MemoryManager.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Process.h"
  8. #include <LibC/errno_numbers.h>
  9. //#define MM_DEBUG
  10. //#define PAGE_FAULT_DEBUG
  11. static MemoryManager* s_the;
  12. MemoryManager& MM
  13. {
  14. return *s_the;
  15. }
  16. MemoryManager::MemoryManager()
  17. {
  18. m_kernel_page_directory = make<PageDirectory>(PhysicalAddress(0x4000));
  19. m_page_table_zero = (dword*)0x6000;
  20. initialize_paging();
  21. }
  22. MemoryManager::~MemoryManager()
  23. {
  24. }
  25. PageDirectory::PageDirectory(PhysicalAddress paddr)
  26. {
  27. kprintf("Instantiating PageDirectory with specific paddr P%x\n", paddr.get());
  28. m_directory_page = adopt(*new PhysicalPage(paddr, true));
  29. }
  30. PageDirectory::PageDirectory()
  31. {
  32. MM.populate_page_directory(*this);
  33. }
  34. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  35. {
  36. page_directory.m_directory_page = allocate_supervisor_physical_page();
  37. memset(page_directory.entries(), 0, PAGE_SIZE);
  38. page_directory.entries()[0] = kernel_page_directory().entries()[0];
  39. }
  40. void MemoryManager::initialize_paging()
  41. {
  42. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  43. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  44. memset(m_page_table_zero, 0, PAGE_SIZE);
  45. #ifdef MM_DEBUG
  46. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  47. #endif
  48. #ifdef MM_DEBUG
  49. dbgprintf("MM: Protect against null dereferences\n");
  50. #endif
  51. // Make null dereferences crash.
  52. map_protected(LinearAddress(0), PAGE_SIZE);
  53. #ifdef MM_DEBUG
  54. dbgprintf("MM: Identity map bottom 4MB\n");
  55. #endif
  56. // The bottom 4 MB (except for the null page) are identity mapped & supervisor only.
  57. // Every process shares these mappings.
  58. create_identity_mapping(kernel_page_directory(), LinearAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE);
  59. // Basic memory map:
  60. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  61. // 1 MB -> 2 MB kmalloc_eternal() space.
  62. // 2 MB -> 3 MB kmalloc() space.
  63. // 3 MB -> 4 MB Supervisor physical pages (available for allocation!)
  64. // 4 MB -> 32 MB Userspace physical pages (available for allocation!)
  65. for (size_t i = (2 * MB); i < (4 * MB); i += PAGE_SIZE)
  66. m_free_supervisor_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i), true)));
  67. #ifdef MM_DEBUG
  68. dbgprintf("MM: 4MB-32MB available for allocation\n");
  69. #endif
  70. for (size_t i = (4 * MB); i < (32 * MB); i += PAGE_SIZE)
  71. m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i), false)));
  72. m_quickmap_addr = LinearAddress(m_free_physical_pages.takeLast().leakRef()->paddr().get());
  73. #ifdef MM_DEBUG
  74. dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get());
  75. dbgprintf("MM: Installing page directory\n");
  76. #endif
  77. asm volatile("movl %%eax, %%cr3"::"a"(kernel_page_directory().cr3()));
  78. asm volatile(
  79. "movl %cr0, %eax\n"
  80. "orl $0x80000001, %eax\n"
  81. "movl %eax, %cr0\n"
  82. );
  83. }
  84. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  85. {
  86. ASSERT(!page_directory.m_physical_pages.contains(index));
  87. auto physical_page = allocate_supervisor_physical_page();
  88. if (!physical_page)
  89. return nullptr;
  90. dword address = physical_page->paddr().get();
  91. memset((void*)address, 0, PAGE_SIZE);
  92. page_directory.m_physical_pages.set(index, physical_page.copyRef());
  93. return physical_page;
  94. }
  95. void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  96. {
  97. InterruptDisabler disabler;
  98. // FIXME: ASSERT(laddr is 4KB aligned);
  99. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  100. auto pte_address = laddr.offset(offset);
  101. auto pte = ensure_pte(page_directory, pte_address);
  102. pte.set_physical_page_base(0);
  103. pte.set_user_allowed(false);
  104. pte.set_present(true);
  105. pte.set_writable(true);
  106. flush_tlb(pte_address);
  107. }
  108. }
  109. auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress laddr) -> PageTableEntry
  110. {
  111. ASSERT_INTERRUPTS_DISABLED();
  112. dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
  113. dword page_table_index = (laddr.get() >> 12) & 0x3ff;
  114. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
  115. if (!pde.is_present()) {
  116. #ifdef MM_DEBUG
  117. dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, laddr.get());
  118. #endif
  119. if (page_directory_index == 0) {
  120. ASSERT(&page_directory == m_kernel_page_directory.ptr());
  121. pde.setPageTableBase((dword)m_page_table_zero);
  122. pde.set_user_allowed(false);
  123. pde.set_present(true);
  124. pde.set_writable(true);
  125. } else {
  126. ASSERT(&page_directory != m_kernel_page_directory.ptr());
  127. auto page_table = allocate_page_table(page_directory, page_directory_index);
  128. #ifdef MM_DEBUG
  129. dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n",
  130. &page_directory,
  131. &page_directory == m_kernel_page_directory.ptr() ? "Kernel" : "User",
  132. page_directory.cr3(),
  133. page_directory_index,
  134. laddr.get(),
  135. page_table->paddr().get());
  136. #endif
  137. pde.setPageTableBase(page_table->paddr().get());
  138. pde.set_user_allowed(true);
  139. pde.set_present(true);
  140. pde.set_writable(true);
  141. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  142. }
  143. }
  144. return PageTableEntry(&pde.pageTableBase()[page_table_index]);
  145. }
  146. void MemoryManager::map_protected(LinearAddress linearAddress, size_t length)
  147. {
  148. InterruptDisabler disabler;
  149. // FIXME: ASSERT(linearAddress is 4KB aligned);
  150. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  151. auto pteAddress = linearAddress.offset(offset);
  152. auto pte = ensure_pte(kernel_page_directory(), pteAddress);
  153. pte.set_physical_page_base(pteAddress.get());
  154. pte.set_user_allowed(false);
  155. pte.set_present(false);
  156. pte.set_writable(false);
  157. flush_tlb(pteAddress);
  158. }
  159. }
  160. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  161. {
  162. InterruptDisabler disabler;
  163. ASSERT((laddr.get() & ~PAGE_MASK) == 0);
  164. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  165. auto pteAddress = laddr.offset(offset);
  166. auto pte = ensure_pte(page_directory, pteAddress);
  167. pte.set_physical_page_base(pteAddress.get());
  168. pte.set_user_allowed(false);
  169. pte.set_present(true);
  170. pte.set_writable(true);
  171. page_directory.flush(pteAddress);
  172. }
  173. }
  174. void MemoryManager::initialize()
  175. {
  176. s_the = new MemoryManager;
  177. }
  178. Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
  179. {
  180. ASSERT_INTERRUPTS_DISABLED();
  181. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  182. for (auto& region : process.m_regions) {
  183. if (region->contains(laddr))
  184. return region.ptr();
  185. }
  186. kprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get());
  187. return nullptr;
  188. }
  189. bool MemoryManager::zero_page(PageDirectory& page_directory, Region& region, unsigned page_index_in_region)
  190. {
  191. ASSERT_INTERRUPTS_DISABLED();
  192. auto& vmo = region.vmo();
  193. auto physical_page = allocate_physical_page();
  194. byte* dest_ptr = quickmap_page(*physical_page);
  195. memset(dest_ptr, 0, PAGE_SIZE);
  196. #ifdef PAGE_FAULT_DEBUG
  197. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  198. #endif
  199. unquickmap_page();
  200. region.cow_map.set(page_index_in_region, false);
  201. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  202. remap_region_page(page_directory, region, page_index_in_region, true);
  203. return true;
  204. }
  205. bool MemoryManager::copy_on_write(Process& process, Region& region, unsigned page_index_in_region)
  206. {
  207. ASSERT_INTERRUPTS_DISABLED();
  208. auto& vmo = region.vmo();
  209. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  210. #ifdef PAGE_FAULT_DEBUG
  211. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  212. #endif
  213. region.cow_map.set(page_index_in_region, false);
  214. remap_region_page(process.page_directory(), region, page_index_in_region, true);
  215. return true;
  216. }
  217. #ifdef PAGE_FAULT_DEBUG
  218. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  219. #endif
  220. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  221. auto physical_page = allocate_physical_page();
  222. byte* dest_ptr = quickmap_page(*physical_page);
  223. const byte* src_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
  224. #ifdef PAGE_FAULT_DEBUG
  225. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  226. #endif
  227. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  228. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  229. unquickmap_page();
  230. region.cow_map.set(page_index_in_region, false);
  231. remap_region_page(process.page_directory(), region, page_index_in_region, true);
  232. return true;
  233. }
  234. bool Region::page_in(PageDirectory& page_directory)
  235. {
  236. ASSERT(!vmo().is_anonymous());
  237. ASSERT(vmo().vnode());
  238. #ifdef MM_DEBUG
  239. dbgprintf("MM: page_in %u pages\n", page_count());
  240. #endif
  241. for (size_t i = 0; i < page_count(); ++i) {
  242. auto& vmo_page = vmo().physical_pages()[first_page_index() + i];
  243. if (vmo_page.is_null()) {
  244. bool success = MM.page_in_from_vnode(page_directory, *this, i);
  245. if (!success)
  246. return false;
  247. }
  248. MM.remap_region_page(page_directory, *this, i, true);
  249. }
  250. return true;
  251. }
  252. bool MemoryManager::page_in_from_vnode(PageDirectory& page_directory, Region& region, unsigned page_index_in_region)
  253. {
  254. auto& vmo = region.vmo();
  255. ASSERT(!vmo.is_anonymous());
  256. ASSERT(vmo.vnode());
  257. auto& vnode = *vmo.vnode();
  258. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  259. ASSERT(vmo_page.is_null());
  260. vmo_page = allocate_physical_page();
  261. if (vmo_page.is_null()) {
  262. kprintf("MM: page_in_from_vnode was unable to allocate a physical page\n");
  263. return false;
  264. }
  265. remap_region_page(page_directory, region, page_index_in_region, true);
  266. byte* dest_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
  267. #ifdef MM_DEBUG
  268. dbgprintf("MM: page_in_from_vnode ready to read from vnode, will write to L%x!\n", dest_ptr);
  269. #endif
  270. sti(); // Oh god here we go...
  271. ASSERT(vnode.core_inode());
  272. auto nread = vnode.core_inode()->read_bytes(vmo.vnode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, dest_ptr, nullptr);
  273. if (nread < 0) {
  274. kprintf("MM: page_in_from_vnode had error (%d) while reading!\n", nread);
  275. return false;
  276. }
  277. if (nread < PAGE_SIZE) {
  278. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  279. memset(dest_ptr + nread, 0, PAGE_SIZE - nread);
  280. }
  281. cli();
  282. return true;
  283. }
  284. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  285. {
  286. ASSERT_INTERRUPTS_DISABLED();
  287. #ifdef PAGE_FAULT_DEBUG
  288. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
  289. #endif
  290. ASSERT(fault.laddr() != m_quickmap_addr);
  291. auto* region = region_from_laddr(*current, fault.laddr());
  292. if (!region) {
  293. kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
  294. return PageFaultResponse::ShouldCrash;
  295. }
  296. auto page_index_in_region = region->page_index_from_address(fault.laddr());
  297. if (fault.is_not_present()) {
  298. if (region->vmo().vnode()) {
  299. dbgprintf("NP(vnode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  300. page_in_from_vnode(*current->m_page_directory, *region, page_index_in_region);
  301. return PageFaultResponse::Continue;
  302. } else {
  303. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  304. zero_page(*current->m_page_directory, *region, page_index_in_region);
  305. return PageFaultResponse::Continue;
  306. }
  307. } else if (fault.is_protection_violation()) {
  308. if (region->cow_map.get(page_index_in_region)) {
  309. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  310. bool success = copy_on_write(*current, *region, page_index_in_region);
  311. ASSERT(success);
  312. return PageFaultResponse::Continue;
  313. }
  314. kprintf("PV(error) fault in Region{%p}[%u]\n", region, page_index_in_region);
  315. } else {
  316. ASSERT_NOT_REACHED();
  317. }
  318. return PageFaultResponse::ShouldCrash;
  319. }
  320. RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page()
  321. {
  322. InterruptDisabler disabler;
  323. if (1 > m_free_physical_pages.size())
  324. return { };
  325. #ifdef MM_DEBUG
  326. dbgprintf("MM: allocate_physical_page vending P%x (%u remaining)\n", m_free_physical_pages.last()->paddr().get(), m_free_physical_pages.size());
  327. #endif
  328. return m_free_physical_pages.takeLast();
  329. }
  330. RetainPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  331. {
  332. InterruptDisabler disabler;
  333. if (1 > m_free_supervisor_physical_pages.size())
  334. return { };
  335. #ifdef MM_DEBUG
  336. dbgprintf("MM: allocate_supervisor_physical_page vending P%x (%u remaining)\n", m_free_supervisor_physical_pages.last()->paddr().get(), m_free_supervisor_physical_pages.size());
  337. #endif
  338. return m_free_supervisor_physical_pages.takeLast();
  339. }
  340. void MemoryManager::enter_process_paging_scope(Process& process)
  341. {
  342. InterruptDisabler disabler;
  343. current->m_tss.cr3 = process.page_directory().cr3();
  344. asm volatile("movl %%eax, %%cr3"::"a"(process.page_directory().cr3()):"memory");
  345. }
  346. void MemoryManager::flush_entire_tlb()
  347. {
  348. asm volatile(
  349. "mov %cr3, %eax\n"
  350. "mov %eax, %cr3\n"
  351. );
  352. }
  353. void MemoryManager::flush_tlb(LinearAddress laddr)
  354. {
  355. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
  356. }
  357. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  358. {
  359. ASSERT_INTERRUPTS_DISABLED();
  360. auto page_laddr = m_quickmap_addr;
  361. auto pte = ensure_pte(current->page_directory(), page_laddr);
  362. pte.set_physical_page_base(physical_page.paddr().get());
  363. pte.set_present(true);
  364. pte.set_writable(true);
  365. flush_tlb(page_laddr);
  366. ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get());
  367. #ifdef MM_DEBUG
  368. dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_laddr, physical_page.paddr().get(), pte.ptr());
  369. #endif
  370. return page_laddr.asPtr();
  371. }
  372. void MemoryManager::unquickmap_page()
  373. {
  374. ASSERT_INTERRUPTS_DISABLED();
  375. auto page_laddr = m_quickmap_addr;
  376. auto pte = ensure_pte(current->page_directory(), page_laddr);
  377. #ifdef MM_DEBUG
  378. auto old_physical_address = pte.physical_page_base();
  379. #endif
  380. pte.set_physical_page_base(0);
  381. pte.set_present(false);
  382. pte.set_writable(false);
  383. flush_tlb(page_laddr);
  384. #ifdef MM_DEBUG
  385. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
  386. #endif
  387. }
  388. void MemoryManager::remap_region_page(PageDirectory& page_directory, Region& region, unsigned page_index_in_region, bool user_allowed)
  389. {
  390. InterruptDisabler disabler;
  391. auto page_laddr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE);
  392. auto pte = ensure_pte(page_directory, page_laddr);
  393. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  394. ASSERT(physical_page);
  395. pte.set_physical_page_base(physical_page->paddr().get());
  396. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  397. if (region.cow_map.get(page_index_in_region))
  398. pte.set_writable(false);
  399. else
  400. pte.set_writable(region.is_writable);
  401. pte.set_user_allowed(user_allowed);
  402. page_directory.flush(page_laddr);
  403. #ifdef MM_DEBUG
  404. dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", &page_directory, pte.ptr(), region.name.characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
  405. #endif
  406. }
  407. void MemoryManager::remap_region(Process& process, Region& region)
  408. {
  409. InterruptDisabler disabler;
  410. map_region_at_address(process.page_directory(), region, region.linearAddress, true);
  411. }
  412. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, LinearAddress laddr, bool user_allowed)
  413. {
  414. InterruptDisabler disabler;
  415. auto& vmo = region.vmo();
  416. #ifdef MM_DEBUG
  417. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  418. #endif
  419. for (size_t i = 0; i < region.page_count(); ++i) {
  420. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  421. auto pte = ensure_pte(page_directory, page_laddr);
  422. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  423. if (physical_page) {
  424. pte.set_physical_page_base(physical_page->paddr().get());
  425. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  426. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  427. if (region.cow_map.get(region.first_page_index() + i))
  428. pte.set_writable(false);
  429. else
  430. pte.set_writable(region.is_writable);
  431. } else {
  432. pte.set_physical_page_base(0);
  433. pte.set_present(false);
  434. pte.set_writable(region.is_writable);
  435. }
  436. pte.set_user_allowed(user_allowed);
  437. page_directory.flush(page_laddr);
  438. #ifdef MM_DEBUG
  439. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name.characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  440. #endif
  441. }
  442. }
  443. void MemoryManager::unmap_range(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  444. {
  445. ASSERT((size % PAGE_SIZE) == 0);
  446. InterruptDisabler disabler;
  447. size_t numPages = size / PAGE_SIZE;
  448. for (size_t i = 0; i < numPages; ++i) {
  449. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  450. auto pte = ensure_pte(page_directory, page_laddr);
  451. pte.set_physical_page_base(0);
  452. pte.set_present(false);
  453. pte.set_writable(false);
  454. pte.set_user_allowed(false);
  455. page_directory.flush(page_laddr);
  456. #ifdef MM_DEBUG
  457. dbgprintf("MM: << unmap_range L%x =/> 0\n", page_laddr);
  458. #endif
  459. }
  460. }
  461. bool MemoryManager::unmap_region(Process& process, Region& region)
  462. {
  463. InterruptDisabler disabler;
  464. for (size_t i = 0; i < region.page_count(); ++i) {
  465. auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
  466. auto pte = ensure_pte(process.page_directory(), laddr);
  467. pte.set_physical_page_base(0);
  468. pte.set_present(false);
  469. pte.set_writable(false);
  470. pte.set_user_allowed(false);
  471. process.page_directory().flush(laddr);
  472. #ifdef MM_DEBUG
  473. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  474. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
  475. #endif
  476. }
  477. return true;
  478. }
  479. bool MemoryManager::map_region(Process& process, Region& region)
  480. {
  481. map_region_at_address(process.page_directory(), region, region.linearAddress, true);
  482. return true;
  483. }
  484. bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
  485. {
  486. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  487. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  488. auto pde = PageDirectoryEntry(&const_cast<Process&>(process).page_directory().entries()[pageDirectoryIndex]);
  489. if (!pde.is_present())
  490. return false;
  491. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  492. if (!pte.is_present())
  493. return false;
  494. if (!pte.is_user_allowed())
  495. return false;
  496. return true;
  497. }
  498. bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
  499. {
  500. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  501. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  502. auto pde = PageDirectoryEntry(&const_cast<Process&>(process).page_directory().entries()[pageDirectoryIndex]);
  503. if (!pde.is_present())
  504. return false;
  505. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  506. if (!pte.is_present())
  507. return false;
  508. if (!pte.is_user_allowed())
  509. return false;
  510. if (!pte.is_writable())
  511. return false;
  512. return true;
  513. }
  514. RetainPtr<Region> Region::clone()
  515. {
  516. InterruptDisabler disabler;
  517. if (is_readable && !is_writable) {
  518. // Create a new region backed by the same VMObject.
  519. return adopt(*new Region(linearAddress, size, m_vmo.copyRef(), m_offset_in_vmo, String(name), is_readable, is_writable));
  520. }
  521. // Set up a COW region. The parent (this) region becomes COW as well!
  522. for (size_t i = 0; i < page_count(); ++i)
  523. cow_map.set(i, true);
  524. MM.remap_region(*current, *this);
  525. return adopt(*new Region(linearAddress, size, m_vmo->clone(), m_offset_in_vmo, String(name), is_readable, is_writable, true));
  526. }
  527. Region::Region(LinearAddress a, size_t s, String&& n, bool r, bool w, bool cow)
  528. : linearAddress(a)
  529. , size(s)
  530. , m_vmo(VMObject::create_anonymous(s))
  531. , name(move(n))
  532. , is_readable(r)
  533. , is_writable(w)
  534. , cow_map(Bitmap::create(m_vmo->page_count(), cow))
  535. {
  536. m_vmo->set_name(name);
  537. MM.register_region(*this);
  538. }
  539. Region::Region(LinearAddress a, size_t s, RetainPtr<Vnode>&& vnode, String&& n, bool r, bool w)
  540. : linearAddress(a)
  541. , size(s)
  542. , m_vmo(VMObject::create_file_backed(move(vnode), s))
  543. , name(move(n))
  544. , is_readable(r)
  545. , is_writable(w)
  546. , cow_map(Bitmap::create(m_vmo->page_count()))
  547. {
  548. MM.register_region(*this);
  549. }
  550. Region::Region(LinearAddress a, size_t s, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& n, bool r, bool w, bool cow)
  551. : linearAddress(a)
  552. , size(s)
  553. , m_offset_in_vmo(offset_in_vmo)
  554. , m_vmo(move(vmo))
  555. , name(move(n))
  556. , is_readable(r)
  557. , is_writable(w)
  558. , cow_map(Bitmap::create(m_vmo->page_count(), cow))
  559. {
  560. MM.register_region(*this);
  561. }
  562. Region::~Region()
  563. {
  564. MM.unregister_region(*this);
  565. }
  566. PhysicalPage::PhysicalPage(PhysicalAddress paddr, bool supervisor)
  567. : m_supervisor(supervisor)
  568. , m_paddr(paddr)
  569. {
  570. }
  571. void PhysicalPage::return_to_freelist()
  572. {
  573. ASSERT((paddr().get() & ~PAGE_MASK) == 0);
  574. InterruptDisabler disabler;
  575. m_retain_count = 1;
  576. if (m_supervisor)
  577. MM.m_free_supervisor_physical_pages.append(adopt(*this));
  578. else
  579. MM.m_free_physical_pages.append(adopt(*this));
  580. #ifdef MM_DEBUG
  581. dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
  582. #endif
  583. }
  584. RetainPtr<VMObject> VMObject::create_file_backed(RetainPtr<Vnode>&& vnode, size_t size)
  585. {
  586. InterruptDisabler disabler;
  587. if (vnode->vmo())
  588. return static_cast<VMObject*>(vnode->vmo());
  589. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  590. auto vmo = adopt(*new VMObject(move(vnode), size));
  591. vmo->vnode()->set_vmo(vmo.ptr());
  592. return vmo;
  593. }
  594. RetainPtr<VMObject> VMObject::create_anonymous(size_t size)
  595. {
  596. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  597. return adopt(*new VMObject(size));
  598. }
  599. RetainPtr<VMObject> VMObject::create_framebuffer_wrapper(PhysicalAddress paddr, size_t size)
  600. {
  601. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  602. return adopt(*new VMObject(paddr, size));
  603. }
  604. RetainPtr<VMObject> VMObject::clone()
  605. {
  606. return adopt(*new VMObject(*this));
  607. }
  608. VMObject::VMObject(VMObject& other)
  609. : m_name(other.m_name)
  610. , m_anonymous(other.m_anonymous)
  611. , m_vnode_offset(other.m_vnode_offset)
  612. , m_size(other.m_size)
  613. , m_vnode(other.m_vnode)
  614. , m_physical_pages(other.m_physical_pages)
  615. {
  616. MM.register_vmo(*this);
  617. }
  618. VMObject::VMObject(size_t size)
  619. : m_anonymous(true)
  620. , m_size(size)
  621. {
  622. MM.register_vmo(*this);
  623. m_physical_pages.resize(page_count());
  624. }
  625. VMObject::VMObject(PhysicalAddress paddr, size_t size)
  626. : m_anonymous(true)
  627. , m_size(size)
  628. {
  629. MM.register_vmo(*this);
  630. for (size_t i = 0; i < size; i += PAGE_SIZE) {
  631. m_physical_pages.append(adopt(*new PhysicalPage(paddr.offset(i), false)));
  632. }
  633. ASSERT(m_physical_pages.size() == page_count());
  634. }
  635. VMObject::VMObject(RetainPtr<Vnode>&& vnode, size_t size)
  636. : m_size(size)
  637. , m_vnode(move(vnode))
  638. {
  639. m_physical_pages.resize(page_count());
  640. MM.register_vmo(*this);
  641. }
  642. VMObject::~VMObject()
  643. {
  644. if (m_vnode) {
  645. ASSERT(m_vnode->vmo() == this);
  646. m_vnode->set_vmo(nullptr);
  647. }
  648. MM.unregister_vmo(*this);
  649. }
  650. int Region::commit(Process& process)
  651. {
  652. InterruptDisabler disabler;
  653. #ifdef MM_DEBUG
  654. dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at L%x\n", vmo().page_count(), this, &vmo(), linearAddress.get());
  655. #endif
  656. for (size_t i = first_page_index(); i <= last_page_index(); ++i) {
  657. if (!vmo().physical_pages()[i].is_null())
  658. continue;
  659. auto physical_page = MM.allocate_physical_page();
  660. if (!physical_page) {
  661. kprintf("MM: commit was unable to allocate a physical page\n");
  662. return -ENOMEM;
  663. }
  664. vmo().physical_pages()[i] = move(physical_page);
  665. MM.remap_region_page(process.page_directory(), *this, i, true);
  666. }
  667. return 0;
  668. }
  669. void MemoryManager::register_vmo(VMObject& vmo)
  670. {
  671. InterruptDisabler disabler;
  672. m_vmos.set(&vmo);
  673. }
  674. void MemoryManager::unregister_vmo(VMObject& vmo)
  675. {
  676. InterruptDisabler disabler;
  677. m_vmos.remove(&vmo);
  678. }
  679. void MemoryManager::register_region(Region& region)
  680. {
  681. InterruptDisabler disabler;
  682. m_regions.set(&region);
  683. }
  684. void MemoryManager::unregister_region(Region& region)
  685. {
  686. InterruptDisabler disabler;
  687. m_regions.remove(&region);
  688. }
  689. size_t Region::committed() const
  690. {
  691. size_t bytes = 0;
  692. for (size_t i = 0; i < page_count(); ++i) {
  693. if (m_vmo->physical_pages()[first_page_index() + i])
  694. bytes += PAGE_SIZE;
  695. }
  696. return bytes;
  697. }
  698. PageDirectory::~PageDirectory()
  699. {
  700. ASSERT_INTERRUPTS_DISABLED();
  701. #ifdef MM_DEBUG
  702. dbgprintf("MM: ~PageDirectory K%x\n", this);
  703. #endif
  704. }
  705. void PageDirectory::flush(LinearAddress laddr)
  706. {
  707. if (&current->page_directory() == this)
  708. MM.flush_tlb(laddr);
  709. }