Region.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Arch/PageDirectory.h>
  9. #include <Kernel/Arch/PageFault.h>
  10. #include <Kernel/Debug.h>
  11. #include <Kernel/FileSystem/Inode.h>
  12. #include <Kernel/Memory/AnonymousVMObject.h>
  13. #include <Kernel/Memory/MemoryManager.h>
  14. #include <Kernel/Memory/PageDirectory.h>
  15. #include <Kernel/Memory/Region.h>
  16. #include <Kernel/Memory/SharedInodeVMObject.h>
  17. #include <Kernel/Panic.h>
  18. #include <Kernel/Process.h>
  19. #include <Kernel/Scheduler.h>
  20. #include <Kernel/Thread.h>
  21. namespace Kernel::Memory {
  22. Region::Region()
  23. : m_range(VirtualRange({}, 0))
  24. {
  25. }
  26. Region::Region(NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  27. : m_range(VirtualRange({}, 0))
  28. , m_offset_in_vmobject(offset_in_vmobject)
  29. , m_vmobject(move(vmobject))
  30. , m_name(move(name))
  31. , m_access(access | ((access & 0x7) << 4))
  32. , m_shared(shared)
  33. , m_cacheable(cacheable == Cacheable::Yes)
  34. {
  35. m_vmobject->add_region(*this);
  36. }
  37. Region::Region(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  38. : m_range(range)
  39. , m_offset_in_vmobject(offset_in_vmobject)
  40. , m_vmobject(move(vmobject))
  41. , m_name(move(name))
  42. , m_access(access | ((access & 0x7) << 4))
  43. , m_shared(shared)
  44. , m_cacheable(cacheable == Cacheable::Yes)
  45. {
  46. VERIFY(m_range.base().is_page_aligned());
  47. VERIFY(m_range.size());
  48. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  49. m_vmobject->add_region(*this);
  50. }
  51. Region::~Region()
  52. {
  53. if (is_writable() && vmobject().is_shared_inode()) {
  54. // FIXME: This is very aggressive. Find a way to do less work!
  55. (void)static_cast<SharedInodeVMObject&>(vmobject()).sync();
  56. }
  57. m_vmobject->remove_region(*this);
  58. if (m_page_directory) {
  59. SpinlockLocker pd_locker(m_page_directory->get_lock());
  60. if (!is_readable() && !is_writable() && !is_executable()) {
  61. // If the region is "PROT_NONE", we didn't map it in the first place.
  62. } else {
  63. SpinlockLocker mm_locker(s_mm_lock);
  64. unmap_with_locks_held(ShouldFlushTLB::Yes, pd_locker, mm_locker);
  65. VERIFY(!m_page_directory);
  66. }
  67. }
  68. if (is_kernel())
  69. MM.unregister_kernel_region(*this);
  70. }
  71. ErrorOr<NonnullOwnPtr<Region>> Region::create_unbacked()
  72. {
  73. return adopt_nonnull_own_or_enomem(new (nothrow) Region);
  74. }
  75. ErrorOr<NonnullOwnPtr<Region>> Region::create_unplaced(NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  76. {
  77. return adopt_nonnull_own_or_enomem(new (nothrow) Region(move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  78. }
  79. ErrorOr<NonnullOwnPtr<Region>> Region::try_clone()
  80. {
  81. VERIFY(Process::has_current());
  82. if (m_shared) {
  83. VERIFY(!m_stack);
  84. if (vmobject().is_inode())
  85. VERIFY(vmobject().is_shared_inode());
  86. // Create a new region backed by the same VMObject.
  87. OwnPtr<KString> region_name;
  88. if (m_name)
  89. region_name = TRY(m_name->try_clone());
  90. auto region = TRY(Region::try_create_user_accessible(
  91. m_range, vmobject(), m_offset_in_vmobject, move(region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  92. region->set_mmap(m_mmap);
  93. region->set_shared(m_shared);
  94. region->set_syscall_region(is_syscall_region());
  95. return region;
  96. }
  97. if (vmobject().is_inode())
  98. VERIFY(vmobject().is_private_inode());
  99. auto vmobject_clone = TRY(vmobject().try_clone());
  100. // Set up a COW region. The parent (this) region becomes COW as well!
  101. if (is_writable())
  102. remap();
  103. OwnPtr<KString> clone_region_name;
  104. if (m_name)
  105. clone_region_name = TRY(m_name->try_clone());
  106. auto clone_region = TRY(Region::try_create_user_accessible(
  107. m_range, move(vmobject_clone), m_offset_in_vmobject, move(clone_region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  108. if (m_stack) {
  109. VERIFY(vmobject().is_anonymous());
  110. clone_region->set_stack(true);
  111. }
  112. clone_region->set_syscall_region(is_syscall_region());
  113. clone_region->set_mmap(m_mmap);
  114. return clone_region;
  115. }
  116. void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
  117. {
  118. if (m_vmobject.ptr() == obj.ptr())
  119. return;
  120. m_vmobject->remove_region(*this);
  121. m_vmobject = move(obj);
  122. m_vmobject->add_region(*this);
  123. }
  124. size_t Region::cow_pages() const
  125. {
  126. if (!vmobject().is_anonymous())
  127. return 0;
  128. return static_cast<AnonymousVMObject const&>(vmobject()).cow_pages();
  129. }
  130. size_t Region::amount_dirty() const
  131. {
  132. if (!vmobject().is_inode())
  133. return amount_resident();
  134. return static_cast<InodeVMObject const&>(vmobject()).amount_dirty();
  135. }
  136. size_t Region::amount_resident() const
  137. {
  138. size_t bytes = 0;
  139. for (size_t i = 0; i < page_count(); ++i) {
  140. auto page = physical_page(i);
  141. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  142. bytes += PAGE_SIZE;
  143. }
  144. return bytes;
  145. }
  146. size_t Region::amount_shared() const
  147. {
  148. size_t bytes = 0;
  149. for (size_t i = 0; i < page_count(); ++i) {
  150. auto page = physical_page(i);
  151. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  152. bytes += PAGE_SIZE;
  153. }
  154. return bytes;
  155. }
  156. ErrorOr<NonnullOwnPtr<Region>> Region::try_create_user_accessible(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  157. {
  158. return adopt_nonnull_own_or_enomem(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  159. }
  160. bool Region::should_cow(size_t page_index) const
  161. {
  162. if (!vmobject().is_anonymous())
  163. return false;
  164. return static_cast<AnonymousVMObject const&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  165. }
  166. ErrorOr<void> Region::set_should_cow(size_t page_index, bool cow)
  167. {
  168. VERIFY(!m_shared);
  169. if (vmobject().is_anonymous())
  170. TRY(static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow));
  171. return {};
  172. }
  173. bool Region::map_individual_page_impl(size_t page_index, RefPtr<PhysicalPage> page)
  174. {
  175. VERIFY(m_page_directory->get_lock().is_locked_by_current_processor());
  176. auto page_vaddr = vaddr_from_page_index(page_index);
  177. bool user_allowed = page_vaddr.get() >= USER_RANGE_BASE && is_user_address(page_vaddr);
  178. if (is_mmap() && !user_allowed) {
  179. PANIC("About to map mmap'ed page at a kernel address");
  180. }
  181. SpinlockLocker lock(s_mm_lock);
  182. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  183. if (!pte)
  184. return false;
  185. if (!page || (!is_readable() && !is_writable())) {
  186. pte->clear();
  187. return true;
  188. }
  189. pte->set_cache_disabled(!m_cacheable);
  190. pte->set_physical_page_base(page->paddr().get());
  191. pte->set_present(true);
  192. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  193. pte->set_writable(false);
  194. else
  195. pte->set_writable(is_writable());
  196. if (Processor::current().has_nx())
  197. pte->set_execute_disabled(!is_executable());
  198. if (Processor::current().has_pat())
  199. pte->set_pat(is_write_combine());
  200. pte->set_user_allowed(user_allowed);
  201. return true;
  202. }
  203. bool Region::map_individual_page_impl(size_t page_index)
  204. {
  205. RefPtr<PhysicalPage> page;
  206. {
  207. SpinlockLocker vmobject_locker(vmobject().m_lock);
  208. page = physical_page(page_index);
  209. }
  210. return map_individual_page_impl(page_index, page);
  211. }
  212. bool Region::remap_vmobject_page(size_t page_index, NonnullRefPtr<PhysicalPage> physical_page)
  213. {
  214. SpinlockLocker page_lock(m_page_directory->get_lock());
  215. // NOTE: `page_index` is a VMObject page index, so first we convert it to a Region page index.
  216. if (!translate_vmobject_page(page_index))
  217. return false;
  218. bool success = map_individual_page_impl(page_index, physical_page);
  219. MemoryManager::flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  220. return success;
  221. }
  222. void Region::unmap(ShouldFlushTLB should_flush_tlb)
  223. {
  224. if (!m_page_directory)
  225. return;
  226. SpinlockLocker pd_locker(m_page_directory->get_lock());
  227. SpinlockLocker mm_locker(s_mm_lock);
  228. unmap_with_locks_held(should_flush_tlb, pd_locker, mm_locker);
  229. }
  230. void Region::unmap_with_locks_held(ShouldFlushTLB should_flush_tlb, SpinlockLocker<RecursiveSpinlock>&, SpinlockLocker<RecursiveSpinlock>&)
  231. {
  232. if (!m_page_directory)
  233. return;
  234. size_t count = page_count();
  235. for (size_t i = 0; i < count; ++i) {
  236. auto vaddr = vaddr_from_page_index(i);
  237. MM.release_pte(*m_page_directory, vaddr, i == count - 1 ? MemoryManager::IsLastPTERelease::Yes : MemoryManager::IsLastPTERelease::No);
  238. }
  239. if (should_flush_tlb == ShouldFlushTLB::Yes)
  240. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_count());
  241. m_page_directory = nullptr;
  242. }
  243. void Region::set_page_directory(PageDirectory& page_directory)
  244. {
  245. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  246. m_page_directory = page_directory;
  247. }
  248. ErrorOr<void> Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  249. {
  250. SpinlockLocker page_lock(page_directory.get_lock());
  251. // FIXME: Find a better place for this sanity check(?)
  252. if (is_user() && !is_shared()) {
  253. VERIFY(!vmobject().is_shared_inode());
  254. }
  255. set_page_directory(page_directory);
  256. size_t page_index = 0;
  257. while (page_index < page_count()) {
  258. if (!map_individual_page_impl(page_index))
  259. break;
  260. ++page_index;
  261. }
  262. if (page_index > 0) {
  263. if (should_flush_tlb == ShouldFlushTLB::Yes)
  264. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_index);
  265. if (page_index == page_count())
  266. return {};
  267. }
  268. return ENOMEM;
  269. }
  270. void Region::remap()
  271. {
  272. VERIFY(m_page_directory);
  273. auto result = map(*m_page_directory);
  274. if (result.is_error())
  275. TODO();
  276. }
  277. ErrorOr<void> Region::set_write_combine(bool enable)
  278. {
  279. if (enable && !Processor::current().has_pat()) {
  280. dbgln("PAT is not supported, implement MTRR fallback if available");
  281. return Error::from_errno(ENOTSUP);
  282. }
  283. m_write_combine = enable;
  284. remap();
  285. return {};
  286. }
  287. void Region::clear_to_zero()
  288. {
  289. VERIFY(vmobject().is_anonymous());
  290. SpinlockLocker locker(vmobject().m_lock);
  291. for (auto i = 0u; i < page_count(); ++i) {
  292. auto& page = physical_page_slot(i);
  293. VERIFY(page);
  294. if (page->is_shared_zero_page())
  295. continue;
  296. page = MM.shared_zero_page();
  297. }
  298. }
  299. PageFaultResponse Region::handle_fault(PageFault const& fault)
  300. {
  301. auto page_index_in_region = page_index_from_address(fault.vaddr());
  302. if (fault.type() == PageFault::Type::PageNotPresent) {
  303. if (fault.is_read() && !is_readable()) {
  304. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  305. return PageFaultResponse::ShouldCrash;
  306. }
  307. if (fault.is_write() && !is_writable()) {
  308. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  309. return PageFaultResponse::ShouldCrash;
  310. }
  311. if (vmobject().is_inode()) {
  312. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  313. return handle_inode_fault(page_index_in_region);
  314. }
  315. SpinlockLocker vmobject_locker(vmobject().m_lock);
  316. auto& page_slot = physical_page_slot(page_index_in_region);
  317. if (page_slot->is_lazy_committed_page()) {
  318. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  319. VERIFY(m_vmobject->is_anonymous());
  320. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  321. if (!remap_vmobject_page(page_index_in_vmobject, *page_slot))
  322. return PageFaultResponse::OutOfMemory;
  323. return PageFaultResponse::Continue;
  324. }
  325. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  326. dbgln(" - Physical page slot pointer: {:p}", page_slot.ptr());
  327. if (page_slot) {
  328. dbgln(" - Physical page: {}", page_slot->paddr());
  329. dbgln(" - Lazy committed: {}", page_slot->is_lazy_committed_page());
  330. dbgln(" - Shared zero: {}", page_slot->is_shared_zero_page());
  331. }
  332. return PageFaultResponse::ShouldCrash;
  333. }
  334. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  335. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  336. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  337. auto phys_page = physical_page(page_index_in_region);
  338. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  339. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  340. return handle_zero_fault(page_index_in_region);
  341. }
  342. return handle_cow_fault(page_index_in_region);
  343. }
  344. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  345. return PageFaultResponse::ShouldCrash;
  346. }
  347. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  348. {
  349. VERIFY(vmobject().is_anonymous());
  350. SpinlockLocker locker(vmobject().m_lock);
  351. auto& page_slot = physical_page_slot(page_index_in_region);
  352. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  353. if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
  354. dbgln_if(PAGE_FAULT_DEBUG, "MM: zero_page() but page already present. Fine with me!");
  355. if (!remap_vmobject_page(page_index_in_vmobject, *page_slot))
  356. return PageFaultResponse::OutOfMemory;
  357. return PageFaultResponse::Continue;
  358. }
  359. auto current_thread = Thread::current();
  360. if (current_thread != nullptr)
  361. current_thread->did_zero_fault();
  362. if (page_slot->is_lazy_committed_page()) {
  363. VERIFY(m_vmobject->is_anonymous());
  364. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  365. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
  366. } else {
  367. auto page_or_error = MM.allocate_physical_page(MemoryManager::ShouldZeroFill::Yes);
  368. if (page_or_error.is_error()) {
  369. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  370. return PageFaultResponse::OutOfMemory;
  371. }
  372. page_slot = page_or_error.release_value();
  373. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
  374. }
  375. if (!remap_vmobject_page(page_index_in_vmobject, *page_slot)) {
  376. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
  377. return PageFaultResponse::OutOfMemory;
  378. }
  379. return PageFaultResponse::Continue;
  380. }
  381. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  382. {
  383. auto current_thread = Thread::current();
  384. if (current_thread)
  385. current_thread->did_cow_fault();
  386. if (!vmobject().is_anonymous())
  387. return PageFaultResponse::ShouldCrash;
  388. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  389. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  390. if (!remap_vmobject_page(page_index_in_vmobject, *vmobject().physical_pages()[page_index_in_vmobject]))
  391. return PageFaultResponse::OutOfMemory;
  392. return response;
  393. }
  394. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  395. {
  396. VERIFY(vmobject().is_inode());
  397. VERIFY(!s_mm_lock.is_locked_by_current_processor());
  398. VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
  399. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  400. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  401. auto& vmobject_physical_page_slot = inode_vmobject.physical_pages()[page_index_in_vmobject];
  402. {
  403. // NOTE: The VMObject lock is required when manipulating the VMObject's physical page slot.
  404. SpinlockLocker locker(inode_vmobject.m_lock);
  405. if (!vmobject_physical_page_slot.is_null()) {
  406. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else before reading, remapping.");
  407. if (!remap_vmobject_page(page_index_in_vmobject, *vmobject_physical_page_slot))
  408. return PageFaultResponse::OutOfMemory;
  409. return PageFaultResponse::Continue;
  410. }
  411. }
  412. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  413. auto current_thread = Thread::current();
  414. if (current_thread)
  415. current_thread->did_inode_fault();
  416. u8 page_buffer[PAGE_SIZE];
  417. auto& inode = inode_vmobject.inode();
  418. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  419. auto result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  420. if (result.is_error()) {
  421. dmesgln("handle_inode_fault: Error ({}) while reading from inode", result.error());
  422. return PageFaultResponse::ShouldCrash;
  423. }
  424. auto nread = result.value();
  425. if (nread < PAGE_SIZE) {
  426. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  427. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  428. }
  429. // Allocate a new physical page, and copy the read inode contents into it.
  430. auto new_physical_page_or_error = MM.allocate_physical_page(MemoryManager::ShouldZeroFill::No);
  431. if (new_physical_page_or_error.is_error()) {
  432. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  433. return PageFaultResponse::OutOfMemory;
  434. }
  435. auto new_physical_page = new_physical_page_or_error.release_value();
  436. {
  437. // NOTE: The MM lock is required for quick-mapping.
  438. SpinlockLocker mm_locker(s_mm_lock);
  439. u8* dest_ptr = MM.quickmap_page(*new_physical_page);
  440. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  441. MM.unquickmap_page();
  442. }
  443. {
  444. // NOTE: The VMObject lock is required when manipulating the VMObject's physical page slot.
  445. SpinlockLocker locker(inode_vmobject.m_lock);
  446. if (!vmobject_physical_page_slot.is_null()) {
  447. // Someone else faulted in this page while we were reading from the inode.
  448. // No harm done (other than some duplicate work), remap the page here and return.
  449. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else, remapping.");
  450. if (!remap_vmobject_page(page_index_in_vmobject, *vmobject_physical_page_slot))
  451. return PageFaultResponse::OutOfMemory;
  452. return PageFaultResponse::Continue;
  453. }
  454. vmobject_physical_page_slot = new_physical_page;
  455. }
  456. if (!remap_vmobject_page(page_index_in_vmobject, *vmobject_physical_page_slot))
  457. return PageFaultResponse::OutOfMemory;
  458. return PageFaultResponse::Continue;
  459. }
  460. RefPtr<PhysicalPage> Region::physical_page(size_t index) const
  461. {
  462. SpinlockLocker vmobject_locker(vmobject().m_lock);
  463. VERIFY(index < page_count());
  464. return vmobject().physical_pages()[first_page_index() + index];
  465. }
  466. RefPtr<PhysicalPage>& Region::physical_page_slot(size_t index)
  467. {
  468. VERIFY(vmobject().m_lock.is_locked_by_current_processor());
  469. VERIFY(index < page_count());
  470. return vmobject().physical_pages()[first_page_index() + index];
  471. }
  472. }