASE_MSR);
  143. msr.set(lo, hi);
  144. }
  145. void APIC::write_register(u32 offset, u32 value)
  146. {
  147. *reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr()) = value;
  148. }
  149. u32 APIC::read_register(u32 offset)
  150. {
  151. return *reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr());
  152. }
  153. void APIC::set_lvt(u32 offset, u8 interrupt)
  154. {
  155. write_register(offset, (read_register(offset) & 0xffffffff) | interrupt);
  156. }
  157. void APIC::set_siv(u32 offset, u8 interrupt)
  158. {
  159. write_register(offset, (read_register(offset) & 0xffffffff) | interrupt | APIC_ENABLED);
  160. }
  161. void APIC::wait_for_pending_icr()
  162. {
  163. while ((read_register(APIC_REG_ICR_LOW) & APIC_ICR_DELIVERY_PENDING) != 0) {
  164. IO::delay(200);
  165. }
  166. }
  167. void APIC::write_icr(const ICRReg& icr)
  168. {
  169. write_register(APIC_REG_ICR_HIGH, icr.high());
  170. write_register(APIC_REG_ICR_LOW, icr.low());
  171. }
  172. #define APIC_LVT_TIMER_ONESHOT 0
  173. #define APIC_LVT_TIMER_PERIODIC (1 << 17)
  174. #define APIC_LVT_TIMER_TSCDEADLINE (1 << 18)
  175. #define APIC_LVT_MASKED (1 << 16)
  176. #define APIC_LVT_TRIGGER_LEVEL (1 << 14)
  177. #define APIC_LVT(iv, dm) (((iv)&0xff) | (((dm)&0x7) << 8))
  178. extern "C" void apic_ap_start(void);
  179. extern "C" u16 apic_ap_start_size;
  180. extern "C" u32 ap_cpu_init_stacks;
  181. extern "C" u32 ap_cpu_init_processor_info_array;
  182. extern "C" u32 ap_cpu_init_cr0;
  183. extern "C" u32 ap_cpu_init_cr3;
  184. extern "C" u32 ap_cpu_init_cr4;
  185. extern "C" u32 ap_cpu_gdtr;
  186. extern "C" u32 ap_cpu_idtr;
  187. void APIC::eoi()
  188. {
  189. write_register(APIC_REG_EOI, 0x0);
  190. }
  191. u8 APIC::spurious_interrupt_vector()
  192. {
  193. return IRQ_APIC_SPURIOUS;
  194. }
  195. #define APIC_INIT_VAR_PTR(tpe, vaddr, varname) \
  196. reinterpret_cast<volatile tpe*>(reinterpret_cast<ptrdiff_t>(vaddr) \
  197. + reinterpret_cast<ptrdiff_t>(&varname) \
  198. - reinterpret_cast<ptrdiff_t>(&apic_ap_start))
  199. UNMAP_AFTER_INIT bool APIC::init_bsp()
  200. {
  201. // FIXME: Use the ACPI MADT table
  202. if (!MSR::have())
  203. return false;
  204. // check if we support local apic
  205. CPUID id(1);
  206. if ((id.edx() & (1 << 9)) == 0)
  207. return false;
  208. PhysicalAddress apic_base = get_base();
  209. dbgln_if(APIC_DEBUG, "Initializing APIC, base: {}", apic_base);
  210. set_base(apic_base);
  211. m_apic_base = MM.allocate_kernel_region(apic_base.page_base(), PAGE_SIZE, {}, Region::Access::Read | Region::Access::Write);
  212. if (!m_apic_base) {
  213. dbgln("APIC: Failed to allocate memory for APIC base");
  214. return false;
  215. }
  216. auto rsdp = ACPI::StaticParsing::find_rsdp();
  217. if (!rsdp.has_value()) {
  218. dbgln("APIC: RSDP not found");
  219. return false;
  220. }
  221. auto madt_address = ACPI::StaticParsing::find_table(rsdp.value(), "APIC");
  222. if (madt_address.is_null()) {
  223. dbgln("APIC: MADT table not found");
  224. return false;
  225. }
  226. auto madt = map_typed<ACPI::Structures::MADT>(madt_address);
  227. size_t entry_index = 0;
  228. size_t entries_length = madt->h.length - sizeof(ACPI::Structures::MADT);
  229. auto* madt_entry = madt->entries;
  230. while (entries_length > 0) {
  231. size_t entry_length = madt_entry->length;
  232. if (madt_entry->type == (u8)ACPI::Structures::MADTEntryType::LocalAPIC) {
  233. auto* plapic_entry = (const ACPI::Structures::MADTEntries::ProcessorLocalAPIC*)madt_entry;
  234. dbgln_if(APIC_DEBUG, "APIC: AP found @ MADT entry {}, processor ID: {}, APIC ID: {}, flags: {:#08x}", entry_index, plapic_entry->acpi_processor_id, plapic_entry->apic_id, plapic_entry->flags);
  235. m_processor_cnt++;
  236. if ((plapic_entry->flags & 0x1) != 0)
  237. m_processor_enabled_cnt++;
  238. }
  239. madt_entry = (ACPI::Structures::MADTEntryHeader*)(VirtualAddress(madt_entry).offset(entry_length).get());
  240. entries_length -= entry_length;
  241. entry_index++;
  242. }
  243. if (m_processor_enabled_cnt < 1)
  244. m_processor_enabled_cnt = 1;
  245. if (m_processor_cnt < 1)
  246. m_processor_cnt = 1;
  247. dbgln("APIC processors found: {}, enabled: {}", m_processor_cnt, m_processor_enabled_cnt);
  248. enable(0);
  249. return true;
  250. }
  251. UNMAP_AFTER_INIT void APIC::do_boot_aps()
  252. {
  253. VERIFY(m_processor_enabled_cnt > 1);
  254. u32 aps_to_enable = m_processor_enabled_cnt - 1;
  255. // Copy the APIC startup code and variables to P0x00008000
  256. // Also account for the data appended to:
  257. // * aps_to_enable u32 values for ap_cpu_init_stacks
  258. // * aps_to_enable u32 values for ap_cpu_init_processor_info_array
  259. auto apic_startup_region = MM.allocate_kernel_region_identity(PhysicalAddress(0x8000), page_round_up(apic_ap_start_size + (2 * aps_to_enable * sizeof(u32))), {}, Region::Access::Read | Region::Access::Write | Region::Access::Execute);
  260. memcpy(apic_startup_region->vaddr().as_ptr(), reinterpret_cast<const void*>(apic_ap_start), apic_ap_start_size);
  261. // Allocate enough stacks for all APs
  262. Vector<OwnPtr<Region>> apic_ap_stacks;
  263. for (u32 i = 0; i < aps_to_enable; i++) {
  264. auto stack_region = MM.allocate_kernel_region(Thread::default_kernel_stack_size, {}, Region::Access::Read | Region::Access::Write, AllocationStrategy::AllocateNow);
  265. if (!stack_region) {
  266. dbgln("APIC: Failed to allocate stack for AP #{}", i);
  267. return;
  268. }
  269. stack_region->set_stack(true);
  270. apic_ap_stacks.append(move(stack_region));
  271. }
  272. // Store pointers to all stacks for the APs to use
  273. auto ap_stack_array = APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_stacks);
  274. VERIFY(aps_to_enable == apic_ap_stacks.size());
  275. for (size_t i = 0; i < aps_to_enable; i++) {
  276. ap_stack_array[i] = apic_ap_stacks[i]->vaddr().get() + Thread::default_kernel_stack_size;
  277. dbgln_if(APIC_DEBUG, "APIC: CPU[{}] stack at {}", i + 1, VirtualAddress { ap_stack_array[i] });
  278. }
  279. // Allocate Processor structures for all APs and store the pointer to the data
  280. m_ap_processor_info.resize(aps_to_enable);
  281. for (size_t i = 0; i < aps_to_enable; i++)
  282. m_ap_processor_info[i] = make<Processor>();
  283. auto ap_processor_info_array = &ap_stack_array[aps_to_enable];
  284. for (size_t i = 0; i < aps_to_enable; i++) {
  285. ap_processor_info_array[i] = FlatPtr(m_ap_processor_info[i].ptr());
  286. dbgln_if(APIC_DEBUG, "APIC: CPU[{}] processor at {}", i + 1, VirtualAddress { ap_processor_info_array[i] });
  287. }
  288. *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_processor_info_array) = FlatPtr(&ap_processor_info_array[0]);
  289. // Store the BSP's CR3 value for the APs to use
  290. *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr3) = MM.kernel_page_directory().cr3();
  291. // Store the BSP's GDT and IDT for the APs to use
  292. const auto& gdtr = Processor::current().get_gdtr();
  293. *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_gdtr) = FlatPtr(&gdtr);
  294. const auto& idtr = get_idtr();
  295. *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_idtr) = FlatPtr(&idtr);
  296. // Store the BSP's CR0 and CR4 values for the APs to use
  297. *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr0) = read_cr0();
  298. *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr4) = read_cr4();
  299. // Create an idle thread for each processor. We have to do this here
  300. // because we won't be able to send FlushTLB messages, so we have to
  301. // have all memory set up for the threads so that when the APs are
  302. // starting up, they can access all the memory properly
  303. m_ap_idle_threads.resize(aps_to_enable);
  304. for (u32 i = 0; i < aps_to_enable; i++)
  305. m_ap_idle_threads[i] = Scheduler::create_ap_idle_thread(i + 1);
  306. dbgln_if(APIC_DEBUG, "APIC: Starting {} AP(s)", aps_to_enable);
  307. // INIT
  308. write_icr(ICRReg(0, ICRReg::INIT, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf));
  309. IO::delay(10 * 1000);
  310. for (int i = 0; i < 2; i++) {
  311. // SIPI
  312. write_icr(ICRReg(0x08, ICRReg::StartUp, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf)); // start execution at P8000
  313. IO::delay(200);
  314. }
  315. // Now wait until the ap_cpu_init_pending variable dropped to 0, which means all APs are initialized and no longer need these special mappings
  316. if (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable) {
  317. dbgln_if(APIC_DEBUG, "APIC: Waiting for {} AP(s) to finish initialization...", aps_to_enable);
  318. do {
  319. // Wait a little bit
  320. IO::delay(200);
  321. } while (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable);
  322. }
  323. dbgln_if(APIC_DEBUG, "APIC: {} processors are initialized and running", m_processor_enabled_cnt);
  324. }
  325. UNMAP_AFTER_INIT void APIC::boot_aps()
  326. {
  327. if (m_processor_enabled_cnt <= 1)
  328. return;
  329. // We split this into another call because do_boot_aps() will cause
  330. // MM calls upon exit, and we don't want to call smp_enable before that
  331. do_boot_aps();
  332. // Enable SMP, which means IPIs may now be sent
  333. Processor::smp_enable();
  334. dbgln_if(APIC_DEBUG, "All processors initialized and waiting, trigger all to continue");
  335. // Now trigger all APs to continue execution (need to do this after
  336. // the regions have been freed so that we don't trigger IPIs
  337. m_apic_ap_continue.store(1, AK::MemoryOrder::memory_order_release);
  338. }
  339. UNMAP_AFTER_INIT void APIC::enable(u32 cpu)
  340. {
  341. if (cpu >= 8) {
  342. // TODO: x2apic support?
  343. PANIC("SMP support is currently limited to 8 CPUs!");
  344. }
  345. // Use the CPU# as logical apic id
  346. VERIFY(cpu <= 0xff);
  347. write_register(APIC_REG_LD, (read_register(APIC_REG_LD) & 0x00ffffff) | (cpu << 24)); // TODO: only if not in x2apic mode
  348. // read it back to make sure it's actually set
  349. auto apic_id = read_register(APIC_REG_LD) >> 24;
  350. Processor::current().info().set_apic_id(apic_id);
  351. dbgln_if(APIC_DEBUG, "Enabling local APIC for CPU #{}, logical APIC ID: {}", cpu, apic_id);
  352. if (cpu == 0) {
  353. SpuriousInterruptHandler::initialize(IRQ_APIC_SPURIOUS);
  354. // set error interrupt vector
  355. set_lvt(APIC_REG_LVT_ERR, IRQ_APIC_ERR);
  356. APICErrInterruptHandler::initialize(IRQ_APIC_ERR);
  357. // register IPI interrupt vector
  358. APICIPIInterruptHandler::initialize(IRQ_APIC_IPI);
  359. }
  360. // set spurious interrupt vector
  361. set_siv(APIC_REG_SIV, IRQ_APIC_SPURIOUS);
  362. // local destination mode (flat mode)
  363. write_register(APIC_REG_DF, 0xf0000000);
  364. write_register(APIC_REG_LVT_TIMER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
  365. write_register(APIC_REG_LVT_THERMAL, APIC_LVT(0, 0) | APIC_LVT_MASKED);
  366. write_register(APIC_REG_LVT_PERFORMANCE_COUNTER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
  367. write_register(APIC_REG_LVT_LINT0, APIC_LVT(0, 7) | APIC_LVT_MASKED);
  368. write_register(APIC_REG_LVT_LINT1, APIC_LVT(0, 0) | APIC_LVT_TRIGGER_LEVEL);
  369. write_register(APIC_REG_TPR, 0);
  370. }
  371. Thread* APIC::get_idle_thread(u32 cpu) const
  372. {
  373. VERIFY(cpu > 0);
  374. return m_ap_idle_threads[cpu - 1];
  375. }
  376. UNMAP_AFTER_INIT void APIC::init_finished(u32 cpu)
  377. {
  378. // This method is called once the boot stack is no longer needed
  379. VERIFY(cpu > 0);
  380. VERIFY(cpu < m_processor_enabled_cnt);
  381. // Since we're waiting on other APs here, we shouldn't have the
  382. // scheduler lock
  383. VERIFY(!g_scheduler_lock.own_lock());
  384. // Notify the BSP that we are done initializing. It will unmap the startup data at P8000
  385. m_apic_ap_count.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  386. dbgln_if(APIC_DEBUG, "APIC: CPU #{} initialized, waiting for all others", cpu);
  387. // The reason we're making all APs wait until the BSP signals them is that
  388. // we don't want APs to trigger IPIs (e.g. through MM) while the BSP
  389. // is unable to process them
  390. while (!m_apic_ap_continue.load(AK::MemoryOrder::memory_order_consume)) {
  391. IO::delay(200);
  392. }
  393. dbgln_if(APIC_DEBUG, "APIC: CPU #{} continues, all others are initialized", cpu);
  394. // do_boot_aps() freed memory, so we need to update our tlb
  395. Processor::flush_entire_tlb_local();
  396. // Now enable all the interrupts
  397. APIC::the().enable(cpu);
  398. }
  399. void APIC::broadcast_ipi()
  400. {
  401. dbgln_if(APIC_SMP_DEBUG, "SMP: Broadcast IPI from CPU #{}", Processor::id());
  402. wait_for_pending_icr();
  403. write_icr(ICRReg(IRQ_APIC_IPI + IRQ_VECTOR_BASE, ICRReg::Fixed, ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf));
  404. }
  405. void APIC::send_ipi(u32 cpu)
  406. {
  407. dbgln_if(APIC_SMP_DEBUG, "SMP: Send IPI from CPU #{} to CPU #{}", Processor::id(), cpu);
  408. VERIFY(cpu != Processor::id());
  409. VERIFY(cpu < 8);
  410. wait_for_pending_icr();
  411. write_icr(ICRReg(IRQ_APIC_IPI + IRQ_VECTOR_BASE, ICRReg::Fixed, ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::NoShorthand, cpu));
  412. }
  413. UNMAP_AFTER_INIT APICTimer* APIC::initialize_timers(HardwareTimerBase& calibration_timer)
  414. {
  415. if (!m_apic_base)
  416. return nullptr;
  417. // We should only initialize and calibrate the APIC timer once on the BSP!
  418. VERIFY(Processor::id() == 0);
  419. VERIFY(!m_apic_timer);
  420. m_apic_timer = APICTimer::initialize(IRQ_APIC_TIMER, calibration_timer);
  421. return m_apic_timer;
  422. }
  423. void APIC::setup_local_timer(u32 ticks, TimerMode timer_mode, bool enable)
  424. {
  425. u32 flags = 0;
  426. switch (timer_mode) {
  427. case TimerMode::OneShot:
  428. flags |= APIC_LVT_TIMER_ONESHOT;
  429. break;
  430. case TimerMode::Periodic:
  431. flags |= APIC_LVT_TIMER_PERIODIC;
  432. break;
  433. case TimerMode::TSCDeadline:
  434. flags |= APIC_LVT_TIMER_TSCDEADLINE;
  435. break;
  436. }
  437. if (!enable)
  438. flags |= APIC_LVT_MASKED;
  439. write_register(APIC_REG_LVT_TIMER, APIC_LVT(IRQ_APIC_TIMER + IRQ_VECTOR_BASE, 0) | flags);
  440. u32 config = read_register(APIC_REG_TIMER_CONFIGURATION);
  441. config &= ~0xf; // clear divisor (bits 0-3)
  442. switch (get_timer_divisor()) {
  443. case 1:
  444. config |= (1 << 3) | 3;
  445. break;
  446. case 2:
  447. break;
  448. case 4:
  449. config |= 1;
  450. break;
  451. case 8:
  452. config |= 2;
  453. break;
  454. case 16:
  455. config |= 3;
  456. break;
  457. case 32:
  458. config |= (1 << 3);
  459. break;
  460. case 64:
  461. config |= (1 << 3) | 1;
  462. break;
  463. case 128:
  464. config |= (1 << 3) | 2;
  465. break;
  466. default:
  467. VERIFY_NOT_REACHED();
  468. }
  469. write_register(APIC_REG_TIMER_CONFIGURATION, config);
  470. if (timer_mode == TimerMode::Periodic)
  471. write_register(APIC_REG_TIMER_INITIAL_COUNT, ticks / get_timer_divisor());
  472. }
  473. u32 APIC::get_timer_current_count()
  474. {
  475. return read_register(APIC_REG_TIMER_CURRENT_COUNT);
  476. }
  477. u32 APIC::get_timer_divisor()
  478. {
  479. return 16;
  480. }
  481. void APICIPIInterruptHandler::handle_interrupt(const RegisterState&)
  482. {
  483. dbgln_if(APIC_SMP_DEBUG, "APIC IPI on CPU #{}", Processor::id());
  484. }
  485. bool APICIPIInterruptHandler::eoi()
  486. {
  487. dbgln_if(APIC_SMP_DEBUG, "SMP: IPI EOI");
  488. APIC::the().eoi();
  489. return true;
  490. }
  491. void APICErrInterruptHandler::handle_interrupt(const RegisterState&)
  492. {
  493. dbgln("APIC: SMP error on CPU #{}", Processor::id());
  494. }
  495. bool APICErrInterruptHandler::eoi()
  496. {
  497. APIC::the().eoi();
  498. return true;
  499. }
  500. bool HardwareTimer<GenericInterruptHandler>::eoi()
  501. {
  502. APIC::the().eoi();
  503. return true;
  504. }
  505. }