Decoder.cpp 101 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832
  1. /*
  2. * Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
  3. * Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/IntegralMath.h>
  8. #include <LibGfx/Size.h>
  9. #include <LibVideo/Color/CodingIndependentCodePoints.h>
  10. #include "Context.h"
  11. #include "Decoder.h"
  12. #include "Utilities.h"
  13. #if defined(AK_COMPILER_GCC)
  14. # pragma GCC optimize("O3")
  15. #endif
  16. namespace Video::VP9 {
  17. Decoder::Decoder()
  18. : m_parser(make<Parser>(*this))
  19. {
  20. }
  21. DecoderErrorOr<void> Decoder::receive_sample(ReadonlyBytes chunk_data)
  22. {
  23. auto superframe_sizes = m_parser->parse_superframe_sizes(chunk_data);
  24. if (superframe_sizes.is_empty()) {
  25. return decode_frame(chunk_data);
  26. }
  27. size_t offset = 0;
  28. for (auto superframe_size : superframe_sizes) {
  29. auto checked_size = Checked<size_t>(superframe_size);
  30. checked_size += offset;
  31. if (checked_size.has_overflow() || checked_size.value() > chunk_data.size())
  32. return DecoderError::with_description(DecoderErrorCategory::Corrupted, "Superframe size invalid"sv);
  33. auto frame_data = chunk_data.slice(offset, superframe_size);
  34. TRY(decode_frame(frame_data));
  35. offset = checked_size.value();
  36. }
  37. return {};
  38. }
  39. inline size_t index_from_row_and_column(u32 row, u32 column, u32 stride)
  40. {
  41. return row * stride + column;
  42. }
  43. DecoderErrorOr<void> Decoder::decode_frame(ReadonlyBytes frame_data)
  44. {
  45. // 1. The syntax elements for the coded frame are extracted as specified in sections 6 and 7. The syntax
  46. // tables include function calls indicating when the block decode processes should be triggered.
  47. auto frame_context = TRY(m_parser->parse_frame(frame_data));
  48. // 2. If loop_filter_level is not equal to 0, the loop filter process as specified in section 8.8 is invoked once the
  49. // coded frame has been decoded.
  50. // FIXME: Implement loop filtering.
  51. // 3. If all of the following conditions are true, PrevSegmentIds[ row ][ col ] is set equal to
  52. // SegmentIds[ row ][ col ] for row = 0..MiRows-1, for col = 0..MiCols-1:
  53. // − show_existing_frame is equal to 0,
  54. // − segmentation_enabled is equal to 1,
  55. // − segmentation_update_map is equal to 1.
  56. // This is handled by update_reference_frames.
  57. // 4. The output process as specified in section 8.9 is invoked.
  58. if (frame_context.shows_a_frame())
  59. TRY(create_video_frame(frame_context));
  60. // 5. The reference frame update process as specified in section 8.10 is invoked.
  61. TRY(update_reference_frames(frame_context));
  62. return {};
  63. }
  64. inline CodingIndependentCodePoints get_cicp_color_space(FrameContext const& frame_context)
  65. {
  66. ColorPrimaries color_primaries;
  67. TransferCharacteristics transfer_characteristics;
  68. MatrixCoefficients matrix_coefficients;
  69. switch (frame_context.color_config.color_space) {
  70. case ColorSpace::Unknown:
  71. color_primaries = ColorPrimaries::Unspecified;
  72. transfer_characteristics = TransferCharacteristics::Unspecified;
  73. matrix_coefficients = MatrixCoefficients::Unspecified;
  74. break;
  75. case ColorSpace::Bt601:
  76. color_primaries = ColorPrimaries::BT601;
  77. transfer_characteristics = TransferCharacteristics::BT601;
  78. matrix_coefficients = MatrixCoefficients::BT601;
  79. break;
  80. case ColorSpace::Bt709:
  81. color_primaries = ColorPrimaries::BT709;
  82. transfer_characteristics = TransferCharacteristics::BT709;
  83. matrix_coefficients = MatrixCoefficients::BT709;
  84. break;
  85. case ColorSpace::Smpte170:
  86. // https://www.kernel.org/doc/html/v4.9/media/uapi/v4l/pixfmt-007.html#colorspace-smpte-170m-v4l2-colorspace-smpte170m
  87. color_primaries = ColorPrimaries::BT601;
  88. transfer_characteristics = TransferCharacteristics::BT709;
  89. matrix_coefficients = MatrixCoefficients::BT601;
  90. break;
  91. case ColorSpace::Smpte240:
  92. color_primaries = ColorPrimaries::SMPTE240;
  93. transfer_characteristics = TransferCharacteristics::SMPTE240;
  94. matrix_coefficients = MatrixCoefficients::SMPTE240;
  95. break;
  96. case ColorSpace::Bt2020:
  97. color_primaries = ColorPrimaries::BT2020;
  98. // Bit depth doesn't actually matter to our transfer functions since we
  99. // convert in floats of range 0-1 (for now?), but just for correctness set
  100. // the TC to match the bit depth here.
  101. if (frame_context.color_config.bit_depth == 12)
  102. transfer_characteristics = TransferCharacteristics::BT2020BitDepth12;
  103. else if (frame_context.color_config.bit_depth == 10)
  104. transfer_characteristics = TransferCharacteristics::BT2020BitDepth10;
  105. else
  106. transfer_characteristics = TransferCharacteristics::BT709;
  107. matrix_coefficients = MatrixCoefficients::BT2020NonConstantLuminance;
  108. break;
  109. case ColorSpace::RGB:
  110. color_primaries = ColorPrimaries::BT709;
  111. transfer_characteristics = TransferCharacteristics::Linear;
  112. matrix_coefficients = MatrixCoefficients::Identity;
  113. break;
  114. case ColorSpace::Reserved:
  115. VERIFY_NOT_REACHED();
  116. break;
  117. }
  118. return { color_primaries, transfer_characteristics, matrix_coefficients, frame_context.color_config.color_range };
  119. }
  120. DecoderErrorOr<void> Decoder::create_video_frame(FrameContext const& frame_context)
  121. {
  122. // (8.9) Output process
  123. // FIXME: If show_existing_frame is set, output from FrameStore[frame_to_show_map_index] here instead.
  124. // FIXME: The math isn't entirely accurate to spec. output_uv_size is probably incorrect for certain
  125. // sizes, as the spec seems to prefer that the halved sizes be ceiled.
  126. u32 decoded_y_width = frame_context.columns() * 8;
  127. Gfx::Size<u32> output_y_size = frame_context.size();
  128. auto decoded_uv_width = decoded_y_width >> frame_context.color_config.subsampling_x;
  129. Gfx::Size<u32> output_uv_size = {
  130. output_y_size.width() >> frame_context.color_config.subsampling_x,
  131. output_y_size.height() >> frame_context.color_config.subsampling_y,
  132. };
  133. Array<FixedArray<u16>, 3> output_buffers = {
  134. DECODER_TRY_ALLOC(FixedArray<u16>::try_create(output_y_size.width() * output_y_size.height())),
  135. DECODER_TRY_ALLOC(FixedArray<u16>::try_create(output_uv_size.width() * output_uv_size.height())),
  136. DECODER_TRY_ALLOC(FixedArray<u16>::try_create(output_uv_size.width() * output_uv_size.height())),
  137. };
  138. for (u8 plane = 0; plane < 3; plane++) {
  139. auto& buffer = output_buffers[plane];
  140. auto decoded_width = plane == 0 ? decoded_y_width : decoded_uv_width;
  141. auto output_size = plane == 0 ? output_y_size : output_uv_size;
  142. auto const& decoded_buffer = get_output_buffer(plane);
  143. for (u32 row = 0; row < output_size.height(); row++) {
  144. memcpy(
  145. buffer.data() + row * output_size.width(),
  146. decoded_buffer.data() + row * decoded_width,
  147. output_size.width() * sizeof(*buffer.data()));
  148. }
  149. }
  150. auto frame = DECODER_TRY_ALLOC(adopt_nonnull_own_or_enomem(new (nothrow) SubsampledYUVFrame(
  151. { output_y_size.width(), output_y_size.height() },
  152. frame_context.color_config.bit_depth, get_cicp_color_space(frame_context),
  153. frame_context.color_config.subsampling_x, frame_context.color_config.subsampling_y,
  154. output_buffers[0], output_buffers[1], output_buffers[2])));
  155. m_video_frame_queue.enqueue(move(frame));
  156. return {};
  157. }
  158. inline size_t buffer_size(size_t width, size_t height)
  159. {
  160. return width * height;
  161. }
  162. inline size_t buffer_size(Gfx::Size<size_t> size)
  163. {
  164. return buffer_size(size.width(), size.height());
  165. }
  166. DecoderErrorOr<void> Decoder::allocate_buffers(FrameContext const& frame_context)
  167. {
  168. for (size_t plane = 0; plane < 3; plane++) {
  169. auto size = m_parser->get_decoded_size_for_plane(frame_context, plane);
  170. auto& output_buffer = get_output_buffer(plane);
  171. output_buffer.clear_with_capacity();
  172. DECODER_TRY_ALLOC(output_buffer.try_resize_and_keep_capacity(buffer_size(size)));
  173. }
  174. return {};
  175. }
  176. Vector<u16>& Decoder::get_output_buffer(u8 plane)
  177. {
  178. return m_output_buffers[plane];
  179. }
  180. DecoderErrorOr<NonnullOwnPtr<VideoFrame>> Decoder::get_decoded_frame()
  181. {
  182. if (m_video_frame_queue.is_empty())
  183. return DecoderError::format(DecoderErrorCategory::NeedsMoreInput, "No video frame in queue.");
  184. return m_video_frame_queue.dequeue();
  185. }
  186. u8 Decoder::merge_prob(u8 pre_prob, u8 count_0, u8 count_1, u8 count_sat, u8 max_update_factor)
  187. {
  188. auto total_decode_count = count_0 + count_1;
  189. auto prob = (total_decode_count == 0) ? 128 : clip_3(1, 255, (count_0 * 256 + (total_decode_count >> 1)) / total_decode_count);
  190. auto count = min(total_decode_count, count_sat);
  191. auto factor = (max_update_factor * count) / count_sat;
  192. return round_2(pre_prob * (256 - factor) + (prob * factor), 8);
  193. }
  194. u8 Decoder::merge_probs(int const* tree, int index, u8* probs, u8* counts, u8 count_sat, u8 max_update_factor)
  195. {
  196. auto s = tree[index];
  197. auto left_count = (s <= 0) ? counts[-s] : merge_probs(tree, s, probs, counts, count_sat, max_update_factor);
  198. auto r = tree[index + 1];
  199. auto right_count = (r <= 0) ? counts[-r] : merge_probs(tree, r, probs, counts, count_sat, max_update_factor);
  200. probs[index >> 1] = merge_prob(probs[index >> 1], left_count, right_count, count_sat, max_update_factor);
  201. return left_count + right_count;
  202. }
  203. DecoderErrorOr<void> Decoder::adapt_coef_probs(bool is_inter_predicted_frame)
  204. {
  205. u8 update_factor;
  206. if (!is_inter_predicted_frame || m_parser->m_previous_frame_type != FrameType::KeyFrame)
  207. update_factor = 112;
  208. else
  209. update_factor = 128;
  210. for (size_t t = 0; t < 4; t++) {
  211. for (size_t i = 0; i < 2; i++) {
  212. for (size_t j = 0; j < 2; j++) {
  213. for (size_t k = 0; k < 6; k++) {
  214. size_t max_l = (k == 0) ? 3 : 6;
  215. for (size_t l = 0; l < max_l; l++) {
  216. auto& coef_probs = m_parser->m_probability_tables->coef_probs()[t][i][j][k][l];
  217. merge_probs(small_token_tree, 2, coef_probs,
  218. m_parser->m_syntax_element_counter->m_counts_token[t][i][j][k][l],
  219. 24, update_factor);
  220. merge_probs(binary_tree, 0, coef_probs,
  221. m_parser->m_syntax_element_counter->m_counts_more_coefs[t][i][j][k][l],
  222. 24, update_factor);
  223. }
  224. }
  225. }
  226. }
  227. }
  228. return {};
  229. }
  230. #define ADAPT_PROB_TABLE(name, size) \
  231. do { \
  232. for (size_t i = 0; i < (size); i++) { \
  233. auto table = probs.name##_prob(); \
  234. table[i] = adapt_prob(table[i], counter.m_counts_##name[i]); \
  235. } \
  236. } while (0)
  237. #define ADAPT_TREE(tree_name, prob_name, count_name, size) \
  238. do { \
  239. for (size_t i = 0; i < (size); i++) { \
  240. adapt_probs(tree_name##_tree, probs.prob_name##_probs()[i], counter.m_counts_##count_name[i]); \
  241. } \
  242. } while (0)
  243. DecoderErrorOr<void> Decoder::adapt_non_coef_probs(FrameContext const& frame_context)
  244. {
  245. auto& probs = *m_parser->m_probability_tables;
  246. auto& counter = *m_parser->m_syntax_element_counter;
  247. ADAPT_PROB_TABLE(is_inter, IS_INTER_CONTEXTS);
  248. ADAPT_PROB_TABLE(comp_mode, COMP_MODE_CONTEXTS);
  249. ADAPT_PROB_TABLE(comp_ref, REF_CONTEXTS);
  250. for (size_t i = 0; i < REF_CONTEXTS; i++) {
  251. for (size_t j = 0; j < 2; j++)
  252. probs.single_ref_prob()[i][j] = adapt_prob(probs.single_ref_prob()[i][j], counter.m_counts_single_ref[i][j]);
  253. }
  254. ADAPT_TREE(inter_mode, inter_mode, inter_mode, INTER_MODE_CONTEXTS);
  255. ADAPT_TREE(intra_mode, y_mode, intra_mode, INTER_MODE_CONTEXTS);
  256. ADAPT_TREE(intra_mode, uv_mode, uv_mode, INTER_MODE_CONTEXTS);
  257. ADAPT_TREE(partition, partition, partition, INTER_MODE_CONTEXTS);
  258. ADAPT_PROB_TABLE(skip, SKIP_CONTEXTS);
  259. if (frame_context.interpolation_filter == Switchable) {
  260. ADAPT_TREE(interp_filter, interp_filter, interp_filter, INTERP_FILTER_CONTEXTS);
  261. }
  262. if (frame_context.transform_mode == TransformMode::Select) {
  263. for (size_t i = 0; i < TX_SIZE_CONTEXTS; i++) {
  264. auto& tx_probs = probs.tx_probs();
  265. auto& tx_counts = counter.m_counts_tx_size;
  266. adapt_probs(tx_size_8_tree, tx_probs[Transform_8x8][i], tx_counts[Transform_8x8][i]);
  267. adapt_probs(tx_size_16_tree, tx_probs[Transform_16x16][i], tx_counts[Transform_16x16][i]);
  268. adapt_probs(tx_size_32_tree, tx_probs[Transform_32x32][i], tx_counts[Transform_32x32][i]);
  269. }
  270. }
  271. adapt_probs(mv_joint_tree, probs.mv_joint_probs(), counter.m_counts_mv_joint);
  272. for (size_t i = 0; i < 2; i++) {
  273. probs.mv_sign_prob()[i] = adapt_prob(probs.mv_sign_prob()[i], counter.m_counts_mv_sign[i]);
  274. adapt_probs(mv_class_tree, probs.mv_class_probs()[i], counter.m_counts_mv_class[i]);
  275. probs.mv_class0_bit_prob()[i] = adapt_prob(probs.mv_class0_bit_prob()[i], counter.m_counts_mv_class0_bit[i]);
  276. for (size_t j = 0; j < MV_OFFSET_BITS; j++)
  277. probs.mv_bits_prob()[i][j] = adapt_prob(probs.mv_bits_prob()[i][j], counter.m_counts_mv_bits[i][j]);
  278. for (size_t j = 0; j < CLASS0_SIZE; j++)
  279. adapt_probs(mv_fr_tree, probs.mv_class0_fr_probs()[i][j], counter.m_counts_mv_class0_fr[i][j]);
  280. adapt_probs(mv_fr_tree, probs.mv_fr_probs()[i], counter.m_counts_mv_fr[i]);
  281. if (frame_context.high_precision_motion_vectors_allowed) {
  282. probs.mv_class0_hp_prob()[i] = adapt_prob(probs.mv_class0_hp_prob()[i], counter.m_counts_mv_class0_hp[i]);
  283. probs.mv_hp_prob()[i] = adapt_prob(probs.mv_hp_prob()[i], counter.m_counts_mv_hp[i]);
  284. }
  285. }
  286. return {};
  287. }
  288. void Decoder::adapt_probs(int const* tree, u8* probs, u8* counts)
  289. {
  290. merge_probs(tree, 0, probs, counts, COUNT_SAT, MAX_UPDATE_FACTOR);
  291. }
  292. u8 Decoder::adapt_prob(u8 prob, u8 counts[2])
  293. {
  294. return merge_prob(prob, counts[0], counts[1], COUNT_SAT, MAX_UPDATE_FACTOR);
  295. }
  296. DecoderErrorOr<void> Decoder::predict_intra(u8 plane, BlockContext const& block_context, u32 x, u32 y, bool have_left, bool have_above, bool not_on_right, TransformSize tx_size, u32 block_index)
  297. {
  298. auto& frame_buffer = get_output_buffer(plane);
  299. // 8.5.1 Intra prediction process
  300. // The intra prediction process is invoked for intra coded blocks to predict a part of the block corresponding to a
  301. // transform block. When the transform size is smaller than the block size, this process can be invoked multiple
  302. // times within a single block for the same plane, and the invocations are in raster order within the block.
  303. // The variable mode is specified by:
  304. // 1. If plane is greater than 0, mode is set equal to uv_mode.
  305. // 2. Otherwise, if MiSize is greater than or equal to BLOCK_8X8, mode is set equal to y_mode.
  306. // 3. Otherwise, mode is set equal to sub_modes[ blockIdx ].
  307. PredictionMode mode;
  308. if (plane > 0)
  309. mode = block_context.uv_prediction_mode;
  310. else if (block_context.size >= Block_8x8)
  311. mode = block_context.y_prediction_mode();
  312. else
  313. mode = block_context.sub_block_prediction_modes[block_index];
  314. // The variable log2Size specifying the base 2 logarithm of the width of the transform block is set equal to txSz + 2.
  315. u8 log2_of_block_size = tx_size + 2;
  316. // The variable size is set equal to 1 << log2Size.
  317. u8 block_size = 1 << log2_of_block_size;
  318. // The variable maxX is set equal to (MiCols * 8) - 1.
  319. // The variable maxY is set equal to (MiRows * 8) - 1.
  320. // If plane is greater than 0, then:
  321. // − maxX is set equal to ((MiCols * 8) >> subsampling_x) - 1.
  322. // − maxY is set equal to ((MiRows * 8) >> subsampling_y) - 1.
  323. auto subsampling_x = plane > 0 ? block_context.frame_context.color_config.subsampling_x : false;
  324. auto subsampling_y = plane > 0 ? block_context.frame_context.color_config.subsampling_y : false;
  325. auto max_x = ((block_context.frame_context.columns() * 8u) >> subsampling_x) - 1u;
  326. auto max_y = ((block_context.frame_context.rows() * 8u) >> subsampling_y) - 1u;
  327. auto const frame_buffer_at = [&](u32 row, u32 column) -> u16& {
  328. const auto frame_stride = max_x + 1u;
  329. return frame_buffer[index_from_row_and_column(row, column, frame_stride)];
  330. };
  331. // The array aboveRow[ i ] for i = 0..size-1 is specified by:
  332. // ..
  333. // The array aboveRow[ i ] for i = size..2*size-1 is specified by:
  334. // ..
  335. // The array aboveRow[ i ] for i = -1 is specified by:
  336. // ..
  337. // NOTE: above_row is an array ranging from 0 to (2*block_size).
  338. // There are three sections to the array:
  339. // - [0]
  340. // - [1 .. block_size]
  341. // - [block_size + 1 .. block_size * 2]
  342. // The array indices must be offset by 1 to accommodate index -1.
  343. Array<Intermediate, maximum_block_dimensions * 2 + 1> above_row;
  344. auto above_row_at = [&](i32 index) -> Intermediate& {
  345. return above_row[index + 1];
  346. };
  347. // NOTE: This value is pre-calculated since it is reused in spec below.
  348. // Use this to replace spec text "(1<<(BitDepth-1))".
  349. Intermediate half_sample_value = (1 << (block_context.frame_context.color_config.bit_depth - 1));
  350. // The array aboveRow[ i ] for i = 0..size-1 is specified by:
  351. if (!have_above) {
  352. // 1. If haveAbove is equal to 0, aboveRow[ i ] is set equal to (1<<(BitDepth-1)) - 1.
  353. // FIXME: Use memset?
  354. for (auto i = 0u; i < block_size; i++)
  355. above_row_at(i) = half_sample_value - 1;
  356. } else {
  357. // 2. Otherwise, aboveRow[ i ] is set equal to CurrFrame[ plane ][ y-1 ][ Min(maxX, x+i) ].
  358. for (auto i = 0u; i < block_size; i++)
  359. above_row_at(i) = frame_buffer_at(y - 1, min(max_x, x + i));
  360. }
  361. // The array aboveRow[ i ] for i = size..2*size-1 is specified by:
  362. if (have_above && not_on_right && tx_size == Transform_4x4) {
  363. // 1. If haveAbove is equal to 1 and notOnRight is equal to 1 and txSz is equal to 0,
  364. // aboveRow[ i ] is set equal to CurrFrame[ plane ][ y-1 ][ Min(maxX, x+i) ].
  365. for (auto i = block_size; i < block_size * 2; i++)
  366. above_row_at(i) = frame_buffer_at(y - 1, min(max_x, x + i));
  367. } else {
  368. // 2. Otherwise, aboveRow[ i ] is set equal to aboveRow[ size-1 ].
  369. for (auto i = block_size; i < block_size * 2; i++)
  370. above_row_at(i) = above_row_at(block_size - 1);
  371. }
  372. // The array aboveRow[ i ] for i = -1 is specified by:
  373. if (have_above && have_left) {
  374. // 1. If haveAbove is equal to 1 and haveLeft is equal to 1, aboveRow[ -1 ] is set equal to
  375. // CurrFrame[ plane ][ y-1 ][ Min(maxX, x-1) ].
  376. above_row_at(-1) = frame_buffer_at(y - 1, min(max_x, x - 1));
  377. } else if (have_above) {
  378. // 2. Otherwise if haveAbove is equal to 1, aboveRow[ -1] is set equal to (1<<(BitDepth-1)) + 1.
  379. above_row_at(-1) = half_sample_value + 1;
  380. } else {
  381. // 3. Otherwise, aboveRow[ -1 ] is set equal to (1<<(BitDepth-1)) - 1
  382. above_row_at(-1) = half_sample_value - 1;
  383. }
  384. // The array leftCol[ i ] for i = 0..size-1 is specified by:
  385. Array<Intermediate, maximum_block_dimensions> left_column;
  386. if (have_left) {
  387. // − If haveLeft is equal to 1, leftCol[ i ] is set equal to CurrFrame[ plane ][ Min(maxY, y+i) ][ x-1 ].
  388. for (auto i = 0u; i < block_size; i++)
  389. left_column[i] = frame_buffer_at(min(max_y, y + i), x - 1);
  390. } else {
  391. // − Otherwise, leftCol[ i ] is set equal to (1<<(BitDepth-1)) + 1.
  392. for (auto i = 0u; i < block_size; i++)
  393. left_column[i] = half_sample_value + 1;
  394. }
  395. // A 2D array named pred containing the intra predicted samples is constructed as follows:
  396. Array<Intermediate, maximum_block_size> predicted_samples;
  397. auto const predicted_sample_at = [&](u32 row, u32 column) -> Intermediate& {
  398. return predicted_samples[index_from_row_and_column(row, column, block_size)];
  399. };
  400. // FIXME: One of the two below should be a simple memcpy of 1D arrays.
  401. switch (mode) {
  402. case PredictionMode::VPred:
  403. // − If mode is equal to V_PRED, pred[ i ][ j ] is set equal to aboveRow[ j ] with j = 0..size-1 and i = 0..size-1
  404. // (each row of the block is filled with a copy of aboveRow).
  405. for (auto j = 0u; j < block_size; j++) {
  406. for (auto i = 0u; i < block_size; i++)
  407. predicted_sample_at(i, j) = above_row_at(j);
  408. }
  409. break;
  410. case PredictionMode::HPred:
  411. // − Otherwise if mode is equal to H_PRED, pred[ i ][ j ] is set equal to leftCol[ i ] with j = 0..size-1 and i =
  412. // 0..size-1 (each column of the block is filled with a copy of leftCol).
  413. for (auto j = 0u; j < block_size; j++) {
  414. for (auto i = 0u; i < block_size; i++)
  415. predicted_sample_at(i, j) = left_column[i];
  416. }
  417. break;
  418. case PredictionMode::D207Pred:
  419. // − Otherwise if mode is equal to D207_PRED, the following applies:
  420. // 1. pred[ size - 1 ][ j ] = leftCol[ size - 1] for j = 0..size-1
  421. for (auto j = 0u; j < block_size; j++)
  422. predicted_sample_at(block_size - 1, j) = left_column[block_size - 1];
  423. // 2. pred[ i ][ 0 ] = Round2( leftCol[ i ] + leftCol[ i + 1 ], 1 ) for i = 0..size-2
  424. for (auto i = 0u; i < block_size - 1u; i++)
  425. predicted_sample_at(i, 0) = round_2(left_column[i] + left_column[i + 1], 1);
  426. // 3. pred[ i ][ 1 ] = Round2( leftCol[ i ] + 2 * leftCol[ i + 1 ] + leftCol[ i + 2 ], 2 ) for i = 0..size-3
  427. for (auto i = 0u; i < block_size - 2u; i++)
  428. predicted_sample_at(i, 1) = round_2(left_column[i] + (2 * left_column[i + 1]) + left_column[i + 2], 2);
  429. // 4. pred[ size - 2 ][ 1 ] = Round2( leftCol[ size - 2 ] + 3 * leftCol[ size - 1 ], 2 )
  430. predicted_sample_at(block_size - 2, 1) = round_2(left_column[block_size - 2] + (3 * left_column[block_size - 1]), 2);
  431. // 5. pred[ i ][ j ] = pred[ i + 1 ][ j - 2 ] for i = (size-2)..0, for j = 2..size-1
  432. // NOTE – In the last step i iterates in reverse order.
  433. for (auto i = block_size - 2u;;) {
  434. for (auto j = 2u; j < block_size; j++)
  435. predicted_sample_at(i, j) = predicted_sample_at(i + 1, j - 2);
  436. if (i == 0)
  437. break;
  438. i--;
  439. }
  440. break;
  441. case PredictionMode::D45Pred:
  442. // Otherwise if mode is equal to D45_PRED,
  443. // for i = 0..size-1, for j = 0..size-1.
  444. for (auto i = 0u; i < block_size; i++) {
  445. for (auto j = 0; j < block_size; j++) {
  446. // pred[ i ][ j ] is set equal to (i + j + 2 < size * 2) ?
  447. if (i + j + 2 < block_size * 2)
  448. // Round2( aboveRow[ i + j ] + aboveRow[ i + j + 1 ] * 2 + aboveRow[ i + j + 2 ], 2 ) :
  449. predicted_sample_at(i, j) = round_2(above_row_at(i + j) + above_row_at(i + j + 1) * 2 + above_row_at(i + j + 2), 2);
  450. else
  451. // aboveRow[ 2 * size - 1 ]
  452. predicted_sample_at(i, j) = above_row_at(2 * block_size - 1);
  453. }
  454. }
  455. break;
  456. case PredictionMode::D63Pred:
  457. // Otherwise if mode is equal to D63_PRED,
  458. for (auto i = 0u; i < block_size; i++) {
  459. for (auto j = 0u; j < block_size; j++) {
  460. // i/2 + j
  461. auto row_index = (i / 2) + j;
  462. // pred[ i ][ j ] is set equal to (i & 1) ?
  463. if (i & 1)
  464. // Round2( aboveRow[ i/2 + j ] + aboveRow[ i/2 + j + 1 ] * 2 + aboveRow[ i/2 + j + 2 ], 2 ) :
  465. predicted_sample_at(i, j) = round_2(above_row_at(row_index) + above_row_at(row_index + 1) * 2 + above_row_at(row_index + 2), 2);
  466. else
  467. // Round2( aboveRow[ i/2 + j ] + aboveRow[ i/2 + j + 1 ], 1 ) for i = 0..size-1, for j = 0..size-1.
  468. predicted_sample_at(i, j) = round_2(above_row_at(row_index) + above_row_at(row_index + 1), 1);
  469. }
  470. }
  471. break;
  472. case PredictionMode::D117Pred:
  473. // Otherwise if mode is equal to D117_PRED, the following applies:
  474. // 1. pred[ 0 ][ j ] = Round2( aboveRow[ j - 1 ] + aboveRow[ j ], 1 ) for j = 0..size-1
  475. for (auto j = 0; j < block_size; j++)
  476. predicted_sample_at(0, j) = round_2(above_row_at(j - 1) + above_row_at(j), 1);
  477. // 2. pred[ 1 ][ 0 ] = Round2( leftCol[ 0 ] + 2 * aboveRow[ -1 ] + aboveRow[ 0 ], 2 )
  478. predicted_sample_at(1, 0) = round_2(left_column[0] + 2 * above_row_at(-1) + above_row_at(0), 2);
  479. // 3. pred[ 1 ][ j ] = Round2( aboveRow[ j - 2 ] + 2 * aboveRow[ j - 1 ] + aboveRow[ j ], 2 ) for j = 1..size-1
  480. for (auto j = 1; j < block_size; j++)
  481. predicted_sample_at(1, j) = round_2(above_row_at(j - 2) + 2 * above_row_at(j - 1) + above_row_at(j), 2);
  482. // 4. pred[ 2 ][ 0 ] = Round2( aboveRow[ -1 ] + 2 * leftCol[ 0 ] + leftCol[ 1 ], 2 )
  483. predicted_sample_at(2, 0) = round_2(above_row_at(-1) + 2 * left_column[0] + left_column[1], 2);
  484. // 5. pred[ i ][ 0 ] = Round2( leftCol[ i - 3 ] + 2 * leftCol[ i - 2 ] + leftCol[ i - 1 ], 2 ) for i = 3..size-1
  485. for (auto i = 3u; i < block_size; i++)
  486. predicted_sample_at(i, 0) = round_2(left_column[i - 3] + 2 * left_column[i - 2] + left_column[i - 1], 2);
  487. // 6. pred[ i ][ j ] = pred[ i - 2 ][ j - 1 ] for i = 2..size-1, for j = 1..size-1
  488. for (auto i = 2u; i < block_size; i++) {
  489. for (auto j = 1u; j < block_size; j++)
  490. predicted_sample_at(i, j) = predicted_sample_at(i - 2, j - 1);
  491. }
  492. break;
  493. case PredictionMode::D135Pred:
  494. // Otherwise if mode is equal to D135_PRED, the following applies:
  495. // 1. pred[ 0 ][ 0 ] = Round2( leftCol[ 0 ] + 2 * aboveRow[ -1 ] + aboveRow[ 0 ], 2 )
  496. predicted_sample_at(0, 0) = round_2(left_column[0] + 2 * above_row_at(-1) + above_row_at(0), 2);
  497. // 2. pred[ 0 ][ j ] = Round2( aboveRow[ j - 2 ] + 2 * aboveRow[ j - 1 ] + aboveRow[ j ], 2 ) for j = 1..size-1
  498. for (auto j = 1; j < block_size; j++)
  499. predicted_sample_at(0, j) = round_2(above_row_at(j - 2) + 2 * above_row_at(j - 1) + above_row_at(j), 2);
  500. // 3. pred[ 1 ][ 0 ] = Round2( aboveRow [ -1 ] + 2 * leftCol[ 0 ] + leftCol[ 1 ], 2 ) for i = 1..size-1
  501. predicted_sample_at(1, 0) = round_2(above_row_at(-1) + 2 * left_column[0] + left_column[1], 2);
  502. // 4. pred[ i ][ 0 ] = Round2( leftCol[ i - 2 ] + 2 * leftCol[ i - 1 ] + leftCol[ i ], 2 ) for i = 2..size-1
  503. for (auto i = 2u; i < block_size; i++)
  504. predicted_sample_at(i, 0) = round_2(left_column[i - 2] + 2 * left_column[i - 1] + left_column[i], 2);
  505. // 5. pred[ i ][ j ] = pred[ i - 1 ][ j - 1 ] for i = 1..size-1, for j = 1..size-1
  506. for (auto i = 1u; i < block_size; i++) {
  507. for (auto j = 1; j < block_size; j++)
  508. predicted_sample_at(i, j) = predicted_sample_at(i - 1, j - 1);
  509. }
  510. break;
  511. case PredictionMode::D153Pred:
  512. // Otherwise if mode is equal to D153_PRED, the following applies:
  513. // 1. pred[ 0 ][ 0 ] = Round2( leftCol[ 0 ] + aboveRow[ -1 ], 1 )
  514. predicted_sample_at(0, 0) = round_2(left_column[0] + above_row_at(-1), 1);
  515. // 2. pred[ i ][ 0 ] = Round2( leftCol[ i - 1] + leftCol[ i ], 1 ) for i = 1..size-1
  516. for (auto i = 1u; i < block_size; i++)
  517. predicted_sample_at(i, 0) = round_2(left_column[i - 1] + left_column[i], 1);
  518. // 3. pred[ 0 ][ 1 ] = Round2( leftCol[ 0 ] + 2 * aboveRow[ -1 ] + aboveRow[ 0 ], 2 )
  519. predicted_sample_at(0, 1) = round_2(left_column[0] + 2 * above_row_at(-1) + above_row_at(0), 2);
  520. // 4. pred[ 1 ][ 1 ] = Round2( aboveRow[ -1 ] + 2 * leftCol [ 0 ] + leftCol [ 1 ], 2 )
  521. predicted_sample_at(1, 1) = round_2(above_row_at(-1) + 2 * left_column[0] + left_column[1], 2);
  522. // 5. pred[ i ][ 1 ] = Round2( leftCol[ i - 2 ] + 2 * leftCol[ i - 1 ] + leftCol[ i ], 2 ) for i = 2..size-1
  523. for (auto i = 2u; i < block_size; i++)
  524. predicted_sample_at(i, 1) = round_2(left_column[i - 2] + 2 * left_column[i - 1] + left_column[i], 2);
  525. // 6. pred[ 0 ][ j ] = Round2( aboveRow[ j - 3 ] + 2 * aboveRow[ j - 2 ] + aboveRow[ j - 1 ], 2 ) for j = 2..size-1
  526. for (auto j = 2; j < block_size; j++)
  527. predicted_sample_at(0, j) = round_2(above_row_at(j - 3) + 2 * above_row_at(j - 2) + above_row_at(j - 1), 2);
  528. // 7. pred[ i ][ j ] = pred[ i - 1 ][ j - 2 ] for i = 1..size-1, for j = 2..size-1
  529. for (auto i = 1u; i < block_size; i++) {
  530. for (auto j = 2u; j < block_size; j++)
  531. predicted_sample_at(i, j) = predicted_sample_at(i - 1, j - 2);
  532. }
  533. break;
  534. case PredictionMode::TmPred:
  535. // Otherwise if mode is equal to TM_PRED,
  536. // pred[ i ][ j ] is set equal to Clip1( aboveRow[ j ] + leftCol[ i ] - aboveRow[ -1 ] )
  537. // for i = 0..size-1, for j = 0..size-1.
  538. for (auto i = 0u; i < block_size; i++) {
  539. for (auto j = 0u; j < block_size; j++)
  540. predicted_sample_at(i, j) = clip_1(block_context.frame_context.color_config.bit_depth, above_row_at(j) + left_column[i] - above_row_at(-1));
  541. }
  542. break;
  543. case PredictionMode::DcPred: {
  544. Intermediate average = 0;
  545. if (have_left && have_above) {
  546. // Otherwise if mode is equal to DC_PRED and haveLeft is equal to 1 and haveAbove is equal to 1,
  547. // The variable avg (the average of the samples in union of aboveRow and leftCol)
  548. // is specified as follows:
  549. // sum = 0
  550. // for ( k = 0; k < size; k++ ) {
  551. // sum += leftCol[ k ]
  552. // sum += aboveRow[ k ]
  553. // }
  554. // avg = (sum + size) >> (log2Size + 1)
  555. Intermediate sum = 0;
  556. for (auto k = 0u; k < block_size; k++) {
  557. sum += left_column[k];
  558. sum += above_row_at(k);
  559. }
  560. average = (sum + block_size) >> (log2_of_block_size + 1);
  561. } else if (have_left && !have_above) {
  562. // Otherwise if mode is equal to DC_PRED and haveLeft is equal to 1 and haveAbove is equal to 0,
  563. // The variable leftAvg is specified as follows:
  564. // sum = 0
  565. // for ( k = 0; k < size; k++ ) {
  566. // sum += leftCol[ k ]
  567. // }
  568. // leftAvg = (sum + (1 << (log2Size - 1) ) ) >> log2Size
  569. Intermediate sum = 0;
  570. for (auto k = 0u; k < block_size; k++)
  571. sum += left_column[k];
  572. average = (sum + (1 << (log2_of_block_size - 1))) >> log2_of_block_size;
  573. } else if (!have_left && have_above) {
  574. // Otherwise if mode is equal to DC_PRED and haveLeft is equal to 0 and haveAbove is equal to 1,
  575. // The variable aboveAvg is specified as follows:
  576. // sum = 0
  577. // for ( k = 0; k < size; k++ ) {
  578. // sum += aboveRow[ k ]
  579. // }
  580. // aboveAvg = (sum + (1 << (log2Size - 1) ) ) >> log2Size
  581. Intermediate sum = 0;
  582. for (auto k = 0u; k < block_size; k++)
  583. sum += above_row_at(k);
  584. average = (sum + (1 << (log2_of_block_size - 1))) >> log2_of_block_size;
  585. } else {
  586. // Otherwise (mode is DC_PRED),
  587. // pred[ i ][ j ] is set equal to 1<<(BitDepth - 1) with i = 0..size-1 and j = 0..size-1.
  588. average = 1 << (block_context.frame_context.color_config.bit_depth - 1);
  589. }
  590. // pred[ i ][ j ] is set equal to avg with i = 0..size-1 and j = 0..size-1.
  591. for (auto i = 0u; i < block_size; i++) {
  592. for (auto j = 0u; j < block_size; j++)
  593. predicted_sample_at(i, j) = average;
  594. }
  595. break;
  596. }
  597. default:
  598. dbgln("Unknown prediction mode {}", static_cast<u8>(mode));
  599. VERIFY_NOT_REACHED();
  600. }
  601. // The current frame is updated as follows:
  602. // − CurrFrame[ plane ][ y + i ][ x + j ] is set equal to pred[ i ][ j ] for i = 0..size-1 and j = 0..size-1.
  603. auto width_in_frame_buffer = min(static_cast<u32>(block_size), max_x - x + 1);
  604. auto height_in_frame_buffer = min(static_cast<u32>(block_size), max_y - y + 1);
  605. for (auto i = 0u; i < height_in_frame_buffer; i++) {
  606. for (auto j = 0u; j < width_in_frame_buffer; j++)
  607. frame_buffer_at(y + i, x + j) = predicted_sample_at(i, j);
  608. }
  609. return {};
  610. }
  611. MotionVector Decoder::select_motion_vector(u8 plane, BlockContext const& block_context, ReferenceIndex reference_index, u32 block_index)
  612. {
  613. // The inputs to this process are:
  614. // − a variable plane specifying which plane is being predicted,
  615. // − a variable refList specifying that we should select the motion vector from BlockMvs[ refList ],
  616. // − a variable blockIdx, specifying how much of the block has already been predicted in units of 4x4 samples.
  617. // The output of this process is a 2 element array called mv containing the motion vector for this block.
  618. // The purpose of this process is to find the motion vector for this block. Motion vectors are specified for each
  619. // luma block, but a chroma block may cover more than one luma block due to subsampling. In this case, an
  620. // average motion vector is constructed for the chroma block.
  621. // The functions round_mv_comp_q2 and round_mv_comp_q4 perform division with rounding to the nearest
  622. // integer and are specified as:
  623. auto round_mv_comp_q2 = [&](MotionVector in) {
  624. // return (value < 0 ? value - 1 : value + 1) / 2
  625. return MotionVector {
  626. (in.row() < 0 ? in.row() - 1 : in.row() + 1) >> 1,
  627. (in.column() < 0 ? in.column() - 1 : in.column() + 1) >> 1
  628. };
  629. };
  630. auto round_mv_comp_q4 = [&](MotionVector in) {
  631. // return (value < 0 ? value - 2 : value + 2) / 4
  632. return MotionVector {
  633. (in.row() < 0 ? in.row() - 2 : in.row() + 2) >> 2,
  634. (in.column() < 0 ? in.column() - 2 : in.column() + 2) >> 2
  635. };
  636. };
  637. auto vectors = block_context.sub_block_motion_vectors;
  638. // The motion vector array mv is derived as follows:
  639. // − If plane is equal to 0, or MiSize is greater than or equal to BLOCK_8X8, mv is set equal to
  640. // BlockMvs[ refList ][ blockIdx ].
  641. if (plane == 0 || block_context.size >= Block_8x8)
  642. return vectors[block_index][reference_index];
  643. // − Otherwise, if subsampling_x is equal to 0 and subsampling_y is equal to 0, mv is set equal to
  644. // BlockMvs[ refList ][ blockIdx ].
  645. if (!block_context.frame_context.color_config.subsampling_x && !block_context.frame_context.color_config.subsampling_y)
  646. return vectors[block_index][reference_index];
  647. // − Otherwise, if subsampling_x is equal to 0 and subsampling_y is equal to 1, mv[ comp ] is set equal to
  648. // round_mv_comp_q2( BlockMvs[ refList ][ blockIdx ][ comp ] + BlockMvs[ refList ][ blockIdx + 2 ][ comp ] )
  649. // for comp = 0..1.
  650. if (!block_context.frame_context.color_config.subsampling_x && block_context.frame_context.color_config.subsampling_y)
  651. return round_mv_comp_q2(vectors[block_index][reference_index] + vectors[block_index + 2][reference_index]);
  652. // − Otherwise, if subsampling_x is equal to 1 and subsampling_y is equal to 0, mv[ comp ] is set equal to
  653. // round_mv_comp_q2( BlockMvs[ refList ][ blockIdx ][ comp ] + BlockMvs[ refList ][ blockIdx + 1 ][ comp ] )
  654. // for comp = 0..1.
  655. if (block_context.frame_context.color_config.subsampling_x && !block_context.frame_context.color_config.subsampling_y)
  656. return round_mv_comp_q2(vectors[block_index][reference_index] + vectors[block_index + 1][reference_index]);
  657. // − Otherwise, (subsampling_x is equal to 1 and subsampling_y is equal to 1), mv[ comp ] is set equal to
  658. // round_mv_comp_q4( BlockMvs[ refList ][ 0 ][ comp ] + BlockMvs[ refList ][ 1 ][ comp ] +
  659. // BlockMvs[ refList ][ 2 ][ comp ] + BlockMvs[ refList ][ 3 ][ comp ] ) for comp = 0..1.
  660. VERIFY(block_context.frame_context.color_config.subsampling_x && block_context.frame_context.color_config.subsampling_y);
  661. return round_mv_comp_q4(vectors[0][reference_index] + vectors[1][reference_index]
  662. + vectors[2][reference_index] + vectors[3][reference_index]);
  663. }
  664. MotionVector Decoder::clamp_motion_vector(u8 plane, BlockContext const& block_context, u32 block_row, u32 block_column, MotionVector vector)
  665. {
  666. // FIXME: This function is named very similarly to Parser::clamp_mv. Rename one or the other?
  667. // The purpose of this process is to change the motion vector into the appropriate precision for the current plane
  668. // and to clamp motion vectors that go too far off the edge of the frame.
  669. // The variables sx and sy are set equal to the subsampling for the current plane as follows:
  670. // − If plane is equal to 0, sx is set equal to 0 and sy is set equal to 0.
  671. // − Otherwise, sx is set equal to subsampling_x and sy is set equal to subsampling_y.
  672. bool subsampling_x = plane > 0 ? block_context.frame_context.color_config.subsampling_x : false;
  673. bool subsampling_y = plane > 0 ? block_context.frame_context.color_config.subsampling_y : false;
  674. // The output array clampedMv is specified by the following steps:
  675. i32 blocks_high = num_8x8_blocks_high_lookup[block_context.size];
  676. // Casts must be done here to prevent subtraction underflow from wrapping the values.
  677. i32 mb_to_top_edge = -(static_cast<i32>(block_row * MI_SIZE) * 16) >> subsampling_y;
  678. i32 mb_to_bottom_edge = (((static_cast<i32>(block_context.frame_context.rows()) - blocks_high - static_cast<i32>(block_row)) * MI_SIZE) * 16) >> subsampling_y;
  679. i32 blocks_wide = num_8x8_blocks_wide_lookup[block_context.size];
  680. i32 mb_to_left_edge = -(static_cast<i32>(block_column * MI_SIZE) * 16) >> subsampling_x;
  681. i32 mb_to_right_edge = (((static_cast<i32>(block_context.frame_context.columns()) - blocks_wide - static_cast<i32>(block_column)) * MI_SIZE) * 16) >> subsampling_x;
  682. i32 subpel_left = (INTERP_EXTEND + ((blocks_wide * MI_SIZE) >> subsampling_x)) << SUBPEL_BITS;
  683. i32 subpel_right = subpel_left - SUBPEL_SHIFTS;
  684. i32 subpel_top = (INTERP_EXTEND + ((blocks_high * MI_SIZE) >> subsampling_y)) << SUBPEL_BITS;
  685. i32 subpel_bottom = subpel_top - SUBPEL_SHIFTS;
  686. return {
  687. clip_3(mb_to_top_edge - subpel_top, mb_to_bottom_edge + subpel_bottom, (2 * vector.row()) >> subsampling_y),
  688. clip_3(mb_to_left_edge - subpel_left, mb_to_right_edge + subpel_right, (2 * vector.column()) >> subsampling_x)
  689. };
  690. }
  691. DecoderErrorOr<void> Decoder::predict_inter_block(u8 plane, BlockContext const& block_context, ReferenceIndex reference_index, u32 block_row, u32 block_column, u32 x, u32 y, u32 width, u32 height, u32 block_index, Span<u16> block_buffer)
  692. {
  693. VERIFY(width <= maximum_block_dimensions && height <= maximum_block_dimensions);
  694. // 2. The motion vector selection process in section 8.5.2.1 is invoked with plane, refList, blockIdx as inputs
  695. // and the output being the motion vector mv.
  696. auto motion_vector = select_motion_vector(plane, block_context, reference_index, block_index);
  697. // 3. The motion vector clamping process in section 8.5.2.2 is invoked with plane, mv as inputs and the output
  698. // being the clamped motion vector clampedMv
  699. auto clamped_vector = clamp_motion_vector(plane, block_context, block_row, block_column, motion_vector);
  700. // 4. The motion vector scaling process in section 8.5.2.3 is invoked with plane, refList, x, y, clampedMv as
  701. // inputs and the output being the initial location startX, startY, and the step sizes stepX, stepY.
  702. // 8.5.2.3 Motion vector scaling process
  703. // The inputs to this process are:
  704. // − a variable plane specifying which plane is being predicted,
  705. // − a variable refList specifying that we should scale to match reference frame ref_frame[ refList ],
  706. // − variables x and y specifying the location of the top left sample in the CurrFrame[ plane ] array of the region
  707. // to be predicted,
  708. // − a variable clampedMv specifying the clamped motion vector.
  709. // The outputs of this process are the variables startX and startY giving the reference block location in units of
  710. // 1/16 th of a sample, and variables xStep and yStep giving the step size in units of 1/16 th of a sample.
  711. // This process is responsible for computing the sampling locations in the reference frame based on the motion
  712. // vector. The sampling locations are also adjusted to compensate for any difference in the size of the reference
  713. // frame compared to the current frame.
  714. // A variable refIdx specifying which reference frame is being used is set equal to
  715. // ref_frame_idx[ ref_frame[ refList ] - LAST_FRAME ].
  716. auto reference_frame_index = block_context.frame_context.reference_frame_indices[block_context.reference_frame_types[reference_index] - ReferenceFrameType::LastFrame];
  717. // It is a requirement of bitstream conformance that all the following conditions are satisfied:
  718. // − 2 * FrameWidth >= RefFrameWidth[ refIdx ]
  719. // − 2 * FrameHeight >= RefFrameHeight[ refIdx ]
  720. // − FrameWidth <= 16 * RefFrameWidth[ refIdx ]
  721. // − FrameHeight <= 16 * RefFrameHeight[ refIdx ]
  722. if (m_parser->m_frame_store[reference_frame_index][plane].is_empty())
  723. return DecoderError::format(DecoderErrorCategory::Corrupted, "Attempted to use reference frame {} that has not been saved", reference_frame_index);
  724. auto ref_frame_size = m_parser->m_ref_frame_size[reference_frame_index];
  725. auto double_frame_size = block_context.frame_context.size().scaled_by(2);
  726. if (double_frame_size.width() < ref_frame_size.width() || double_frame_size.height() < ref_frame_size.height())
  727. return DecoderError::format(DecoderErrorCategory::Corrupted, "Inter frame size is too small relative to reference frame {}", reference_frame_index);
  728. if (!ref_frame_size.scaled_by(16).contains(block_context.frame_context.size()))
  729. return DecoderError::format(DecoderErrorCategory::Corrupted, "Inter frame size is too large relative to reference frame {}", reference_frame_index);
  730. // FIXME: Convert all the operations in this function to vector operations supported by
  731. // MotionVector.
  732. // A variable xScale is set equal to (RefFrameWidth[ refIdx ] << REF_SCALE_SHIFT) / FrameWidth.
  733. // A variable yScale is set equal to (RefFrameHeight[ refIdx ] << REF_SCALE_SHIFT) / FrameHeight.
  734. // (xScale and yScale specify the size of the reference frame relative to the current frame in units where 16 is
  735. // equivalent to the reference frame having the same size.)
  736. i32 x_scale = (ref_frame_size.width() << REF_SCALE_SHIFT) / block_context.frame_context.size().width();
  737. i32 y_scale = (ref_frame_size.height() << REF_SCALE_SHIFT) / block_context.frame_context.size().height();
  738. // The variable baseX is set equal to (x * xScale) >> REF_SCALE_SHIFT.
  739. // The variable baseY is set equal to (y * yScale) >> REF_SCALE_SHIFT.
  740. // (baseX and baseY specify the location of the block in the reference frame if a zero motion vector is used).
  741. i32 base_x = (x * x_scale) >> REF_SCALE_SHIFT;
  742. i32 base_y = (y * y_scale) >> REF_SCALE_SHIFT;
  743. // The variable lumaX is set equal to (plane > 0) ? x << subsampling_x : x.
  744. // The variable lumaY is set equal to (plane > 0) ? y << subsampling_y : y.
  745. // (lumaX and lumaY specify the location of the block to be predicted in the current frame in units of luma
  746. // samples.)
  747. bool subsampling_x = plane > 0 ? block_context.frame_context.color_config.subsampling_x : false;
  748. bool subsampling_y = plane > 0 ? block_context.frame_context.color_config.subsampling_y : false;
  749. i32 luma_x = x << subsampling_x;
  750. i32 luma_y = y << subsampling_y;
  751. // The variable fracX is set equal to ( (16 * lumaX * xScale) >> REF_SCALE_SHIFT) & SUBPEL_MASK.
  752. // The variable fracY is set equal to ( (16 * lumaY * yScale) >> REF_SCALE_SHIFT) & SUBPEL_MASK.
  753. i32 frac_x = ((16 * luma_x * x_scale) >> REF_SCALE_SHIFT) & SUBPEL_MASK;
  754. i32 frac_y = ((16 * luma_y * y_scale) >> REF_SCALE_SHIFT) & SUBPEL_MASK;
  755. // The variable dX is set equal to ( (clampedMv[ 1 ] * xScale) >> REF_SCALE_SHIFT) + fracX.
  756. // The variable dY is set equal to ( (clampedMv[ 0 ] * yScale) >> REF_SCALE_SHIFT) + fracY.
  757. // (dX and dY specify a scaled motion vector.)
  758. i32 scaled_vector_x = ((clamped_vector.column() * x_scale) >> REF_SCALE_SHIFT) + frac_x;
  759. i32 scaled_vector_y = ((clamped_vector.row() * y_scale) >> REF_SCALE_SHIFT) + frac_y;
  760. // The output variable stepX is set equal to (16 * xScale) >> REF_SCALE_SHIFT.
  761. // The output variable stepY is set equal to (16 * yScale) >> REF_SCALE_SHIFT.
  762. i32 scaled_step_x = (16 * x_scale) >> REF_SCALE_SHIFT;
  763. i32 scaled_step_y = (16 * y_scale) >> REF_SCALE_SHIFT;
  764. // The output variable startX is set equal to (baseX << SUBPEL_BITS) + dX.
  765. // The output variable startY is set equal to (baseY << SUBPEL_BITS) + dY.
  766. i32 offset_scaled_block_x = (base_x << SUBPEL_BITS) + scaled_vector_x;
  767. i32 offset_scaled_block_y = (base_y << SUBPEL_BITS) + scaled_vector_y;
  768. // 5. The block inter prediction process in section 8.5.2.4 is invoked with plane, refList, startX, startY, stepX,
  769. // stepY, w, h as inputs and the output is assigned to the 2D array preds[ refList ].
  770. // 8.5.2.4 Block inter prediction process
  771. // The inputs to this process are:
  772. // − a variable plane,
  773. // − a variable refList specifying that we should predict from ref_frame[ refList ],
  774. // − variables x and y giving the block location in units of 1/16 th of a sample,
  775. // − variables xStep and yStep giving the step size in units of 1/16 th of a sample. (These will be at most equal
  776. // to 80 due to the restrictions on scaling between reference frames.)
  777. static constexpr i32 MAX_SCALED_STEP = 80;
  778. VERIFY(scaled_step_x <= MAX_SCALED_STEP && scaled_step_y <= MAX_SCALED_STEP);
  779. // − variables w and h giving the width and height of the block in units of samples
  780. // The output from this process is the 2D array named pred containing inter predicted samples.
  781. // A variable ref specifying the reference frame contents is set equal to FrameStore[ refIdx ].
  782. auto& reference_frame_buffer = m_parser->m_frame_store[reference_frame_index][plane];
  783. auto reference_frame_width = m_parser->m_ref_frame_size[reference_frame_index].width() >> subsampling_x;
  784. auto reference_frame_buffer_at = [&](u32 row, u32 column) -> u16& {
  785. return reference_frame_buffer[row * reference_frame_width + column];
  786. };
  787. auto block_buffer_at = [&](u32 row, u32 column) -> u16& {
  788. return block_buffer[row * width + column];
  789. };
  790. // The variable lastX is set equal to ( (RefFrameWidth[ refIdx ] + subX) >> subX) - 1.
  791. // The variable lastY is set equal to ( (RefFrameHeight[ refIdx ] + subY) >> subY) - 1.
  792. // (lastX and lastY specify the coordinates of the bottom right sample of the reference plane.)
  793. i32 scaled_right = ((m_parser->m_ref_frame_size[reference_frame_index].width() + subsampling_x) >> subsampling_x) - 1;
  794. i32 scaled_bottom = ((m_parser->m_ref_frame_size[reference_frame_index].height() + subsampling_y) >> subsampling_y) - 1;
  795. // The variable intermediateHeight specifying the height required for the intermediate array is set equal to (((h -
  796. // 1) * yStep + 15) >> 4) + 8.
  797. static constexpr auto maximum_intermediate_height = (((maximum_block_dimensions - 1) * MAX_SCALED_STEP + 15) >> 4) + 8;
  798. auto intermediate_height = (((height - 1) * scaled_step_y + 15) >> 4) + 8;
  799. VERIFY(intermediate_height <= maximum_intermediate_height);
  800. // The sub-sample interpolation is effected via two one-dimensional convolutions. First a horizontal filter is used
  801. // to build up a temporary array, and then this array is vertically filtered to obtain the final prediction. The
  802. // fractional parts of the motion vectors determine the filtering process. If the fractional part is zero, then the
  803. // filtering is equivalent to a straight sample copy.
  804. // The filtering is applied as follows:
  805. // The array intermediate is specified as follows:
  806. // Note: Height is specified by `intermediate_height`, width is specified by `width`
  807. Array<u16, maximum_intermediate_height * maximum_block_dimensions> intermediate_buffer;
  808. auto intermediate_buffer_at = [&](u32 row, u32 column) -> u16& {
  809. return intermediate_buffer[row * width + column];
  810. };
  811. for (auto row = 0u; row < intermediate_height; row++) {
  812. for (auto column = 0u; column < width; column++) {
  813. auto samples_start = offset_scaled_block_x + static_cast<i32>(scaled_step_x * column);
  814. i32 accumulated_samples = 0;
  815. for (auto t = 0u; t < 8u; t++) {
  816. auto sample = reference_frame_buffer_at(
  817. clip_3(0, scaled_bottom, (offset_scaled_block_y >> 4) + static_cast<i32>(row) - 3),
  818. clip_3(0, scaled_right, (samples_start >> 4) + static_cast<i32>(t) - 3));
  819. accumulated_samples += subpel_filters[block_context.interpolation_filter][samples_start & 15][t] * sample;
  820. }
  821. intermediate_buffer_at(row, column) = clip_1(block_context.frame_context.color_config.bit_depth, round_2(accumulated_samples, 7));
  822. }
  823. }
  824. for (auto row = 0u; row < height; row++) {
  825. for (auto column = 0u; column < width; column++) {
  826. auto samples_start = (offset_scaled_block_y & 15) + static_cast<i32>(scaled_step_y * row);
  827. i32 accumulated_samples = 0;
  828. for (auto t = 0u; t < 8u; t++) {
  829. auto sample = intermediate_buffer_at((samples_start >> 4) + t, column);
  830. accumulated_samples += subpel_filters[block_context.interpolation_filter][samples_start & 15][t] * sample;
  831. }
  832. block_buffer_at(row, column) = clip_1(block_context.frame_context.color_config.bit_depth, round_2(accumulated_samples, 7));
  833. }
  834. }
  835. return {};
  836. }
  837. DecoderErrorOr<void> Decoder::predict_inter(u8 plane, BlockContext const& block_context, u32 x, u32 y, u32 width, u32 height, u32 block_index)
  838. {
  839. // The inter prediction process is invoked for inter coded blocks. When MiSize is smaller than BLOCK_8X8, the
  840. // prediction is done with a granularity of 4x4 samples, otherwise the whole plane is predicted at the same time.
  841. // The inputs to this process are:
  842. // − a variable plane specifying which plane is being predicted,
  843. // − variables x and y specifying the location of the top left sample in the CurrFrame[ plane ] array of the region
  844. // to be predicted,
  845. // − variables w and h specifying the width and height of the region to be predicted,
  846. // − a variable blockIdx, specifying how much of the block has already been predicted in units of 4x4 samples.
  847. // The outputs of this process are inter predicted samples in the current frame CurrFrame.
  848. // The prediction arrays are formed by the following ordered steps:
  849. // 1. The variable refList is set equal to 0.
  850. // 2. through 5.
  851. Array<u16, maximum_block_size> predicted_buffer;
  852. auto predicted_span = predicted_buffer.span().trim(width * height);
  853. TRY(predict_inter_block(plane, block_context, ReferenceIndex::Primary, block_context.row, block_context.column, x, y, width, height, block_index, predicted_span));
  854. auto predicted_buffer_at = [&](Span<u16> buffer, u32 row, u32 column) -> u16& {
  855. return buffer[row * width + column];
  856. };
  857. // 6. If isCompound is equal to 1, then the variable refList is set equal to 1 and steps 2, 3, 4 and 5 are repeated
  858. // to form the prediction for the second reference.
  859. // The inter predicted samples are then derived as follows:
  860. auto& frame_buffer = get_output_buffer(plane);
  861. VERIFY(!frame_buffer.is_empty());
  862. auto frame_width = (block_context.frame_context.columns() * 8u) >> (plane > 0 ? block_context.frame_context.color_config.subsampling_x : false);
  863. auto frame_height = (block_context.frame_context.rows() * 8u) >> (plane > 0 ? block_context.frame_context.color_config.subsampling_y : false);
  864. auto frame_buffer_at = [&](u32 row, u32 column) -> u16& {
  865. return frame_buffer[row * frame_width + column];
  866. };
  867. auto width_in_frame_buffer = min(width, frame_width - x);
  868. auto height_in_frame_buffer = min(height, frame_height - y);
  869. // The variable isCompound is set equal to ref_frame[ 1 ] > NONE.
  870. // − If isCompound is equal to 0, CurrFrame[ plane ][ y + i ][ x + j ] is set equal to preds[ 0 ][ i ][ j ] for i = 0..h-1
  871. // and j = 0..w-1.
  872. if (!block_context.is_compound()) {
  873. for (auto i = 0u; i < height_in_frame_buffer; i++) {
  874. for (auto j = 0u; j < width_in_frame_buffer; j++)
  875. frame_buffer_at(y + i, x + j) = predicted_buffer_at(predicted_span, i, j);
  876. }
  877. return {};
  878. }
  879. // − Otherwise, CurrFrame[ plane ][ y + i ][ x + j ] is set equal to Round2( preds[ 0 ][ i ][ j ] + preds[ 1 ][ i ][ j ], 1 )
  880. // for i = 0..h-1 and j = 0..w-1.
  881. Array<u16, maximum_block_size> second_predicted_buffer;
  882. auto second_predicted_span = second_predicted_buffer.span().trim(width * height);
  883. TRY(predict_inter_block(plane, block_context, ReferenceIndex::Secondary, block_context.row, block_context.column, x, y, width, height, block_index, second_predicted_span));
  884. for (auto i = 0u; i < height_in_frame_buffer; i++) {
  885. for (auto j = 0u; j < width_in_frame_buffer; j++)
  886. frame_buffer_at(y + i, x + j) = round_2(predicted_buffer_at(predicted_span, i, j) + predicted_buffer_at(second_predicted_span, i, j), 1);
  887. }
  888. return {};
  889. }
  890. inline u16 dc_q(u8 bit_depth, u8 b)
  891. {
  892. // The function dc_q( b ) is specified as dc_qlookup[ (BitDepth-8) >> 1 ][ Clip3( 0, 255, b ) ] where dc_lookup is
  893. // defined as follows:
  894. constexpr u16 dc_qlookup[3][256] = {
  895. { 4, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32, 32, 33, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 48, 49, 50, 51, 52, 53, 53, 54, 55, 56, 57, 57, 58, 59, 60, 61, 62, 62, 63, 64, 65, 66, 66, 67, 68, 69, 70, 70, 71, 72, 73, 74, 74, 75, 76, 77, 78, 78, 79, 80, 81, 81, 82, 83, 84, 85, 85, 87, 88, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 118, 120, 121, 123, 125, 127, 129, 131, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 161, 164, 166, 169, 172, 174, 177, 180, 182, 185, 187, 190, 192, 195, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 230, 233, 237, 240, 243, 247, 250, 253, 257, 261, 265, 269, 272, 276, 280, 284, 288, 292, 296, 300, 304, 309, 313, 317, 322, 326, 330, 335, 340, 344, 349, 354, 359, 364, 369, 374, 379, 384, 389, 395, 400, 406, 411, 417, 423, 429, 435, 441, 447, 454, 461, 467, 475, 482, 489, 497, 505, 513, 522, 530, 539, 549, 559, 569, 579, 590, 602, 614, 626, 640, 654, 668, 684, 700, 717, 736, 755, 775, 796, 819, 843, 869, 896, 925, 955, 988, 1022, 1058, 1098, 1139, 1184, 1232, 1282, 1336 },
  896. { 4, 9, 10, 13, 15, 17, 20, 22, 25, 28, 31, 34, 37, 40, 43, 47, 50, 53, 57, 60, 64, 68, 71, 75, 78, 82, 86, 90, 93, 97, 101, 105, 109, 113, 116, 120, 124, 128, 132, 136, 140, 143, 147, 151, 155, 159, 163, 166, 170, 174, 178, 182, 185, 189, 193, 197, 200, 204, 208, 212, 215, 219, 223, 226, 230, 233, 237, 241, 244, 248, 251, 255, 259, 262, 266, 269, 273, 276, 280, 283, 287, 290, 293, 297, 300, 304, 307, 310, 314, 317, 321, 324, 327, 331, 334, 337, 343, 350, 356, 362, 369, 375, 381, 387, 394, 400, 406, 412, 418, 424, 430, 436, 442, 448, 454, 460, 466, 472, 478, 484, 490, 499, 507, 516, 525, 533, 542, 550, 559, 567, 576, 584, 592, 601, 609, 617, 625, 634, 644, 655, 666, 676, 687, 698, 708, 718, 729, 739, 749, 759, 770, 782, 795, 807, 819, 831, 844, 856, 868, 880, 891, 906, 920, 933, 947, 961, 975, 988, 1001, 1015, 1030, 1045, 1061, 1076, 1090, 1105, 1120, 1137, 1153, 1170, 1186, 1202, 1218, 1236, 1253, 1271, 1288, 1306, 1323, 1342, 1361, 1379, 1398, 1416, 1436, 1456, 1476, 1496, 1516, 1537, 1559, 1580, 1601, 1624, 1647, 1670, 1692, 1717, 1741, 1766, 1791, 1817, 1844, 1871, 1900, 1929, 1958, 1990, 2021, 2054, 2088, 2123, 2159, 2197, 2236, 2276, 2319, 2363, 2410, 2458, 2508, 2561, 2616, 2675, 2737, 2802, 2871, 2944, 3020, 3102, 3188, 3280, 3375, 3478, 3586, 3702, 3823, 3953, 4089, 4236, 4394, 4559, 4737, 4929, 5130, 5347 },
  897. { 4, 12, 18, 25, 33, 41, 50, 60, 70, 80, 91, 103, 115, 127, 140, 153, 166, 180, 194, 208, 222, 237, 251, 266, 281, 296, 312, 327, 343, 358, 374, 390, 405, 421, 437, 453, 469, 484, 500, 516, 532, 548, 564, 580, 596, 611, 627, 643, 659, 674, 690, 706, 721, 737, 752, 768, 783, 798, 814, 829, 844, 859, 874, 889, 904, 919, 934, 949, 964, 978, 993, 1008, 1022, 1037, 1051, 1065, 1080, 1094, 1108, 1122, 1136, 1151, 1165, 1179, 1192, 1206, 1220, 1234, 1248, 1261, 1275, 1288, 1302, 1315, 1329, 1342, 1368, 1393, 1419, 1444, 1469, 1494, 1519, 1544, 1569, 1594, 1618, 1643, 1668, 1692, 1717, 1741, 1765, 1789, 1814, 1838, 1862, 1885, 1909, 1933, 1957, 1992, 2027, 2061, 2096, 2130, 2165, 2199, 2233, 2267, 2300, 2334, 2367, 2400, 2434, 2467, 2499, 2532, 2575, 2618, 2661, 2704, 2746, 2788, 2830, 2872, 2913, 2954, 2995, 3036, 3076, 3127, 3177, 3226, 3275, 3324, 3373, 3421, 3469, 3517, 3565, 3621, 3677, 3733, 3788, 3843, 3897, 3951, 4005, 4058, 4119, 4181, 4241, 4301, 4361, 4420, 4479, 4546, 4612, 4677, 4742, 4807, 4871, 4942, 5013, 5083, 5153, 5222, 5291, 5367, 5442, 5517, 5591, 5665, 5745, 5825, 5905, 5984, 6063, 6149, 6234, 6319, 6404, 6495, 6587, 6678, 6769, 6867, 6966, 7064, 7163, 7269, 7376, 7483, 7599, 7715, 7832, 7958, 8085, 8214, 8352, 8492, 8635, 8788, 8945, 9104, 9275, 9450, 9639, 9832, 10031, 10245, 10465, 10702, 10946, 11210, 11482, 11776, 12081, 12409, 12750, 13118, 13501, 13913, 14343, 14807, 15290, 15812, 16356, 16943, 17575, 18237, 18949, 19718, 20521, 21387 }
  898. };
  899. return dc_qlookup[(bit_depth - 8) >> 1][clip_3<u8>(0, 255, b)];
  900. }
  901. inline u16 ac_q(u8 bit_depth, u8 b)
  902. {
  903. // The function ac_q( b ) is specified as ac_qlookup[ (BitDepth-8) >> 1 ][ Clip3( 0, 255, b ) ] where ac_lookup is
  904. // defined as follows:
  905. constexpr u16 ac_qlookup[3][256] = {
  906. { 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 311, 317, 323, 329, 335, 341, 347, 353, 359, 366, 373, 380, 387, 394, 401, 408, 416, 424, 432, 440, 448, 456, 465, 474, 483, 492, 501, 510, 520, 530, 540, 550, 560, 571, 582, 593, 604, 615, 627, 639, 651, 663, 676, 689, 702, 715, 729, 743, 757, 771, 786, 801, 816, 832, 848, 864, 881, 898, 915, 933, 951, 969, 988, 1007, 1026, 1046, 1066, 1087, 1108, 1129, 1151, 1173, 1196, 1219, 1243, 1267, 1292, 1317, 1343, 1369, 1396, 1423, 1451, 1479, 1508, 1537, 1567, 1597, 1628, 1660, 1692, 1725, 1759, 1793, 1828 },
  907. { 4, 9, 11, 13, 16, 18, 21, 24, 27, 30, 33, 37, 40, 44, 48, 51, 55, 59, 63, 67, 71, 75, 79, 83, 88, 92, 96, 100, 105, 109, 114, 118, 122, 127, 131, 136, 140, 145, 149, 154, 158, 163, 168, 172, 177, 181, 186, 190, 195, 199, 204, 208, 213, 217, 222, 226, 231, 235, 240, 244, 249, 253, 258, 262, 267, 271, 275, 280, 284, 289, 293, 297, 302, 306, 311, 315, 319, 324, 328, 332, 337, 341, 345, 349, 354, 358, 362, 367, 371, 375, 379, 384, 388, 392, 396, 401, 409, 417, 425, 433, 441, 449, 458, 466, 474, 482, 490, 498, 506, 514, 523, 531, 539, 547, 555, 563, 571, 579, 588, 596, 604, 616, 628, 640, 652, 664, 676, 688, 700, 713, 725, 737, 749, 761, 773, 785, 797, 809, 825, 841, 857, 873, 889, 905, 922, 938, 954, 970, 986, 1002, 1018, 1038, 1058, 1078, 1098, 1118, 1138, 1158, 1178, 1198, 1218, 1242, 1266, 1290, 1314, 1338, 1362, 1386, 1411, 1435, 1463, 1491, 1519, 1547, 1575, 1603, 1631, 1663, 1695, 1727, 1759, 1791, 1823, 1859, 1895, 1931, 1967, 2003, 2039, 2079, 2119, 2159, 2199, 2239, 2283, 2327, 2371, 2415, 2459, 2507, 2555, 2603, 2651, 2703, 2755, 2807, 2859, 2915, 2971, 3027, 3083, 3143, 3203, 3263, 3327, 3391, 3455, 3523, 3591, 3659, 3731, 3803, 3876, 3952, 4028, 4104, 4184, 4264, 4348, 4432, 4516, 4604, 4692, 4784, 4876, 4972, 5068, 5168, 5268, 5372, 5476, 5584, 5692, 5804, 5916, 6032, 6148, 6268, 6388, 6512, 6640, 6768, 6900, 7036, 7172, 7312 },
  908. { 4, 13, 19, 27, 35, 44, 54, 64, 75, 87, 99, 112, 126, 139, 154, 168, 183, 199, 214, 230, 247, 263, 280, 297, 314, 331, 349, 366, 384, 402, 420, 438, 456, 475, 493, 511, 530, 548, 567, 586, 604, 623, 642, 660, 679, 698, 716, 735, 753, 772, 791, 809, 828, 846, 865, 884, 902, 920, 939, 957, 976, 994, 1012, 1030, 1049, 1067, 1085, 1103, 1121, 1139, 1157, 1175, 1193, 1211, 1229, 1246, 1264, 1282, 1299, 1317, 1335, 1352, 1370, 1387, 1405, 1422, 1440, 1457, 1474, 1491, 1509, 1526, 1543, 1560, 1577, 1595, 1627, 1660, 1693, 1725, 1758, 1791, 1824, 1856, 1889, 1922, 1954, 1987, 2020, 2052, 2085, 2118, 2150, 2183, 2216, 2248, 2281, 2313, 2346, 2378, 2411, 2459, 2508, 2556, 2605, 2653, 2701, 2750, 2798, 2847, 2895, 2943, 2992, 3040, 3088, 3137, 3185, 3234, 3298, 3362, 3426, 3491, 3555, 3619, 3684, 3748, 3812, 3876, 3941, 4005, 4069, 4149, 4230, 4310, 4390, 4470, 4550, 4631, 4711, 4791, 4871, 4967, 5064, 5160, 5256, 5352, 5448, 5544, 5641, 5737, 5849, 5961, 6073, 6185, 6297, 6410, 6522, 6650, 6778, 6906, 7034, 7162, 7290, 7435, 7579, 7723, 7867, 8011, 8155, 8315, 8475, 8635, 8795, 8956, 9132, 9308, 9484, 9660, 9836, 10028, 10220, 10412, 10604, 10812, 11020, 11228, 11437, 11661, 11885, 12109, 12333, 12573, 12813, 13053, 13309, 13565, 13821, 14093, 14365, 14637, 14925, 15213, 15502, 15806, 16110, 16414, 16734, 17054, 17390, 17726, 18062, 18414, 18766, 19134, 19502, 19886, 20270, 20670, 21070, 21486, 21902, 22334, 22766, 23214, 23662, 24126, 24590, 25070, 25551, 26047, 26559, 27071, 27599, 28143, 28687, 29247 }
  909. };
  910. return ac_qlookup[(bit_depth - 8) >> 1][clip_3<u8>(0, 255, b)];
  911. }
  912. u8 Decoder::get_base_quantizer_index(BlockContext const& block_context)
  913. {
  914. // The function get_qindex( ) returns the quantizer index for the current block and is specified by the following:
  915. // − If seg_feature_active( SEG_LVL_ALT_Q ) is equal to 1 the following ordered steps apply:
  916. if (Parser::seg_feature_active(block_context, SEG_LVL_ALT_Q)) {
  917. // 1. Set the variable data equal to FeatureData[ segment_id ][ SEG_LVL_ALT_Q ].
  918. auto data = block_context.frame_context.segmentation_features[block_context.segment_id][SEG_LVL_ALT_Q].value;
  919. // 2. If segmentation_abs_or_delta_update is equal to 0, set data equal to base_q_idx + data
  920. if (!block_context.frame_context.should_use_absolute_segment_base_quantizer) {
  921. data += block_context.frame_context.base_quantizer_index;
  922. }
  923. // 3. Return Clip3( 0, 255, data ).
  924. return clip_3<u8>(0, 255, data);
  925. }
  926. // − Otherwise, return base_q_idx.
  927. return block_context.frame_context.base_quantizer_index;
  928. }
  929. u16 Decoder::get_dc_quantizer(BlockContext const& block_context, u8 plane)
  930. {
  931. // FIXME: The result of this function can be cached. This does not change per frame.
  932. // The function get_dc_quant( plane ) returns the quantizer value for the dc coefficient for a particular plane and
  933. // is derived as follows:
  934. // − If plane is equal to 0, return dc_q( get_qindex( ) + delta_q_y_dc ).
  935. // − Otherwise, return dc_q( get_qindex( ) + delta_q_uv_dc ).
  936. // Instead of if { return }, select the value to add and return.
  937. i8 offset = plane == 0 ? block_context.frame_context.y_dc_quantizer_index_delta : block_context.frame_context.uv_dc_quantizer_index_delta;
  938. return dc_q(block_context.frame_context.color_config.bit_depth, static_cast<u8>(get_base_quantizer_index(block_context) + offset));
  939. }
  940. u16 Decoder::get_ac_quantizer(BlockContext const& block_context, u8 plane)
  941. {
  942. // FIXME: The result of this function can be cached. This does not change per frame.
  943. // The function get_ac_quant( plane ) returns the quantizer value for the ac coefficient for a particular plane and
  944. // is derived as follows:
  945. // − If plane is equal to 0, return ac_q( get_qindex( ) ).
  946. // − Otherwise, return ac_q( get_qindex( ) + delta_q_uv_ac ).
  947. // Instead of if { return }, select the value to add and return.
  948. i8 offset = plane == 0 ? 0 : block_context.frame_context.uv_ac_quantizer_index_delta;
  949. return ac_q(block_context.frame_context.color_config.bit_depth, static_cast<u8>(get_base_quantizer_index(block_context) + offset));
  950. }
  951. DecoderErrorOr<void> Decoder::reconstruct(u8 plane, BlockContext const& block_context, u32 transform_block_x, u32 transform_block_y, TransformSize transform_block_size, TransformSet transform_set)
  952. {
  953. // 8.6.2 Reconstruct process
  954. // The variable dqDenom is set equal to 2 if txSz is equal to Transform_32X32, otherwise dqDenom is set equal to 1.
  955. Intermediate dq_denominator = transform_block_size == Transform_32x32 ? 2 : 1;
  956. // The variable n (specifying the base 2 logarithm of the width of the transform block) is set equal to 2 + txSz.
  957. u8 log2_of_block_size = 2u + transform_block_size;
  958. // The variable n0 (specifying the width of the transform block) is set equal to 1 << n.
  959. auto block_size = 1u << log2_of_block_size;
  960. // 1. Dequant[ i ][ j ] is set equal to ( Tokens[ i * n0 + j ] * get_ac_quant( plane ) ) / dqDenom
  961. // for i = 0..(n0-1), for j = 0..(n0-1)
  962. Array<Intermediate, maximum_transform_size> dequantized;
  963. Intermediate ac_quant = get_ac_quantizer(block_context, plane);
  964. for (auto i = 0u; i < block_size; i++) {
  965. for (auto j = 0u; j < block_size; j++) {
  966. auto index = index_from_row_and_column(i, j, block_size);
  967. if (index == 0)
  968. continue;
  969. dequantized[index] = (m_parser->m_tokens[index] * ac_quant) / dq_denominator;
  970. }
  971. }
  972. // 2. Dequant[ 0 ][ 0 ] is set equal to ( Tokens[ 0 ] * get_dc_quant( plane ) ) / dqDenom
  973. dequantized[0] = (m_parser->m_tokens[0] * get_dc_quantizer(block_context, plane)) / dq_denominator;
  974. // It is a requirement of bitstream conformance that the values written into the Dequant array in steps 1 and 2
  975. // are representable by a signed integer with 8 + BitDepth bits.
  976. for (auto i = 0u; i < block_size * block_size; i++)
  977. VERIFY(check_intermediate_bounds(block_context.frame_context.color_config.bit_depth, dequantized[i]));
  978. // 3. Invoke the 2D inverse transform block process defined in section 8.7.2 with the variable n as input.
  979. // The inverse transform outputs are stored back to the Dequant buffer.
  980. TRY(inverse_transform_2d(block_context, dequantized, log2_of_block_size, transform_set));
  981. // 4. CurrFrame[ plane ][ y + i ][ x + j ] is set equal to Clip1( CurrFrame[ plane ][ y + i ][ x + j ] + Dequant[ i ][ j ] )
  982. // for i = 0..(n0-1) and j = 0..(n0-1).
  983. auto& current_buffer = get_output_buffer(plane);
  984. auto subsampling_x = (plane > 0 ? block_context.frame_context.color_config.subsampling_x : 0);
  985. auto subsampling_y = (plane > 0 ? block_context.frame_context.color_config.subsampling_y : 0);
  986. auto frame_width = (block_context.frame_context.columns() * 8) >> subsampling_x;
  987. auto frame_height = (block_context.frame_context.rows() * 8) >> subsampling_y;
  988. auto width_in_frame_buffer = min(block_size, frame_width - transform_block_x);
  989. auto height_in_frame_buffer = min(block_size, frame_height - transform_block_y);
  990. for (auto i = 0u; i < height_in_frame_buffer; i++) {
  991. for (auto j = 0u; j < width_in_frame_buffer; j++) {
  992. auto index = index_from_row_and_column(transform_block_y + i, transform_block_x + j, frame_width);
  993. auto dequantized_value = dequantized[index_from_row_and_column(i, j, block_size)];
  994. current_buffer[index] = clip_1(block_context.frame_context.color_config.bit_depth, current_buffer[index] + dequantized_value);
  995. }
  996. }
  997. return {};
  998. }
  999. inline DecoderErrorOr<void> Decoder::inverse_walsh_hadamard_transform(Span<Intermediate> data, u8 log2_of_block_size, u8 shift)
  1000. {
  1001. (void)data;
  1002. (void)shift;
  1003. // The input to this process is a variable shift that specifies the amount of pre-scaling.
  1004. // This process does an in-place transform of the array T (of length 4) by the following ordered steps:
  1005. if (1 << log2_of_block_size != 4)
  1006. return DecoderError::corrupted("Block size was not 4"sv);
  1007. return DecoderError::not_implemented();
  1008. }
  1009. inline i32 Decoder::cos64(u8 angle)
  1010. {
  1011. const i32 cos64_lookup[33] = { 16384, 16364, 16305, 16207, 16069, 15893, 15679, 15426, 15137, 14811, 14449, 14053, 13623, 13160, 12665, 12140, 11585, 11003, 10394, 9760, 9102, 8423, 7723, 7005, 6270, 5520, 4756, 3981, 3196, 2404, 1606, 804, 0 };
  1012. // 1. Set a variable angle2 equal to angle & 127.
  1013. angle &= 127;
  1014. // 2. If angle2 is greater than or equal to 0 and less than or equal to 32, return cos64_lookup[ angle2 ].
  1015. if (angle <= 32)
  1016. return cos64_lookup[angle];
  1017. // 3. If angle2 is greater than 32 and less than or equal to 64, return cos64_lookup[ 64 - angle2 ] * -1.
  1018. if (angle <= 64)
  1019. return -cos64_lookup[64 - angle];
  1020. // 4. If angle2 is greater than 64 and less than or equal to 96, return cos64_lookup[ angle2 - 64 ] * -1.
  1021. if (angle <= 96)
  1022. return -cos64_lookup[angle - 64];
  1023. // 5. Otherwise (if angle2 is greater than 96 and less than 128), return cos64_lookup[ 128 - angle2 ].
  1024. return cos64_lookup[128 - angle];
  1025. }
  1026. inline i32 Decoder::sin64(u8 angle)
  1027. {
  1028. if (angle < 32)
  1029. angle += 128;
  1030. return cos64(angle - 32u);
  1031. }
  1032. template<typename T>
  1033. inline i32 Decoder::round_2(T value, u8 bits)
  1034. {
  1035. value = (value + static_cast<T>(1u << (bits - 1u))) >> bits;
  1036. return static_cast<i32>(value);
  1037. }
  1038. inline bool check_bounds(i64 value, u8 bits)
  1039. {
  1040. i64 const maximum = (1ll << (bits - 1ll)) - 1ll;
  1041. return value >= ~maximum && value <= maximum;
  1042. }
  1043. inline bool Decoder::check_intermediate_bounds(u8 bit_depth, Intermediate value)
  1044. {
  1045. i32 maximum = (1 << (8 + bit_depth - 1)) - 1;
  1046. return value >= ~maximum && value <= maximum;
  1047. }
  1048. // (8.7.1.1) The function B( a, b, angle, 0 ) performs a butterfly rotation.
  1049. inline void Decoder::butterfly_rotation_in_place(u8 bit_depth, Span<Intermediate> data, size_t index_a, size_t index_b, u8 angle, bool flip)
  1050. {
  1051. auto cos = cos64(angle);
  1052. auto sin = sin64(angle);
  1053. // 1. The variable x is set equal to T[ a ] * cos64( angle ) - T[ b ] * sin64( angle ).
  1054. i64 rotated_a = data[index_a] * cos - data[index_b] * sin;
  1055. // 2. The variable y is set equal to T[ a ] * sin64( angle ) + T[ b ] * cos64( angle ).
  1056. i64 rotated_b = data[index_a] * sin + data[index_b] * cos;
  1057. // 3. T[ a ] is set equal to Round2( x, 14 ).
  1058. data[index_a] = round_2(rotated_a, 14);
  1059. // 4. T[ b ] is set equal to Round2( y, 14 ).
  1060. data[index_b] = round_2(rotated_b, 14);
  1061. // The function B( a ,b, angle, 1 ) performs a butterfly rotation and flip specified by the following ordered steps:
  1062. // 1. The function B( a, b, angle, 0 ) is invoked.
  1063. // 2. The contents of T[ a ] and T[ b ] are exchanged.
  1064. if (flip)
  1065. swap(data[index_a], data[index_b]);
  1066. // It is a requirement of bitstream conformance that the values saved into the array T by this function are
  1067. // representable by a signed integer using 8 + BitDepth bits of precision.
  1068. VERIFY(check_intermediate_bounds(bit_depth, data[index_a]));
  1069. VERIFY(check_intermediate_bounds(bit_depth, data[index_b]));
  1070. }
  1071. // (8.7.1.1) The function H( a, b, 0 ) performs a Hadamard rotation.
  1072. inline void Decoder::hadamard_rotation_in_place(u8 bit_depth, Span<Intermediate> data, size_t index_a, size_t index_b, bool flip)
  1073. {
  1074. // The function H( a, b, 1 ) performs a Hadamard rotation with flipped indices and is specified as follows:
  1075. // 1. The function H( b, a, 0 ) is invoked.
  1076. if (flip)
  1077. swap(index_a, index_b);
  1078. // The function H( a, b, 0 ) performs a Hadamard rotation specified by the following ordered steps:
  1079. // 1. The variable x is set equal to T[ a ].
  1080. auto a_value = data[index_a];
  1081. // 2. The variable y is set equal to T[ b ].
  1082. auto b_value = data[index_b];
  1083. // 3. T[ a ] is set equal to x + y.
  1084. data[index_a] = a_value + b_value;
  1085. // 4. T[ b ] is set equal to x - y.
  1086. data[index_b] = a_value - b_value;
  1087. // It is a requirement of bitstream conformance that the values saved into the array T by this function are
  1088. // representable by a signed integer using 8 + BitDepth bits of precision.
  1089. VERIFY(check_intermediate_bounds(bit_depth, data[index_a]));
  1090. VERIFY(check_intermediate_bounds(bit_depth, data[index_b]));
  1091. }
  1092. inline DecoderErrorOr<void> Decoder::inverse_discrete_cosine_transform_array_permutation(Span<Intermediate> data, u8 log2_of_block_size)
  1093. {
  1094. u8 block_size = 1 << log2_of_block_size;
  1095. // This process performs an in-place permutation of the array T of length 2^n for 2 ≤ n ≤ 5 which is required before
  1096. // execution of the inverse DCT process.
  1097. if (log2_of_block_size < 2 || log2_of_block_size > 5)
  1098. return DecoderError::corrupted("Block size was out of range"sv);
  1099. // 1.1. A temporary array named copyT is set equal to T.
  1100. Array<Intermediate, maximum_transform_size> data_copy;
  1101. AK::TypedTransfer<Intermediate>::copy(data_copy.data(), data.data(), block_size);
  1102. // 1.2. T[ i ] is set equal to copyT[ brev( n, i ) ] for i = 0..((1<<n) - 1).
  1103. for (auto i = 0u; i < block_size; i++)
  1104. data[i] = data_copy[brev(log2_of_block_size, i)];
  1105. return {};
  1106. }
  1107. inline DecoderErrorOr<void> Decoder::inverse_discrete_cosine_transform(u8 bit_depth, Span<Intermediate> data, u8 log2_of_block_size)
  1108. {
  1109. // 2.1. The variable n0 is set equal to 1<<n.
  1110. u8 block_size = 1 << log2_of_block_size;
  1111. // 8.7.1.3 Inverse DCT process
  1112. // 2.2. The variable n1 is set equal to 1<<(n-1).
  1113. u8 half_block_size = block_size >> 1;
  1114. // 2.3 The variable n2 is set equal to 1<<(n-2).
  1115. u8 quarter_block_size = half_block_size >> 1;
  1116. // 2.4 The variable n3 is set equal to 1<<(n-3).
  1117. u8 eighth_block_size = quarter_block_size >> 1;
  1118. // 2.5 If n is equal to 2, invoke B( 0, 1, 16, 1 ), otherwise recursively invoke the inverse DCT defined in this
  1119. // section with the variable n set equal to n - 1.
  1120. if (log2_of_block_size == 2)
  1121. butterfly_rotation_in_place(bit_depth, data, 0, 1, 16, true);
  1122. else
  1123. TRY(inverse_discrete_cosine_transform(bit_depth, data, log2_of_block_size - 1));
  1124. // 2.6 Invoke B( n1+i, n0-1-i, 32-brev( 5, n1+i), 0 ) for i = 0..(n2-1).
  1125. for (auto i = 0u; i < quarter_block_size; i++) {
  1126. auto index = half_block_size + i;
  1127. butterfly_rotation_in_place(bit_depth, data, index, block_size - 1 - i, 32 - brev(5, index), false);
  1128. }
  1129. // 2.7 If n is greater than or equal to 3:
  1130. if (log2_of_block_size >= 3) {
  1131. // a. Invoke H( n1+4*i+2*j, n1+1+4*i+2*j, j ) for i = 0..(n3-1), j = 0..1.
  1132. for (auto i = 0u; i < eighth_block_size; i++) {
  1133. for (auto j = 0u; j < 2; j++) {
  1134. auto index = half_block_size + (4 * i) + (2 * j);
  1135. hadamard_rotation_in_place(bit_depth, data, index, index + 1, j);
  1136. }
  1137. }
  1138. }
  1139. // 4. If n is equal to 5:
  1140. if (log2_of_block_size == 5) {
  1141. // a. Invoke B( n0-n+3-n2*j-4*i, n1+n-4+n2*j+4*i, 28-16*i+56*j, 1 ) for i = 0..1, j = 0..1.
  1142. for (auto i = 0u; i < 2; i++) {
  1143. for (auto j = 0u; j < 2; j++) {
  1144. auto index_a = block_size - log2_of_block_size + 3 - (quarter_block_size * j) - (4 * i);
  1145. auto index_b = half_block_size + log2_of_block_size - 4 + (quarter_block_size * j) + (4 * i);
  1146. auto angle = 28 - (16 * i) + (56 * j);
  1147. butterfly_rotation_in_place(bit_depth, data, index_a, index_b, angle, true);
  1148. }
  1149. }
  1150. // b. Invoke H( n1+n3*j+i, n1+n2-5+n3*j-i, j&1 ) for i = 0..1, j = 0..3.
  1151. for (auto i = 0u; i < 2; i++) {
  1152. for (auto j = 0u; j < 4; j++) {
  1153. auto index_a = half_block_size + (eighth_block_size * j) + i;
  1154. auto index_b = half_block_size + quarter_block_size - 5 + (eighth_block_size * j) - i;
  1155. hadamard_rotation_in_place(bit_depth, data, index_a, index_b, (j & 1) != 0);
  1156. }
  1157. }
  1158. }
  1159. // 5. If n is greater than or equal to 4:
  1160. if (log2_of_block_size >= 4) {
  1161. // a. Invoke B( n0-n+2-i-n2*j, n1+n-3+i+n2*j, 24+48*j, 1 ) for i = 0..(n==5), j = 0..1.
  1162. for (auto i = 0u; i <= (log2_of_block_size == 5); i++) {
  1163. for (auto j = 0u; j < 2; j++) {
  1164. auto index_a = block_size - log2_of_block_size + 2 - i - (quarter_block_size * j);
  1165. auto index_b = half_block_size + log2_of_block_size - 3 + i + (quarter_block_size * j);
  1166. butterfly_rotation_in_place(bit_depth, data, index_a, index_b, 24 + (48 * j), true);
  1167. }
  1168. }
  1169. // b. Invoke H( n1+n2*j+i, n1+n2-1+n2*j-i, j&1 ) for i = 0..(2n-7), j = 0..1.
  1170. for (auto i = 0u; i < (2 * log2_of_block_size) - 6u; i++) {
  1171. for (auto j = 0u; j < 2; j++) {
  1172. auto index_a = half_block_size + (quarter_block_size * j) + i;
  1173. auto index_b = half_block_size + quarter_block_size - 1 + (quarter_block_size * j) - i;
  1174. hadamard_rotation_in_place(bit_depth, data, index_a, index_b, (j & 1) != 0);
  1175. }
  1176. }
  1177. }
  1178. // 6. If n is greater than or equal to 3:
  1179. if (log2_of_block_size >= 3) {
  1180. // a. Invoke B( n0-n3-1-i, n1+n3+i, 16, 1 ) for i = 0..(n3-1).
  1181. for (auto i = 0u; i < eighth_block_size; i++) {
  1182. auto index_a = block_size - eighth_block_size - 1 - i;
  1183. auto index_b = half_block_size + eighth_block_size + i;
  1184. butterfly_rotation_in_place(bit_depth, data, index_a, index_b, 16, true);
  1185. }
  1186. }
  1187. // 7. Invoke H( i, n0-1-i, 0 ) for i = 0..(n1-1).
  1188. for (auto i = 0u; i < half_block_size; i++)
  1189. hadamard_rotation_in_place(bit_depth, data, i, block_size - 1 - i, false);
  1190. return {};
  1191. }
  1192. inline void Decoder::inverse_asymmetric_discrete_sine_transform_input_array_permutation(Span<Intermediate> data, u8 log2_of_block_size)
  1193. {
  1194. // The variable n0 is set equal to 1<<n.
  1195. auto block_size = 1u << log2_of_block_size;
  1196. // The variable n1 is set equal to 1<<(n-1).
  1197. // We can iterate by 2 at a time instead of taking half block size.
  1198. // A temporary array named copyT is set equal to T.
  1199. Array<Intermediate, maximum_transform_size> data_copy;
  1200. AK::TypedTransfer<Intermediate>::copy(data_copy.data(), data.data(), block_size);
  1201. // The values at even locations T[ 2 * i ] are set equal to copyT[ n0 - 1 - 2 * i ] for i = 0..(n1-1).
  1202. // The values at odd locations T[ 2 * i + 1 ] are set equal to copyT[ 2 * i ] for i = 0..(n1-1).
  1203. for (auto i = 0u; i < block_size; i += 2) {
  1204. data[i] = data_copy[block_size - 1 - i];
  1205. data[i + 1] = data_copy[i];
  1206. }
  1207. }
  1208. inline void Decoder::inverse_asymmetric_discrete_sine_transform_output_array_permutation(Span<Intermediate> data, u8 log2_of_block_size)
  1209. {
  1210. auto block_size = 1u << log2_of_block_size;
  1211. // A temporary array named copyT is set equal to T.
  1212. Array<Intermediate, maximum_transform_size> data_copy;
  1213. AK::TypedTransfer<Intermediate>::copy(data_copy.data(), data.data(), block_size);
  1214. // The permutation depends on n as follows:
  1215. if (log2_of_block_size == 4) {
  1216. // − If n is equal to 4,
  1217. // T[ 8*a + 4*b + 2*c + d ] is set equal to copyT[ 8*(d^c) + 4*(c^b) + 2*(b^a) + a ] for a = 0..1
  1218. // and b = 0..1 and c = 0..1 and d = 0..1.
  1219. for (auto a = 0u; a < 2; a++)
  1220. for (auto b = 0u; b < 2; b++)
  1221. for (auto c = 0u; c < 2; c++)
  1222. for (auto d = 0u; d < 2; d++)
  1223. data[(8 * a) + (4 * b) + (2 * c) + d] = data_copy[8 * (d ^ c) + 4 * (c ^ b) + 2 * (b ^ a) + a];
  1224. } else {
  1225. VERIFY(log2_of_block_size == 3);
  1226. // − Otherwise (n is equal to 3),
  1227. // T[ 4*a + 2*b + c ] is set equal to copyT[ 4*(c^b) + 2*(b^a) + a ] for a = 0..1 and
  1228. // b = 0..1 and c = 0..1.
  1229. for (auto a = 0u; a < 2; a++)
  1230. for (auto b = 0u; b < 2; b++)
  1231. for (auto c = 0u; c < 2; c++)
  1232. data[4 * a + 2 * b + c] = data_copy[4 * (c ^ b) + 2 * (b ^ a) + a];
  1233. }
  1234. }
  1235. inline void Decoder::inverse_asymmetric_discrete_sine_transform_4(u8 bit_depth, Span<Intermediate> data)
  1236. {
  1237. VERIFY(data.size() == 4);
  1238. const i64 sinpi_1_9 = 5283;
  1239. const i64 sinpi_2_9 = 9929;
  1240. const i64 sinpi_3_9 = 13377;
  1241. const i64 sinpi_4_9 = 15212;
  1242. // Steps are derived from pseudocode in (8.7.1.6):
  1243. // s0 = SINPI_1_9 * T[ 0 ]
  1244. i64 s0 = sinpi_1_9 * data[0];
  1245. // s1 = SINPI_2_9 * T[ 0 ]
  1246. i64 s1 = sinpi_2_9 * data[0];
  1247. // s2 = SINPI_3_9 * T[ 1 ]
  1248. i64 s2 = sinpi_3_9 * data[1];
  1249. // s3 = SINPI_4_9 * T[ 2 ]
  1250. i64 s3 = sinpi_4_9 * data[2];
  1251. // s4 = SINPI_1_9 * T[ 2 ]
  1252. i64 s4 = sinpi_1_9 * data[2];
  1253. // s5 = SINPI_2_9 * T[ 3 ]
  1254. i64 s5 = sinpi_2_9 * data[3];
  1255. // s6 = SINPI_4_9 * T[ 3 ]
  1256. i64 s6 = sinpi_4_9 * data[3];
  1257. // v = T[ 0 ] - T[ 2 ] + T[ 3 ]
  1258. // s7 = SINPI_3_9 * v
  1259. i64 s7 = sinpi_3_9 * (data[0] - data[2] + data[3]);
  1260. // x0 = s0 + s3 + s5
  1261. auto x0 = s0 + s3 + s5;
  1262. // x1 = s1 - s4 - s6
  1263. auto x1 = s1 - s4 - s6;
  1264. // x2 = s7
  1265. auto x2 = s7;
  1266. // x3 = s2
  1267. auto x3 = s2;
  1268. // s0 = x0 + x3
  1269. s0 = x0 + x3;
  1270. // s1 = x1 + x3
  1271. s1 = x1 + x3;
  1272. // s2 = x2
  1273. s2 = x2;
  1274. // s3 = x0 + x1 - x3
  1275. s3 = x0 + x1 - x3;
  1276. // T[ 0 ] = Round2( s0, 14 )
  1277. data[0] = round_2(s0, 14);
  1278. // T[ 1 ] = Round2( s1, 14 )
  1279. data[1] = round_2(s1, 14);
  1280. // T[ 2 ] = Round2( s2, 14 )
  1281. data[2] = round_2(s2, 14);
  1282. // T[ 3 ] = Round2( s3, 14 )
  1283. data[3] = round_2(s3, 14);
  1284. // (8.7.1.1) The inverse asymmetric discrete sine transforms also make use of an intermediate array named S.
  1285. // The values in this array require higher precision to avoid overflow. Using signed integers with 24 +
  1286. // BitDepth bits of precision is enough to avoid overflow.
  1287. const u8 bits = 24 + bit_depth;
  1288. VERIFY(check_bounds(data[0], bits));
  1289. VERIFY(check_bounds(data[1], bits));
  1290. VERIFY(check_bounds(data[2], bits));
  1291. VERIFY(check_bounds(data[3], bits));
  1292. }
  1293. // The function SB( a, b, angle, 0 ) performs a butterfly rotation.
  1294. // Spec defines the source as array T, and the destination array as S.
  1295. template<typename S, typename D>
  1296. inline void Decoder::butterfly_rotation(Span<S> source, Span<D> destination, size_t index_a, size_t index_b, u8 angle, bool flip)
  1297. {
  1298. // The function SB( a, b, angle, 0 ) performs a butterfly rotation according to the following ordered steps:
  1299. auto cos = cos64(angle);
  1300. auto sin = sin64(angle);
  1301. // Expand to the destination buffer's precision.
  1302. D a = source[index_a];
  1303. D b = source[index_b];
  1304. // 1. S[ a ] is set equal to T[ a ] * cos64( angle ) - T[ b ] * sin64( angle ).
  1305. destination[index_a] = a * cos - b * sin;
  1306. // 2. S[ b ] is set equal to T[ a ] * sin64( angle ) + T[ b ] * cos64( angle ).
  1307. destination[index_b] = a * sin + b * cos;
  1308. // The function SB( a, b, angle, 1 ) performs a butterfly rotation and flip according to the following ordered steps:
  1309. // 1. The function SB( a, b, angle, 0 ) is invoked.
  1310. // 2. The contents of S[ a ] and S[ b ] are exchanged.
  1311. if (flip)
  1312. swap(destination[index_a], destination[index_b]);
  1313. }
  1314. // The function SH( a, b ) performs a Hadamard rotation and rounding.
  1315. // Spec defines the source array as S, and the destination array as T.
  1316. template<typename S, typename D>
  1317. inline void Decoder::hadamard_rotation(Span<S> source, Span<D> destination, size_t index_a, size_t index_b)
  1318. {
  1319. // Keep the source buffer's precision until rounding.
  1320. S a = source[index_a];
  1321. S b = source[index_b];
  1322. // 1. T[ a ] is set equal to Round2( S[ a ] + S[ b ], 14 ).
  1323. destination[index_a] = round_2(a + b, 14);
  1324. // 2. T[ b ] is set equal to Round2( S[ a ] - S[ b ], 14 ).
  1325. destination[index_b] = round_2(a - b, 14);
  1326. }
  1327. inline DecoderErrorOr<void> Decoder::inverse_asymmetric_discrete_sine_transform_8(u8 bit_depth, Span<Intermediate> data)
  1328. {
  1329. VERIFY(data.size() == 8);
  1330. // This process does an in-place transform of the array T using:
  1331. // A higher precision array S for intermediate results.
  1332. Array<i64, 8> high_precision_temp;
  1333. // The following ordered steps apply:
  1334. // 1. Invoke the ADST input array permutation process specified in section 8.7.1.4 with the input variable n set
  1335. // equal to 3.
  1336. inverse_asymmetric_discrete_sine_transform_input_array_permutation(data, 3);
  1337. // 2. Invoke SB( 2*i, 1+2*i, 30-8*i, 1 ) for i = 0..3.
  1338. for (auto i = 0u; i < 4; i++)
  1339. butterfly_rotation(data, high_precision_temp.span(), 2 * i, 1 + (2 * i), 30 - (8 * i), true);
  1340. // (8.7.1.1) NOTE - The values in array S require higher precision to avoid overflow. Using signed integers with
  1341. // 24 + BitDepth bits of precision is enough to avoid overflow.
  1342. const u8 bits = 24 + bit_depth;
  1343. for (auto i = 0u; i < 8; i++)
  1344. VERIFY(check_bounds(high_precision_temp[i], bits));
  1345. // 3. Invoke SH( i, 4+i ) for i = 0..3.
  1346. for (auto i = 0u; i < 4; i++)
  1347. hadamard_rotation(high_precision_temp.span(), data, i, 4 + i);
  1348. // 4. Invoke SB( 4+3*i, 5+i, 24-16*i, 1 ) for i = 0..1.
  1349. for (auto i = 0u; i < 2; i++)
  1350. butterfly_rotation(data, high_precision_temp.span(), 4 + (3 * i), 5 + i, 24 - (16 * i), true);
  1351. // Check again that we haven't exceeded the integer bounds.
  1352. for (auto i = 0u; i < 8; i++)
  1353. VERIFY(check_bounds(high_precision_temp[i], bits));
  1354. // 5. Invoke SH( 4+i, 6+i ) for i = 0..1.
  1355. for (auto i = 0u; i < 2; i++)
  1356. hadamard_rotation(high_precision_temp.span(), data, 4 + i, 6 + i);
  1357. // 6. Invoke H( i, 2+i, 0 ) for i = 0..1.
  1358. for (auto i = 0u; i < 2; i++)
  1359. hadamard_rotation_in_place(bit_depth, data, i, 2 + i, false);
  1360. // 7. Invoke B( 2+4*i, 3+4*i, 16, 1 ) for i = 0..1.
  1361. for (auto i = 0u; i < 2; i++)
  1362. butterfly_rotation_in_place(bit_depth, data, 2 + (4 * i), 3 + (4 * i), 16, true);
  1363. // 8. Invoke the ADST output array permutation process specified in section 8.7.1.5 with the input variable n
  1364. // set equal to 3.
  1365. inverse_asymmetric_discrete_sine_transform_output_array_permutation(data, 3);
  1366. // 9. Set T[ 1+2*i ] equal to -T[ 1+2*i ] for i = 0..3.
  1367. for (auto i = 0u; i < 4; i++) {
  1368. auto index = 1 + (2 * i);
  1369. data[index] = -data[index];
  1370. }
  1371. return {};
  1372. }
  1373. inline DecoderErrorOr<void> Decoder::inverse_asymmetric_discrete_sine_transform_16(u8 bit_depth, Span<Intermediate> data)
  1374. {
  1375. VERIFY(data.size() == 16);
  1376. // This process does an in-place transform of the array T using:
  1377. // A higher precision array S for intermediate results.
  1378. Array<i64, 16> high_precision_temp;
  1379. // The following ordered steps apply:
  1380. // 1. Invoke the ADST input array permutation process specified in section 8.7.1.4 with the input variable n set
  1381. // equal to 4.
  1382. inverse_asymmetric_discrete_sine_transform_input_array_permutation(data, 4);
  1383. // 2. Invoke SB( 2*i, 1+2*i, 31-4*i, 1 ) for i = 0..7.
  1384. for (auto i = 0u; i < 8; i++)
  1385. butterfly_rotation(data, high_precision_temp.span(), 2 * i, 1 + (2 * i), 31 - (4 * i), true);
  1386. // (8.7.1.1) The inverse asymmetric discrete sine transforms also make use of an intermediate array named S.
  1387. // The values in this array require higher precision to avoid overflow. Using signed integers with 24 +
  1388. // BitDepth bits of precision is enough to avoid overflow.
  1389. const u8 bits = 24 + bit_depth;
  1390. for (auto i = 0u; i < 16; i++)
  1391. VERIFY(check_bounds(data[i], bits));
  1392. // 3. Invoke SH( i, 8+i ) for i = 0..7.
  1393. for (auto i = 0u; i < 8; i++)
  1394. hadamard_rotation(high_precision_temp.span(), data, i, 8 + i);
  1395. // 4. Invoke SB( 8+2*i, 9+2*i, 28-16*i, 1 ) for i = 0..3.
  1396. for (auto i = 0u; i < 4; i++)
  1397. butterfly_rotation(data, high_precision_temp.span(), 8 + (2 * i), 9 + (2 * i), 128 + 28 - (16 * i), true);
  1398. // Check again that we haven't exceeded the integer bounds.
  1399. for (auto i = 0u; i < 16; i++)
  1400. VERIFY(check_bounds(data[i], bits));
  1401. // 5. Invoke SH( 8+i, 12+i ) for i = 0..3.
  1402. for (auto i = 0u; i < 4; i++)
  1403. hadamard_rotation(high_precision_temp.span(), data, 8 + i, 12 + i);
  1404. // 6. Invoke H( i, 4+i, 0 ) for i = 0..3.
  1405. for (auto i = 0u; i < 4; i++)
  1406. hadamard_rotation_in_place(bit_depth, data, i, 4 + i, false);
  1407. // 7. Invoke SB( 4+8*i+3*j, 5+8*i+j, 24-16*j, 1 ) for i = 0..1, for j = 0..1.
  1408. for (auto i = 0u; i < 2; i++)
  1409. for (auto j = 0u; j < 2; j++)
  1410. butterfly_rotation(data, high_precision_temp.span(), 4 + (8 * i) + (3 * j), 5 + (8 * i) + j, 24 - (16 * j), true);
  1411. // Check again that we haven't exceeded the integer bounds.
  1412. for (auto i = 0u; i < 16; i++)
  1413. VERIFY(check_bounds(data[i], bits));
  1414. // 8. Invoke SH( 4+8*j+i, 6+8*j+i ) for i = 0..1, j = 0..1.
  1415. for (auto i = 0u; i < 2; i++)
  1416. for (auto j = 0u; j < 2; j++)
  1417. hadamard_rotation(high_precision_temp.span(), data, 4 + (8 * j) + i, 6 + (8 * j) + i);
  1418. // 9. Invoke H( 8*j+i, 2+8*j+i, 0 ) for i = 0..1, for j = 0..1.
  1419. for (auto i = 0u; i < 2; i++)
  1420. for (auto j = 0u; j < 2; j++)
  1421. hadamard_rotation_in_place(bit_depth, data, (8 * j) + i, 2 + (8 * j) + i, false);
  1422. // 10. Invoke B( 2+4*j+8*i, 3+4*j+8*i, 48+64*(i^j), 0 ) for i = 0..1, for j = 0..1.
  1423. for (auto i = 0u; i < 2; i++)
  1424. for (auto j = 0u; j < 2; j++)
  1425. butterfly_rotation_in_place(bit_depth, data, 2 + (4 * j) + (8 * i), 3 + (4 * j) + (8 * i), 48 + (64 * (i ^ j)), false);
  1426. // 11. Invoke the ADST output array permutation process specified in section 8.7.1.5 with the input variable n
  1427. // set equal to 4.
  1428. inverse_asymmetric_discrete_sine_transform_output_array_permutation(data, 4);
  1429. // 12. Set T[ 1+12*j+2*i ] equal to -T[ 1+12*j+2*i ] for i = 0..1, for j = 0..1.
  1430. for (auto i = 0u; i < 2; i++) {
  1431. for (auto j = 0u; j < 2; j++) {
  1432. auto index = 1 + (12 * j) + (2 * i);
  1433. data[index] = -data[index];
  1434. }
  1435. }
  1436. return {};
  1437. }
  1438. inline DecoderErrorOr<void> Decoder::inverse_asymmetric_discrete_sine_transform(u8 bit_depth, Span<Intermediate> data, u8 log2_of_block_size)
  1439. {
  1440. // 8.7.1.9 Inverse ADST Process
  1441. // This process performs an in-place inverse ADST process on the array T of size 2^n for 2 ≤ n ≤ 4.
  1442. if (log2_of_block_size < 2 || log2_of_block_size > 4)
  1443. return DecoderError::corrupted("Block size was out of range"sv);
  1444. // The process to invoke depends on n as follows:
  1445. if (log2_of_block_size == 2) {
  1446. // − If n is equal to 2, invoke the Inverse ADST4 process specified in section 8.7.1.6.
  1447. inverse_asymmetric_discrete_sine_transform_4(bit_depth, data);
  1448. return {};
  1449. }
  1450. if (log2_of_block_size == 3) {
  1451. // − Otherwise if n is equal to 3, invoke the Inverse ADST8 process specified in section 8.7.1.7.
  1452. return inverse_asymmetric_discrete_sine_transform_8(bit_depth, data);
  1453. }
  1454. // − Otherwise (n is equal to 4), invoke the Inverse ADST16 process specified in section 8.7.1.8.
  1455. return inverse_asymmetric_discrete_sine_transform_16(bit_depth, data);
  1456. }
  1457. DecoderErrorOr<void> Decoder::inverse_transform_2d(BlockContext const& block_context, Span<Intermediate> dequantized, u8 log2_of_block_size, TransformSet transform_set)
  1458. {
  1459. // This process performs a 2D inverse transform for an array of size 2^n by 2^n stored in the 2D array Dequant.
  1460. // The input to this process is a variable n (log2_of_block_size) that specifies the base 2 logarithm of the width of the transform.
  1461. // 1. Set the variable n0 (block_size) equal to 1 << n.
  1462. auto block_size = 1u << log2_of_block_size;
  1463. Array<Intermediate, maximum_transform_size> row_array;
  1464. Span<Intermediate> row = row_array.span().trim(block_size);
  1465. // 2. The row transforms with i = 0..(n0-1) are applied as follows:
  1466. for (auto i = 0u; i < block_size; i++) {
  1467. // 1. Set T[ j ] equal to Dequant[ i ][ j ] for j = 0..(n0-1).
  1468. for (auto j = 0u; j < block_size; j++)
  1469. row[j] = dequantized[index_from_row_and_column(i, j, block_size)];
  1470. // 2. If Lossless is equal to 1, invoke the Inverse WHT process as specified in section 8.7.1.10 with shift equal
  1471. // to 2.
  1472. if (block_context.frame_context.is_lossless()) {
  1473. TRY(inverse_walsh_hadamard_transform(row, log2_of_block_size, 2));
  1474. continue;
  1475. }
  1476. switch (transform_set.second_transform) {
  1477. case TransformType::DCT:
  1478. // Otherwise, if TxType is equal to DCT_DCT or TxType is equal to ADST_DCT, apply an inverse DCT as
  1479. // follows:
  1480. // 1. Invoke the inverse DCT permutation process as specified in section 8.7.1.2 with the input variable n.
  1481. TRY(inverse_discrete_cosine_transform_array_permutation(row, log2_of_block_size));
  1482. // 2. Invoke the inverse DCT process as specified in section 8.7.1.3 with the input variable n.
  1483. TRY(inverse_discrete_cosine_transform(block_context.frame_context.color_config.bit_depth, row, log2_of_block_size));
  1484. break;
  1485. case TransformType::ADST:
  1486. // 4. Otherwise (TxType is equal to DCT_ADST or TxType is equal to ADST_ADST), invoke the inverse ADST
  1487. // process as specified in section 8.7.1.9 with input variable n.
  1488. TRY(inverse_asymmetric_discrete_sine_transform(block_context.frame_context.color_config.bit_depth, row, log2_of_block_size));
  1489. break;
  1490. default:
  1491. return DecoderError::corrupted("Unknown tx_type"sv);
  1492. }
  1493. // 5. Set Dequant[ i ][ j ] equal to T[ j ] for j = 0..(n0-1).
  1494. for (auto j = 0u; j < block_size; j++)
  1495. dequantized[index_from_row_and_column(i, j, block_size)] = row[j];
  1496. }
  1497. Array<Intermediate, maximum_transform_size> column_array;
  1498. auto column = column_array.span().trim(block_size);
  1499. // 3. The column transforms with j = 0..(n0-1) are applied as follows:
  1500. for (auto j = 0u; j < block_size; j++) {
  1501. // 1. Set T[ i ] equal to Dequant[ i ][ j ] for i = 0..(n0-1).
  1502. for (auto i = 0u; i < block_size; i++)
  1503. column[i] = dequantized[index_from_row_and_column(i, j, block_size)];
  1504. // 2. If Lossless is equal to 1, invoke the Inverse WHT process as specified in section 8.7.1.10 with shift equal
  1505. // to 0.
  1506. if (block_context.frame_context.is_lossless()) {
  1507. TRY(inverse_walsh_hadamard_transform(column, log2_of_block_size, 2));
  1508. continue;
  1509. }
  1510. switch (transform_set.first_transform) {
  1511. case TransformType::DCT:
  1512. // Otherwise, if TxType is equal to DCT_DCT or TxType is equal to DCT_ADST, apply an inverse DCT as
  1513. // follows:
  1514. // 1. Invoke the inverse DCT permutation process as specified in section 8.7.1.2 with the input variable n.
  1515. TRY(inverse_discrete_cosine_transform_array_permutation(column, log2_of_block_size));
  1516. // 2. Invoke the inverse DCT process as specified in section 8.7.1.3 with the input variable n.
  1517. TRY(inverse_discrete_cosine_transform(block_context.frame_context.color_config.bit_depth, column, log2_of_block_size));
  1518. break;
  1519. case TransformType::ADST:
  1520. // 4. Otherwise (TxType is equal to ADST_DCT or TxType is equal to ADST_ADST), invoke the inverse ADST
  1521. // process as specified in section 8.7.1.9 with input variable n.
  1522. TRY(inverse_asymmetric_discrete_sine_transform(block_context.frame_context.color_config.bit_depth, column, log2_of_block_size));
  1523. break;
  1524. default:
  1525. VERIFY_NOT_REACHED();
  1526. }
  1527. // 5. If Lossless is equal to 1, set Dequant[ i ][ j ] equal to T[ i ] for i = 0..(n0-1).
  1528. for (auto i = 0u; i < block_size; i++)
  1529. dequantized[index_from_row_and_column(i, j, block_size)] = column[i];
  1530. // 6. Otherwise (Lossless is equal to 0), set Dequant[ i ][ j ] equal to Round2( T[ i ], Min( 6, n + 2 ) )
  1531. // for i = 0..(n0-1).
  1532. if (!block_context.frame_context.is_lossless()) {
  1533. for (auto i = 0u; i < block_size; i++) {
  1534. auto index = index_from_row_and_column(i, j, block_size);
  1535. dequantized[index] = round_2(dequantized[index], min(6, log2_of_block_size + 2));
  1536. }
  1537. }
  1538. }
  1539. return {};
  1540. }
  1541. DecoderErrorOr<void> Decoder::update_reference_frames(FrameContext const& frame_context)
  1542. {
  1543. // This process is invoked as the final step in decoding a frame.
  1544. // The inputs to this process are the samples in the current frame CurrFrame[ plane ][ x ][ y ].
  1545. // The output from this process is an updated set of reference frames and previous motion vectors.
  1546. // The following ordered steps apply:
  1547. // 1. For each value of i from 0 to NUM_REF_FRAMES - 1, the following applies if bit i of refresh_frame_flags
  1548. // is equal to 1 (i.e. if (refresh_frame_flags>>i)&1 is equal to 1):
  1549. for (u8 i = 0; i < NUM_REF_FRAMES; i++) {
  1550. if (frame_context.should_update_reference_frame_at_index(i)) {
  1551. // − RefFrameWidth[ i ] is set equal to FrameWidth.
  1552. // − RefFrameHeight[ i ] is set equal to FrameHeight.
  1553. m_parser->m_ref_frame_size[i] = frame_context.size();
  1554. // − RefSubsamplingX[ i ] is set equal to subsampling_x.
  1555. m_parser->m_ref_subsampling_x[i] = frame_context.color_config.subsampling_x;
  1556. // − RefSubsamplingY[ i ] is set equal to subsampling_y.
  1557. m_parser->m_ref_subsampling_y[i] = frame_context.color_config.subsampling_y;
  1558. // − RefBitDepth[ i ] is set equal to BitDepth.
  1559. m_parser->m_ref_bit_depth[i] = frame_context.color_config.bit_depth;
  1560. // − FrameStore[ i ][ 0 ][ y ][ x ] is set equal to CurrFrame[ 0 ][ y ][ x ] for x = 0..FrameWidth-1, for y =
  1561. // 0..FrameHeight-1.
  1562. // − FrameStore[ i ][ plane ][ y ][ x ] is set equal to CurrFrame[ plane ][ y ][ x ] for plane = 1..2, for x =
  1563. // 0..((FrameWidth+subsampling_x) >> subsampling_x)-1, for y = 0..((FrameHeight+subsampling_y) >>
  1564. // subsampling_y)-1.
  1565. // FIXME: Frame width is not equal to the buffer's stride. If we store the stride of the buffer with the reference
  1566. // frame, we can just copy the framebuffer data instead. Alternatively, we should crop the output framebuffer.
  1567. for (auto plane = 0u; plane < 3; plane++) {
  1568. auto width = frame_context.size().width();
  1569. auto height = frame_context.size().height();
  1570. auto stride = frame_context.columns() * 8;
  1571. if (plane > 0) {
  1572. width = (width + frame_context.color_config.subsampling_x) >> frame_context.color_config.subsampling_x;
  1573. height = (height + frame_context.color_config.subsampling_y) >> frame_context.color_config.subsampling_y;
  1574. stride >>= frame_context.color_config.subsampling_x;
  1575. }
  1576. auto original_buffer = get_output_buffer(plane);
  1577. auto& frame_store_buffer = m_parser->m_frame_store[i][plane];
  1578. frame_store_buffer.resize_and_keep_capacity(width * height);
  1579. for (auto x = 0u; x < width; x++) {
  1580. for (auto y = 0u; y < height; y++) {
  1581. auto sample = original_buffer[index_from_row_and_column(y, x, stride)];
  1582. frame_store_buffer[index_from_row_and_column(y, x, width)] = sample;
  1583. }
  1584. }
  1585. }
  1586. }
  1587. }
  1588. // 2. If show_existing_frame is equal to 0, the following applies:
  1589. if (!frame_context.shows_existing_frame()) {
  1590. DECODER_TRY_ALLOC(m_parser->m_previous_block_contexts.try_resize_to_match_other_vector2d(frame_context.block_contexts()));
  1591. // − PrevRefFrames[ row ][ col ][ list ] is set equal to RefFrames[ row ][ col ][ list ] for row = 0..MiRows-1,
  1592. // for col = 0..MiCols-1, for list = 0..1.
  1593. // − PrevMvs[ row ][ col ][ list ][ comp ] is set equal to Mvs[ row ][ col ][ list ][ comp ] for row = 0..MiRows-1,
  1594. // for col = 0..MiCols-1, for list = 0..1, for comp = 0..1.
  1595. // And from decode_frame():
  1596. // - If all of the following conditions are true, PrevSegmentIds[ row ][ col ] is set equal to
  1597. // SegmentIds[ row ][ col ] for row = 0..MiRows-1, for col = 0..MiCols-1:
  1598. // − show_existing_frame is equal to 0,
  1599. // − segmentation_enabled is equal to 1,
  1600. // − segmentation_update_map is equal to 1.
  1601. bool keep_segment_ids = !frame_context.shows_existing_frame() && frame_context.segmentation_enabled && frame_context.use_full_segment_id_tree;
  1602. frame_context.block_contexts().copy_to(m_parser->m_previous_block_contexts, [keep_segment_ids](FrameBlockContext context) {
  1603. auto persistent_context = PersistentBlockContext(context);
  1604. if (!keep_segment_ids)
  1605. persistent_context.segment_id = 0;
  1606. return persistent_context;
  1607. });
  1608. }
  1609. return {};
  1610. }
  1611. }