Process.cpp 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/Time.h>
  9. #include <AK/Types.h>
  10. #include <Kernel/API/Syscall.h>
  11. #include <Kernel/Arch/InterruptDisabler.h>
  12. #include <Kernel/Coredump.h>
  13. #include <Kernel/Debug.h>
  14. #include <Kernel/Devices/DeviceManagement.h>
  15. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  16. # include <Kernel/Devices/KCOVDevice.h>
  17. #endif
  18. #include <Kernel/API/POSIX/errno.h>
  19. #include <Kernel/Devices/NullDevice.h>
  20. #include <Kernel/FileSystem/Custody.h>
  21. #include <Kernel/FileSystem/OpenFileDescription.h>
  22. #include <Kernel/FileSystem/VirtualFileSystem.h>
  23. #include <Kernel/KBufferBuilder.h>
  24. #include <Kernel/KSyms.h>
  25. #include <Kernel/Memory/AnonymousVMObject.h>
  26. #include <Kernel/Memory/PageDirectory.h>
  27. #include <Kernel/Memory/SharedInodeVMObject.h>
  28. #include <Kernel/Panic.h>
  29. #include <Kernel/PerformanceEventBuffer.h>
  30. #include <Kernel/PerformanceManager.h>
  31. #include <Kernel/Process.h>
  32. #include <Kernel/Scheduler.h>
  33. #include <Kernel/Sections.h>
  34. #include <Kernel/StdLib.h>
  35. #include <Kernel/TTY/TTY.h>
  36. #include <Kernel/Thread.h>
  37. #include <Kernel/ThreadTracer.h>
  38. #include <Kernel/TimerQueue.h>
  39. #include <LibC/limits.h>
  40. namespace Kernel {
  41. static void create_signal_trampoline();
  42. extern ProcessID g_init_pid;
  43. RecursiveSpinlock g_profiling_lock;
  44. static Atomic<pid_t> next_pid;
  45. static Singleton<SpinlockProtected<Process::List>> s_all_instances;
  46. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  47. static Singleton<MutexProtected<OwnPtr<KString>>> s_hostname;
  48. MutexProtected<OwnPtr<KString>>& hostname()
  49. {
  50. return *s_hostname;
  51. }
  52. SpinlockProtected<Process::List>& Process::all_instances()
  53. {
  54. return *s_all_instances;
  55. }
  56. ProcessID Process::allocate_pid()
  57. {
  58. // Overflow is UB, and negative PIDs wreck havoc.
  59. // TODO: Handle PID overflow
  60. // For example: Use an Atomic<u32>, mask the most significant bit,
  61. // retry if PID is already taken as a PID, taken as a TID,
  62. // takes as a PGID, taken as a SID, or zero.
  63. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  64. }
  65. UNMAP_AFTER_INIT void Process::initialize()
  66. {
  67. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  68. // Note: This is called before scheduling is initialized, and before APs are booted.
  69. // So we can "safely" bypass the lock here.
  70. reinterpret_cast<OwnPtr<KString>&>(hostname()) = KString::must_create("courage"sv);
  71. create_signal_trampoline();
  72. }
  73. bool Process::in_group(GroupID gid) const
  74. {
  75. return this->gid() == gid || extra_gids().contains_slow(gid);
  76. }
  77. void Process::kill_threads_except_self()
  78. {
  79. InterruptDisabler disabler;
  80. if (thread_count() <= 1)
  81. return;
  82. auto* current_thread = Thread::current();
  83. for_each_thread([&](Thread& thread) {
  84. if (&thread == current_thread)
  85. return;
  86. if (auto state = thread.state(); state == Thread::State::Dead
  87. || state == Thread::State::Dying)
  88. return;
  89. // We need to detach this thread in case it hasn't been joined
  90. thread.detach();
  91. thread.set_should_die();
  92. });
  93. u32 dropped_lock_count = 0;
  94. if (big_lock().force_unlock_exclusive_if_locked(dropped_lock_count) != LockMode::Unlocked)
  95. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  96. }
  97. void Process::kill_all_threads()
  98. {
  99. for_each_thread([&](Thread& thread) {
  100. // We need to detach this thread in case it hasn't been joined
  101. thread.detach();
  102. thread.set_should_die();
  103. });
  104. }
  105. void Process::register_new(Process& process)
  106. {
  107. // Note: this is essentially the same like process->ref()
  108. RefPtr<Process> new_process = process;
  109. all_instances().with([&](auto& list) {
  110. list.prepend(process);
  111. });
  112. }
  113. ErrorOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, StringView path, UserID uid, GroupID gid, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, TTY* tty)
  114. {
  115. auto parts = path.split_view('/');
  116. if (arguments.is_empty()) {
  117. auto last_part = TRY(KString::try_create(parts.last()));
  118. TRY(arguments.try_append(move(last_part)));
  119. }
  120. auto path_string = TRY(KString::try_create(path));
  121. auto name = TRY(KString::try_create(parts.last()));
  122. auto process = TRY(Process::try_create(first_thread, move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
  123. TRY(process->m_fds.with_exclusive([&](auto& fds) -> ErrorOr<void> {
  124. TRY(fds.try_resize(Process::OpenFileDescriptions::max_open()));
  125. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : DeviceManagement::the().null_device();
  126. auto description = TRY(device_to_use_as_tty.open(O_RDWR));
  127. auto setup_description = [&](int fd) {
  128. fds.m_fds_metadatas[fd].allocate();
  129. fds[fd].set(*description);
  130. };
  131. setup_description(0);
  132. setup_description(1);
  133. setup_description(2);
  134. return {};
  135. }));
  136. Thread* new_main_thread = nullptr;
  137. u32 prev_flags = 0;
  138. if (auto result = process->exec(move(path_string), move(arguments), move(environment), new_main_thread, prev_flags); result.is_error()) {
  139. dbgln("Failed to exec {}: {}", path, result.error());
  140. first_thread = nullptr;
  141. return result.release_error();
  142. }
  143. register_new(*process);
  144. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
  145. process->ref();
  146. {
  147. SpinlockLocker lock(g_scheduler_lock);
  148. new_main_thread->set_state(Thread::State::Runnable);
  149. }
  150. return process;
  151. }
  152. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  153. {
  154. auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
  155. if (process_or_error.is_error())
  156. return {};
  157. auto process = process_or_error.release_value();
  158. first_thread->regs().set_ip((FlatPtr)entry);
  159. #if ARCH(I386)
  160. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  161. #else
  162. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  163. #endif
  164. if (do_register == RegisterProcess::Yes)
  165. register_new(*process);
  166. SpinlockLocker lock(g_scheduler_lock);
  167. first_thread->set_affinity(affinity);
  168. first_thread->set_state(Thread::State::Runnable);
  169. return process;
  170. }
  171. void Process::protect_data()
  172. {
  173. m_protected_data_refs.unref([&]() {
  174. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
  175. });
  176. }
  177. void Process::unprotect_data()
  178. {
  179. m_protected_data_refs.ref([&]() {
  180. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
  181. });
  182. }
  183. ErrorOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> current_directory, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  184. {
  185. auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
  186. auto unveil_tree = UnveilNode { TRY(KString::try_create("/"sv)), UnveilMetadata(TRY(KString::try_create("/"sv))) };
  187. auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(move(name), uid, gid, ppid, is_kernel_process, move(current_directory), move(executable), tty, move(unveil_tree))));
  188. TRY(process->attach_resources(move(space), first_thread, fork_parent));
  189. return process;
  190. }
  191. Process::Process(NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> current_directory, RefPtr<Custody> executable, TTY* tty, UnveilNode unveil_tree)
  192. : m_name(move(name))
  193. , m_is_kernel_process(is_kernel_process)
  194. , m_executable(move(executable))
  195. , m_current_directory(move(current_directory))
  196. , m_tty(tty)
  197. , m_unveil_data(move(unveil_tree))
  198. , m_wait_blocker_set(*this)
  199. {
  200. // Ensure that we protect the process data when exiting the constructor.
  201. ProtectedDataMutationScope scope { *this };
  202. m_protected_values.pid = allocate_pid();
  203. m_protected_values.ppid = ppid;
  204. m_protected_values.uid = uid;
  205. m_protected_values.gid = gid;
  206. m_protected_values.euid = uid;
  207. m_protected_values.egid = gid;
  208. m_protected_values.suid = uid;
  209. m_protected_values.sgid = gid;
  210. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  211. }
  212. ErrorOr<void> Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
  213. {
  214. m_space = move(preallocated_space);
  215. auto create_first_thread = [&] {
  216. if (fork_parent) {
  217. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  218. return Thread::current()->try_clone(*this);
  219. }
  220. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  221. return Thread::try_create(*this);
  222. };
  223. first_thread = TRY(create_first_thread());
  224. if (!fork_parent) {
  225. // FIXME: Figure out if this is really necessary.
  226. first_thread->detach();
  227. }
  228. auto weak_ptr = TRY(this->try_make_weak_ptr());
  229. m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, move(weak_ptr)));
  230. return {};
  231. }
  232. Process::~Process()
  233. {
  234. unprotect_data();
  235. VERIFY(thread_count() == 0); // all threads should have been finalized
  236. VERIFY(!m_alarm_timer);
  237. PerformanceManager::add_process_exit_event(*this);
  238. }
  239. // Make sure the compiler doesn't "optimize away" this function:
  240. extern void signal_trampoline_dummy() __attribute__((used));
  241. void signal_trampoline_dummy()
  242. {
  243. #if ARCH(I386)
  244. // The trampoline preserves the current eax, pushes the signal code and
  245. // then calls the signal handler. We do this because, when interrupting a
  246. // blocking syscall, that syscall may return some special error code in eax;
  247. // This error code would likely be overwritten by the signal handler, so it's
  248. // necessary to preserve it here.
  249. constexpr static auto offset_to_first_register_slot = sizeof(__ucontext) + sizeof(siginfo) + sizeof(FPUState) + 4 * sizeof(FlatPtr);
  250. asm(
  251. ".intel_syntax noprefix\n"
  252. ".globl asm_signal_trampoline\n"
  253. "asm_signal_trampoline:\n"
  254. // stack state: 0, ucontext, signal_info, (alignment = 16), fpu_state (alignment = 16), 0, ucontext*, siginfo*, signal, (alignment = 16), handler
  255. // Pop the handler into ecx
  256. "pop ecx\n" // save handler
  257. // we have to save eax 'cause it might be the return value from a syscall
  258. "mov [esp+%P1], eax\n"
  259. // Note that the stack is currently aligned to 16 bytes as we popped the extra entries above.
  260. // and it's already setup to call the handler with the expected values on the stack.
  261. // call the signal handler
  262. "call ecx\n"
  263. // drop the 4 arguments
  264. "add esp, 16\n"
  265. // Current stack state is just saved_eax, ucontext, signal_info, fpu_state?.
  266. // syscall SC_sigreturn
  267. "mov eax, %P0\n"
  268. "int 0x82\n"
  269. ".globl asm_signal_trampoline_end\n"
  270. "asm_signal_trampoline_end:\n"
  271. ".att_syntax"
  272. :
  273. : "i"(Syscall::SC_sigreturn),
  274. "i"(offset_to_first_register_slot));
  275. #elif ARCH(X86_64)
  276. // The trampoline preserves the current rax, pushes the signal code and
  277. // then calls the signal handler. We do this because, when interrupting a
  278. // blocking syscall, that syscall may return some special error code in eax;
  279. // This error code would likely be overwritten by the signal handler, so it's
  280. // necessary to preserve it here.
  281. constexpr static auto offset_to_first_register_slot = sizeof(__ucontext) + sizeof(siginfo) + sizeof(FPUState) + 3 * sizeof(FlatPtr);
  282. asm(
  283. ".intel_syntax noprefix\n"
  284. ".globl asm_signal_trampoline\n"
  285. "asm_signal_trampoline:\n"
  286. // stack state: 0, ucontext, signal_info (alignment = 16), fpu_state (alignment = 16), ucontext*, siginfo*, signal, handler
  287. // Pop the handler into rcx
  288. "pop rcx\n" // save handler
  289. // we have to save rax 'cause it might be the return value from a syscall
  290. "mov [rsp+%P1], rax\n"
  291. // pop signal number into rdi (first param)
  292. "pop rdi\n"
  293. // pop siginfo* into rsi (second param)
  294. "pop rsi\n"
  295. // pop ucontext* into rdx (third param)
  296. "pop rdx\n"
  297. // Note that the stack is currently aligned to 16 bytes as we popped the extra entries above.
  298. // call the signal handler
  299. "call rcx\n"
  300. // Current stack state is just saved_rax, ucontext, signal_info, fpu_state.
  301. // syscall SC_sigreturn
  302. "mov rax, %P0\n"
  303. "int 0x82\n"
  304. ".globl asm_signal_trampoline_end\n"
  305. "asm_signal_trampoline_end:\n"
  306. ".att_syntax"
  307. :
  308. : "i"(Syscall::SC_sigreturn),
  309. "i"(offset_to_first_register_slot));
  310. #endif
  311. }
  312. extern "C" char const asm_signal_trampoline[];
  313. extern "C" char const asm_signal_trampoline_end[];
  314. void create_signal_trampoline()
  315. {
  316. // NOTE: We leak this region.
  317. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).release_value().leak_ptr();
  318. g_signal_trampoline_region->set_syscall_region(true);
  319. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  320. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  321. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  322. g_signal_trampoline_region->set_writable(false);
  323. g_signal_trampoline_region->remap();
  324. }
  325. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  326. {
  327. VERIFY(!is_dead());
  328. VERIFY(&Process::current() == this);
  329. if (out_of_memory) {
  330. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  331. } else {
  332. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  333. auto const* symbol = symbolicate_kernel_address(ip);
  334. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  335. } else {
  336. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  337. }
  338. dump_backtrace();
  339. }
  340. {
  341. ProtectedDataMutationScope scope { *this };
  342. m_protected_values.termination_signal = signal;
  343. }
  344. set_should_generate_coredump(!out_of_memory);
  345. address_space().dump_regions();
  346. VERIFY(is_user_process());
  347. die();
  348. // We can not return from here, as there is nowhere
  349. // to unwind to, so die right away.
  350. Thread::current()->die_if_needed();
  351. VERIFY_NOT_REACHED();
  352. }
  353. RefPtr<Process> Process::from_pid(ProcessID pid)
  354. {
  355. return all_instances().with([&](auto const& list) -> RefPtr<Process> {
  356. for (auto const& process : list) {
  357. if (process.pid() == pid)
  358. return &process;
  359. }
  360. return {};
  361. });
  362. }
  363. Process::OpenFileDescriptionAndFlags const* Process::OpenFileDescriptions::get_if_valid(size_t i) const
  364. {
  365. if (m_fds_metadatas.size() <= i)
  366. return nullptr;
  367. if (auto const& metadata = m_fds_metadatas[i]; metadata.is_valid())
  368. return &metadata;
  369. return nullptr;
  370. }
  371. Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i)
  372. {
  373. if (m_fds_metadatas.size() <= i)
  374. return nullptr;
  375. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  376. return &metadata;
  377. return nullptr;
  378. }
  379. Process::OpenFileDescriptionAndFlags const& Process::OpenFileDescriptions::at(size_t i) const
  380. {
  381. VERIFY(m_fds_metadatas[i].is_allocated());
  382. return m_fds_metadatas[i];
  383. }
  384. Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i)
  385. {
  386. VERIFY(m_fds_metadatas[i].is_allocated());
  387. return m_fds_metadatas[i];
  388. }
  389. ErrorOr<NonnullRefPtr<OpenFileDescription>> Process::OpenFileDescriptions::open_file_description(int fd) const
  390. {
  391. if (fd < 0)
  392. return EBADF;
  393. if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
  394. return EBADF;
  395. RefPtr description = m_fds_metadatas[fd].description();
  396. if (!description)
  397. return EBADF;
  398. return description.release_nonnull();
  399. }
  400. void Process::OpenFileDescriptions::enumerate(Function<void(OpenFileDescriptionAndFlags const&)> callback) const
  401. {
  402. for (auto const& file_description_metadata : m_fds_metadatas) {
  403. callback(file_description_metadata);
  404. }
  405. }
  406. ErrorOr<void> Process::OpenFileDescriptions::try_enumerate(Function<ErrorOr<void>(OpenFileDescriptionAndFlags const&)> callback) const
  407. {
  408. for (auto const& file_description_metadata : m_fds_metadatas) {
  409. TRY(callback(file_description_metadata));
  410. }
  411. return {};
  412. }
  413. void Process::OpenFileDescriptions::change_each(Function<void(OpenFileDescriptionAndFlags&)> callback)
  414. {
  415. for (auto& file_description_metadata : m_fds_metadatas) {
  416. callback(file_description_metadata);
  417. }
  418. }
  419. size_t Process::OpenFileDescriptions::open_count() const
  420. {
  421. size_t count = 0;
  422. enumerate([&](auto& file_description_metadata) {
  423. if (file_description_metadata.is_valid())
  424. ++count;
  425. });
  426. return count;
  427. }
  428. ErrorOr<Process::ScopedDescriptionAllocation> Process::OpenFileDescriptions::allocate(int first_candidate_fd)
  429. {
  430. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  431. if (!m_fds_metadatas[i].is_allocated()) {
  432. m_fds_metadatas[i].allocate();
  433. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  434. }
  435. }
  436. return EMFILE;
  437. }
  438. Time kgettimeofday()
  439. {
  440. return TimeManagement::now();
  441. }
  442. siginfo_t Process::wait_info() const
  443. {
  444. siginfo_t siginfo {};
  445. siginfo.si_signo = SIGCHLD;
  446. siginfo.si_pid = pid().value();
  447. siginfo.si_uid = uid().value();
  448. if (m_protected_values.termination_signal != 0) {
  449. siginfo.si_status = m_protected_values.termination_signal;
  450. siginfo.si_code = CLD_KILLED;
  451. } else {
  452. siginfo.si_status = m_protected_values.termination_status;
  453. siginfo.si_code = CLD_EXITED;
  454. }
  455. return siginfo;
  456. }
  457. NonnullRefPtr<Custody> Process::current_directory()
  458. {
  459. return m_current_directory.with([&](auto& current_directory) -> NonnullRefPtr<Custody> {
  460. if (!current_directory)
  461. current_directory = VirtualFileSystem::the().root_custody();
  462. return *current_directory;
  463. });
  464. }
  465. ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length)
  466. {
  467. if (path_length == 0)
  468. return EINVAL;
  469. if (path_length > PATH_MAX)
  470. return ENAMETOOLONG;
  471. return try_copy_kstring_from_user(user_path, path_length);
  472. }
  473. ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path)
  474. {
  475. Userspace<char const*> path_characters((FlatPtr)path.characters);
  476. return get_syscall_path_argument(path_characters, path.length);
  477. }
  478. ErrorOr<void> Process::dump_core()
  479. {
  480. VERIFY(is_dumpable());
  481. VERIFY(should_generate_coredump());
  482. dbgln("Generating coredump for pid: {}", pid().value());
  483. auto coredump_path = TRY(KString::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds()));
  484. auto coredump = TRY(Coredump::try_create(*this, coredump_path->view()));
  485. return coredump->write();
  486. }
  487. ErrorOr<void> Process::dump_perfcore()
  488. {
  489. VERIFY(is_dumpable());
  490. VERIFY(m_perf_event_buffer);
  491. dbgln("Generating perfcore for pid: {}", pid().value());
  492. // Try to generate a filename which isn't already used.
  493. auto base_filename = TRY(KString::formatted("{}_{}", name(), pid().value()));
  494. auto perfcore_filename = TRY(KString::formatted("{}.profile", base_filename));
  495. RefPtr<OpenFileDescription> description;
  496. for (size_t attempt = 1; attempt <= 10; ++attempt) {
  497. auto description_or_error = VirtualFileSystem::the().open(perfcore_filename->view(), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { 0, 0 });
  498. if (!description_or_error.is_error()) {
  499. description = description_or_error.release_value();
  500. break;
  501. }
  502. perfcore_filename = TRY(KString::formatted("{}.{}.profile", base_filename, attempt));
  503. }
  504. if (!description) {
  505. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  506. return EEXIST;
  507. }
  508. auto builder = TRY(KBufferBuilder::try_create());
  509. TRY(m_perf_event_buffer->to_json(builder));
  510. auto json = builder.build();
  511. if (!json) {
  512. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  513. return ENOMEM;
  514. }
  515. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  516. TRY(description->write(json_buffer, json->size()));
  517. dbgln("Wrote perfcore for pid {} to {}", pid().value(), perfcore_filename);
  518. return {};
  519. }
  520. void Process::finalize()
  521. {
  522. VERIFY(Thread::current() == g_finalizer);
  523. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  524. if (veil_state() == VeilState::Dropped)
  525. dbgln("\x1b[01;31mProcess '{}' exited with the veil left open\x1b[0m", name());
  526. if (g_init_pid != 0 && pid() == g_init_pid)
  527. PANIC("Init process quit unexpectedly. Exit code: {}", m_protected_values.termination_status);
  528. if (is_dumpable()) {
  529. if (m_should_generate_coredump) {
  530. auto result = dump_core();
  531. if (result.is_error()) {
  532. critical_dmesgln("Failed to write coredump: {}", result.error());
  533. }
  534. }
  535. if (m_perf_event_buffer) {
  536. auto result = dump_perfcore();
  537. if (result.is_error())
  538. critical_dmesgln("Failed to write perfcore: {}", result.error());
  539. TimeManagement::the().disable_profile_timer();
  540. }
  541. }
  542. m_threads_for_coredump.clear();
  543. if (m_alarm_timer)
  544. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  545. m_fds.with_exclusive([](auto& fds) { fds.clear(); });
  546. m_tty = nullptr;
  547. m_executable = nullptr;
  548. m_arguments.clear();
  549. m_environment.clear();
  550. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  551. {
  552. if (auto parent_process = Process::from_pid(ppid())) {
  553. if (parent_process->is_user_process() && (parent_process->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT) != SA_NOCLDWAIT)
  554. (void)parent_process->send_signal(SIGCHLD, this);
  555. }
  556. }
  557. if (!!ppid()) {
  558. if (auto parent = Process::from_pid(ppid())) {
  559. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  560. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  561. }
  562. }
  563. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  564. m_space->remove_all_regions({});
  565. VERIFY(ref_count() > 0);
  566. // WaitBlockerSet::finalize will be in charge of dropping the last
  567. // reference if there are still waiters around, or whenever the last
  568. // waitable states are consumed. Unless there is no parent around
  569. // anymore, in which case we'll just drop it right away.
  570. m_wait_blocker_set.finalize();
  571. }
  572. void Process::disowned_by_waiter(Process& process)
  573. {
  574. m_wait_blocker_set.disowned_by_waiter(process);
  575. }
  576. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  577. {
  578. RefPtr<Process> waiter_process;
  579. if (auto* my_tracer = tracer())
  580. waiter_process = Process::from_pid(my_tracer->tracer_pid());
  581. else
  582. waiter_process = Process::from_pid(ppid());
  583. if (waiter_process)
  584. waiter_process->m_wait_blocker_set.unblock(*this, flags, signal);
  585. }
  586. void Process::die()
  587. {
  588. auto expected = State::Running;
  589. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  590. // It's possible that another thread calls this at almost the same time
  591. // as we can't always instantly kill other threads (they may be blocked)
  592. // So if we already were called then other threads should stop running
  593. // momentarily and we only really need to service the first thread
  594. return;
  595. }
  596. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  597. // getting an EOF when the last process using the slave PTY dies.
  598. // If the master PTY owner relies on an EOF to know when to wait() on a
  599. // slave owner, we have to allow the PTY pair to be torn down.
  600. m_tty = nullptr;
  601. VERIFY(m_threads_for_coredump.is_empty());
  602. for_each_thread([&](auto& thread) {
  603. auto result = m_threads_for_coredump.try_append(thread);
  604. if (result.is_error())
  605. dbgln("Failed to add thread {} to coredump due to OOM", thread.tid());
  606. });
  607. all_instances().with([&](auto const& list) {
  608. for (auto it = list.begin(); it != list.end();) {
  609. auto& process = *it;
  610. ++it;
  611. if (process.has_tracee_thread(pid())) {
  612. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  613. process.stop_tracing();
  614. auto err = process.send_signal(SIGSTOP, this);
  615. if (err.is_error())
  616. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  617. }
  618. }
  619. });
  620. kill_all_threads();
  621. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  622. KCOVDevice::free_process();
  623. #endif
  624. }
  625. void Process::terminate_due_to_signal(u8 signal)
  626. {
  627. VERIFY_INTERRUPTS_DISABLED();
  628. VERIFY(signal < 32);
  629. VERIFY(&Process::current() == this);
  630. dbgln("Terminating {} due to signal {}", *this, signal);
  631. {
  632. ProtectedDataMutationScope scope { *this };
  633. m_protected_values.termination_status = 0;
  634. m_protected_values.termination_signal = signal;
  635. }
  636. die();
  637. }
  638. ErrorOr<void> Process::send_signal(u8 signal, Process* sender)
  639. {
  640. VERIFY(is_user_process());
  641. // Try to send it to the "obvious" main thread:
  642. auto receiver_thread = Thread::from_tid(pid().value());
  643. // If the main thread has died, there may still be other threads:
  644. if (!receiver_thread) {
  645. // The first one should be good enough.
  646. // Neither kill(2) nor kill(3) specify any selection procedure.
  647. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  648. receiver_thread = &thread;
  649. return IterationDecision::Break;
  650. });
  651. }
  652. if (receiver_thread) {
  653. receiver_thread->send_signal(signal, sender);
  654. return {};
  655. }
  656. return ESRCH;
  657. }
  658. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
  659. {
  660. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  661. // FIXME: Do something with guard pages?
  662. auto thread_or_error = Thread::try_create(*this);
  663. if (thread_or_error.is_error())
  664. return {};
  665. auto thread = thread_or_error.release_value();
  666. thread->set_name(move(name));
  667. thread->set_affinity(affinity);
  668. thread->set_priority(priority);
  669. if (!joinable)
  670. thread->detach();
  671. auto& regs = thread->regs();
  672. regs.set_ip((FlatPtr)entry);
  673. regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
  674. SpinlockLocker lock(g_scheduler_lock);
  675. thread->set_state(Thread::State::Runnable);
  676. return thread;
  677. }
  678. void Process::OpenFileDescriptionAndFlags::clear()
  679. {
  680. // FIXME: Verify Process::m_fds_lock is locked!
  681. m_description = nullptr;
  682. m_flags = 0;
  683. }
  684. void Process::OpenFileDescriptionAndFlags::set(NonnullRefPtr<OpenFileDescription>&& description, u32 flags)
  685. {
  686. // FIXME: Verify Process::m_fds_lock is locked!
  687. m_description = move(description);
  688. m_flags = flags;
  689. }
  690. void Process::set_tty(TTY* tty)
  691. {
  692. m_tty = tty;
  693. }
  694. ErrorOr<void> Process::start_tracing_from(ProcessID tracer)
  695. {
  696. m_tracer = TRY(ThreadTracer::try_create(tracer));
  697. return {};
  698. }
  699. void Process::stop_tracing()
  700. {
  701. m_tracer = nullptr;
  702. }
  703. void Process::tracer_trap(Thread& thread, RegisterState const& regs)
  704. {
  705. VERIFY(m_tracer.ptr());
  706. m_tracer->set_regs(regs);
  707. thread.send_urgent_signal_to_self(SIGTRAP);
  708. }
  709. bool Process::create_perf_events_buffer_if_needed()
  710. {
  711. if (m_perf_event_buffer)
  712. return true;
  713. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  714. if (!m_perf_event_buffer)
  715. return false;
  716. return !m_perf_event_buffer->add_process(*this, ProcessEventType::Create).is_error();
  717. }
  718. void Process::delete_perf_events_buffer()
  719. {
  720. if (m_perf_event_buffer)
  721. m_perf_event_buffer = nullptr;
  722. }
  723. bool Process::remove_thread(Thread& thread)
  724. {
  725. ProtectedDataMutationScope scope { *this };
  726. auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  727. VERIFY(thread_cnt_before != 0);
  728. thread_list().with([&](auto& thread_list) {
  729. thread_list.remove(thread);
  730. });
  731. return thread_cnt_before == 1;
  732. }
  733. bool Process::add_thread(Thread& thread)
  734. {
  735. ProtectedDataMutationScope scope { *this };
  736. bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  737. thread_list().with([&](auto& thread_list) {
  738. thread_list.append(thread);
  739. });
  740. return is_first;
  741. }
  742. void Process::set_dumpable(bool dumpable)
  743. {
  744. if (dumpable == m_protected_values.dumpable)
  745. return;
  746. ProtectedDataMutationScope scope { *this };
  747. m_protected_values.dumpable = dumpable;
  748. }
  749. ErrorOr<void> Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  750. {
  751. return m_coredump_properties.with([&](auto& coredump_properties) -> ErrorOr<void> {
  752. // Write it into the first available property slot.
  753. for (auto& slot : coredump_properties) {
  754. if (slot.key)
  755. continue;
  756. slot.key = move(key);
  757. slot.value = move(value);
  758. return {};
  759. }
  760. return ENOBUFS;
  761. });
  762. }
  763. ErrorOr<void> Process::try_set_coredump_property(StringView key, StringView value)
  764. {
  765. auto key_kstring = TRY(KString::try_create(key));
  766. auto value_kstring = TRY(KString::try_create(value));
  767. return set_coredump_property(move(key_kstring), move(value_kstring));
  768. };
  769. static constexpr StringView to_string(Pledge promise)
  770. {
  771. #define __ENUMERATE_PLEDGE_PROMISE(x) \
  772. case Pledge::x: \
  773. return #x;
  774. switch (promise) {
  775. ENUMERATE_PLEDGE_PROMISES
  776. }
  777. #undef __ENUMERATE_PLEDGE_PROMISE
  778. VERIFY_NOT_REACHED();
  779. }
  780. ErrorOr<void> Process::require_no_promises() const
  781. {
  782. if (!has_promises())
  783. return {};
  784. dbgln("Has made a promise");
  785. Thread::current()->set_promise_violation_pending(true);
  786. return EPROMISEVIOLATION;
  787. }
  788. ErrorOr<void> Process::require_promise(Pledge promise)
  789. {
  790. if (!has_promises())
  791. return {};
  792. if (has_promised(promise))
  793. return {};
  794. dbgln("Has not pledged {}", to_string(promise));
  795. Thread::current()->set_promise_violation_pending(true);
  796. (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
  797. return EPROMISEVIOLATION;
  798. }
  799. }