MemoryManager.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. //#define MM_DEBUG
  13. //#define PAGE_FAULT_DEBUG
  14. static MemoryManager* s_the;
  15. MemoryManager& MM
  16. {
  17. return *s_the;
  18. }
  19. MemoryManager::MemoryManager()
  20. {
  21. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
  22. m_page_table_zero = (PageTableEntry*)0x6000;
  23. m_page_table_one = (PageTableEntry*)0x7000;
  24. initialize_paging();
  25. kprintf("MM initialized.\n");
  26. }
  27. MemoryManager::~MemoryManager()
  28. {
  29. }
  30. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  31. {
  32. page_directory.m_directory_page = allocate_supervisor_physical_page();
  33. page_directory.entries()[0].copy_from({}, kernel_page_directory().entries()[0]);
  34. page_directory.entries()[1].copy_from({}, kernel_page_directory().entries()[1]);
  35. // Defer to the kernel page tables for 0xC0000000-0xFFFFFFFF
  36. for (int i = 768; i < 1024; ++i)
  37. page_directory.entries()[i].copy_from({}, kernel_page_directory().entries()[i]);
  38. }
  39. void MemoryManager::initialize_paging()
  40. {
  41. memset(m_page_table_zero, 0, PAGE_SIZE);
  42. memset(m_page_table_one, 0, PAGE_SIZE);
  43. #ifdef MM_DEBUG
  44. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  45. #endif
  46. #ifdef MM_DEBUG
  47. dbgprintf("MM: Protect against null dereferences\n");
  48. #endif
  49. // Make null dereferences crash.
  50. map_protected(VirtualAddress(0), PAGE_SIZE);
  51. #ifdef MM_DEBUG
  52. dbgprintf("MM: Identity map bottom 5MB\n");
  53. #endif
  54. // The bottom 5 MB (except for the null page) are identity mapped & supervisor only.
  55. // Every process shares these mappings.
  56. create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (5 * MB) - PAGE_SIZE);
  57. // Basic memory map:
  58. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  59. // (last page before 1MB) Used by quickmap_page().
  60. // 1 MB -> 3 MB kmalloc_eternal() space.
  61. // 3 MB -> 4 MB kmalloc() space.
  62. // 4 MB -> 5 MB Supervisor physical pages (available for allocation!)
  63. // 5 MB -> 0xc0000000 Userspace physical pages (available for allocation!)
  64. // 0xc0000000-0xffffffff Kernel-only virtual address space
  65. #ifdef MM_DEBUG
  66. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  67. #endif
  68. m_quickmap_addr = VirtualAddress((1 * MB) - PAGE_SIZE);
  69. RefPtr<PhysicalRegion> region;
  70. bool region_is_super = false;
  71. for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  72. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  73. (u32)(mmap->addr >> 32),
  74. (u32)(mmap->addr & 0xffffffff),
  75. (u32)(mmap->len >> 32),
  76. (u32)(mmap->len & 0xffffffff),
  77. (u32)mmap->type);
  78. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  79. continue;
  80. // FIXME: Maybe make use of stuff below the 1MB mark?
  81. if (mmap->addr < (1 * MB))
  82. continue;
  83. #ifdef MM_DEBUG
  84. kprintf("MM: considering memory at %p - %p\n",
  85. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  86. #endif
  87. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  88. auto addr = PhysicalAddress(page_base);
  89. if (page_base < 4 * MB) {
  90. // nothing
  91. } else if (page_base >= 4 * MB && page_base < 5 * MB) {
  92. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  93. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  94. region = m_super_physical_regions.last();
  95. region_is_super = true;
  96. } else {
  97. region->expand(region->lower(), addr);
  98. }
  99. } else {
  100. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  101. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  102. region = &m_user_physical_regions.last();
  103. region_is_super = false;
  104. } else {
  105. region->expand(region->lower(), addr);
  106. }
  107. }
  108. }
  109. }
  110. for (auto& region : m_super_physical_regions)
  111. m_super_physical_pages += region.finalize_capacity();
  112. for (auto& region : m_user_physical_regions)
  113. m_user_physical_pages += region.finalize_capacity();
  114. #ifdef MM_DEBUG
  115. dbgprintf("MM: Installing page directory\n");
  116. #endif
  117. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  118. asm volatile(
  119. "movl %%cr0, %%eax\n"
  120. "orl $0x80000001, %%eax\n"
  121. "movl %%eax, %%cr0\n" ::
  122. : "%eax", "memory");
  123. #ifdef MM_DEBUG
  124. dbgprintf("MM: Paging initialized.\n");
  125. #endif
  126. }
  127. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  128. {
  129. ASSERT_INTERRUPTS_DISABLED();
  130. u32 page_directory_index = (vaddr.get() >> 22) & 0x3ff;
  131. u32 page_table_index = (vaddr.get() >> 12) & 0x3ff;
  132. PageDirectoryEntry& pde = page_directory.entries()[page_directory_index];
  133. if (!pde.is_present()) {
  134. #ifdef MM_DEBUG
  135. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  136. #endif
  137. if (page_directory_index == 0) {
  138. ASSERT(&page_directory == m_kernel_page_directory);
  139. pde.set_page_table_base((u32)m_page_table_zero);
  140. pde.set_user_allowed(false);
  141. pde.set_present(true);
  142. pde.set_writable(true);
  143. } else if (page_directory_index == 1) {
  144. ASSERT(&page_directory == m_kernel_page_directory);
  145. pde.set_page_table_base((u32)m_page_table_one);
  146. pde.set_user_allowed(false);
  147. pde.set_present(true);
  148. pde.set_writable(true);
  149. } else {
  150. //ASSERT(&page_directory != m_kernel_page_directory.ptr());
  151. auto page_table = allocate_supervisor_physical_page();
  152. #ifdef MM_DEBUG
  153. dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for V%p) at P%x\n",
  154. &page_directory,
  155. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  156. page_directory.cr3(),
  157. page_directory_index,
  158. vaddr.get(),
  159. page_table->paddr().get());
  160. #endif
  161. pde.set_page_table_base(page_table->paddr().get());
  162. pde.set_user_allowed(true);
  163. pde.set_present(true);
  164. pde.set_writable(true);
  165. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  166. }
  167. }
  168. return pde.page_table_base()[page_table_index];
  169. }
  170. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  171. {
  172. InterruptDisabler disabler;
  173. ASSERT(vaddr.is_page_aligned());
  174. for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
  175. auto pte_address = vaddr.offset(offset);
  176. auto& pte = ensure_pte(kernel_page_directory(), pte_address);
  177. pte.set_physical_page_base(pte_address.get());
  178. pte.set_user_allowed(false);
  179. pte.set_present(false);
  180. pte.set_writable(false);
  181. flush_tlb(pte_address);
  182. }
  183. }
  184. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  185. {
  186. InterruptDisabler disabler;
  187. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  188. for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
  189. auto pte_address = vaddr.offset(offset);
  190. auto& pte = ensure_pte(page_directory, pte_address);
  191. pte.set_physical_page_base(pte_address.get());
  192. pte.set_user_allowed(false);
  193. pte.set_present(true);
  194. pte.set_writable(true);
  195. page_directory.flush(pte_address);
  196. }
  197. }
  198. void MemoryManager::initialize()
  199. {
  200. s_the = new MemoryManager;
  201. }
  202. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  203. {
  204. if (vaddr.get() < 0xc0000000)
  205. return nullptr;
  206. for (auto& region : MM.m_kernel_regions) {
  207. if (region.contains(vaddr))
  208. return &region;
  209. }
  210. return nullptr;
  211. }
  212. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  213. {
  214. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  215. for (auto& region : process.m_regions) {
  216. if (region.contains(vaddr))
  217. return &region;
  218. }
  219. dbg() << process << " Couldn't find user region for " << vaddr;
  220. return nullptr;
  221. }
  222. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  223. {
  224. ASSERT_INTERRUPTS_DISABLED();
  225. if (auto* region = kernel_region_from_vaddr(vaddr))
  226. return region;
  227. return user_region_from_vaddr(process, vaddr);
  228. }
  229. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  230. {
  231. if (auto* region = kernel_region_from_vaddr(vaddr))
  232. return region;
  233. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  234. }
  235. bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
  236. {
  237. ASSERT_INTERRUPTS_DISABLED();
  238. auto& vmo = region.vmobject();
  239. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  240. sti();
  241. LOCKER(vmo.m_paging_lock);
  242. cli();
  243. if (!vmo_page.is_null()) {
  244. #ifdef PAGE_FAULT_DEBUG
  245. dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
  246. #endif
  247. remap_region_page(region, page_index_in_region);
  248. return true;
  249. }
  250. auto physical_page = allocate_user_physical_page(ShouldZeroFill::Yes);
  251. #ifdef PAGE_FAULT_DEBUG
  252. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  253. #endif
  254. region.set_should_cow(page_index_in_region, false);
  255. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  256. remap_region_page(region, page_index_in_region);
  257. return true;
  258. }
  259. bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
  260. {
  261. ASSERT_INTERRUPTS_DISABLED();
  262. auto& vmo = region.vmobject();
  263. if (vmo.physical_pages()[page_index_in_region]->ref_count() == 1) {
  264. #ifdef PAGE_FAULT_DEBUG
  265. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  266. #endif
  267. region.set_should_cow(page_index_in_region, false);
  268. remap_region_page(region, page_index_in_region);
  269. return true;
  270. }
  271. #ifdef PAGE_FAULT_DEBUG
  272. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  273. #endif
  274. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  275. auto physical_page = allocate_user_physical_page(ShouldZeroFill::No);
  276. u8* dest_ptr = quickmap_page(*physical_page);
  277. const u8* src_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  278. #ifdef PAGE_FAULT_DEBUG
  279. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  280. #endif
  281. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  282. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  283. unquickmap_page();
  284. region.set_should_cow(page_index_in_region, false);
  285. remap_region_page(region, page_index_in_region);
  286. return true;
  287. }
  288. bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
  289. {
  290. ASSERT(region.page_directory());
  291. auto& vmo = region.vmobject();
  292. ASSERT(vmo.is_inode());
  293. auto& inode_vmobject = static_cast<InodeVMObject&>(vmo);
  294. auto& vmo_page = inode_vmobject.physical_pages()[region.first_page_index() + page_index_in_region];
  295. InterruptFlagSaver saver;
  296. sti();
  297. LOCKER(vmo.m_paging_lock);
  298. cli();
  299. if (!vmo_page.is_null()) {
  300. #ifdef PAGE_FAULT_DEBUG
  301. dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
  302. #endif
  303. remap_region_page(region, page_index_in_region);
  304. return true;
  305. }
  306. #ifdef MM_DEBUG
  307. dbgprintf("MM: page_in_from_inode ready to read from inode\n");
  308. #endif
  309. sti();
  310. u8 page_buffer[PAGE_SIZE];
  311. auto& inode = inode_vmobject.inode();
  312. auto nread = inode.read_bytes((region.first_page_index() + page_index_in_region) * PAGE_SIZE, PAGE_SIZE, page_buffer, nullptr);
  313. if (nread < 0) {
  314. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  315. return false;
  316. }
  317. if (nread < PAGE_SIZE) {
  318. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  319. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  320. }
  321. cli();
  322. vmo_page = allocate_user_physical_page(ShouldZeroFill::No);
  323. if (vmo_page.is_null()) {
  324. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  325. return false;
  326. }
  327. remap_region_page(region, page_index_in_region);
  328. u8* dest_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  329. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  330. return true;
  331. }
  332. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  333. {
  334. if (auto* region = kernel_region_from_vaddr(vaddr))
  335. return region;
  336. auto page_directory = PageDirectory::find_by_pdb(cpu_cr3());
  337. if (!page_directory)
  338. return nullptr;
  339. ASSERT(page_directory->process());
  340. return user_region_from_vaddr(*page_directory->process(), vaddr);
  341. }
  342. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  343. {
  344. ASSERT_INTERRUPTS_DISABLED();
  345. ASSERT(current);
  346. #ifdef PAGE_FAULT_DEBUG
  347. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  348. #endif
  349. ASSERT(fault.vaddr() != m_quickmap_addr);
  350. if (fault.type() == PageFault::Type::PageNotPresent && fault.vaddr().get() >= 0xc0000000) {
  351. auto* current_page_directory = reinterpret_cast<PageDirectoryEntry*>(cpu_cr3());
  352. u32 page_directory_index = (fault.vaddr().get() >> 22) & 0x3ff;
  353. auto& kernel_pde = kernel_page_directory().entries()[page_directory_index];
  354. auto& current_pde = current_page_directory[page_directory_index];
  355. if (kernel_pde.is_present() && !current_pde.is_present()) {
  356. dbg() << "NP(kernel): Copying new kernel mapping for " << fault.vaddr() << " into current page directory";
  357. current_pde.copy_from({}, kernel_pde);
  358. flush_tlb(fault.vaddr().page_base());
  359. return PageFaultResponse::Continue;
  360. }
  361. }
  362. auto* region = region_from_vaddr(fault.vaddr());
  363. if (!region) {
  364. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  365. return PageFaultResponse::ShouldCrash;
  366. }
  367. auto page_index_in_region = region->page_index_from_address(fault.vaddr());
  368. if (fault.type() == PageFault::Type::PageNotPresent) {
  369. if (region->vmobject().is_inode()) {
  370. #ifdef PAGE_FAULT_DEBUG
  371. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  372. #endif
  373. page_in_from_inode(*region, page_index_in_region);
  374. return PageFaultResponse::Continue;
  375. }
  376. #ifdef PAGE_FAULT_DEBUG
  377. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  378. #endif
  379. zero_page(*region, page_index_in_region);
  380. return PageFaultResponse::Continue;
  381. }
  382. ASSERT(fault.type() == PageFault::Type::ProtectionViolation);
  383. if (fault.access() == PageFault::Access::Write && region->should_cow(page_index_in_region)) {
  384. #ifdef PAGE_FAULT_DEBUG
  385. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  386. #endif
  387. bool success = copy_on_write(*region, page_index_in_region);
  388. ASSERT(success);
  389. return PageFaultResponse::Continue;
  390. }
  391. kprintf("PV(error) fault in Region{%p}[%u] at V%p\n", region, page_index_in_region, fault.vaddr().get());
  392. return PageFaultResponse::ShouldCrash;
  393. }
  394. RefPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, bool user_accessible, bool should_commit)
  395. {
  396. InterruptDisabler disabler;
  397. ASSERT(!(size % PAGE_SIZE));
  398. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  399. ASSERT(range.is_valid());
  400. RefPtr<Region> region;
  401. if (user_accessible)
  402. region = Region::create_user_accessible(range, name, PROT_READ | PROT_WRITE | PROT_EXEC, false);
  403. else
  404. region = Region::create_kernel_only(range, name, PROT_READ | PROT_WRITE | PROT_EXEC, false);
  405. MM.map_region_at_address(*m_kernel_page_directory, *region, range.base());
  406. // FIXME: It would be cool if these could zero-fill on demand instead.
  407. if (should_commit)
  408. region->commit();
  409. return region;
  410. }
  411. RefPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name)
  412. {
  413. return allocate_kernel_region(size, name, true);
  414. }
  415. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  416. {
  417. for (auto& region : m_user_physical_regions) {
  418. if (!region.contains(page)) {
  419. kprintf(
  420. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  421. page.paddr(), region.lower().get(), region.upper().get());
  422. continue;
  423. }
  424. region.return_page(move(page));
  425. --m_user_physical_pages_used;
  426. return;
  427. }
  428. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr());
  429. ASSERT_NOT_REACHED();
  430. }
  431. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  432. {
  433. InterruptDisabler disabler;
  434. RefPtr<PhysicalPage> page;
  435. for (auto& region : m_user_physical_regions) {
  436. page = region.take_free_page(false);
  437. if (page.is_null())
  438. continue;
  439. }
  440. if (!page) {
  441. if (m_user_physical_regions.is_empty()) {
  442. kprintf("MM: no user physical regions available (?)\n");
  443. }
  444. kprintf("MM: no user physical pages available\n");
  445. ASSERT_NOT_REACHED();
  446. return {};
  447. }
  448. #ifdef MM_DEBUG
  449. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  450. #endif
  451. if (should_zero_fill == ShouldZeroFill::Yes) {
  452. auto* ptr = (u32*)quickmap_page(*page);
  453. fast_u32_fill(ptr, 0, PAGE_SIZE / sizeof(u32));
  454. unquickmap_page();
  455. }
  456. ++m_user_physical_pages_used;
  457. return page;
  458. }
  459. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  460. {
  461. for (auto& region : m_super_physical_regions) {
  462. if (!region.contains(page)) {
  463. kprintf(
  464. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  465. page.paddr(), region.lower().get(), region.upper().get());
  466. continue;
  467. }
  468. region.return_page(move(page));
  469. --m_super_physical_pages_used;
  470. return;
  471. }
  472. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr());
  473. ASSERT_NOT_REACHED();
  474. }
  475. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  476. {
  477. InterruptDisabler disabler;
  478. RefPtr<PhysicalPage> page;
  479. for (auto& region : m_super_physical_regions) {
  480. page = region.take_free_page(true);
  481. if (page.is_null())
  482. continue;
  483. }
  484. if (!page) {
  485. if (m_super_physical_regions.is_empty()) {
  486. kprintf("MM: no super physical regions available (?)\n");
  487. }
  488. kprintf("MM: no super physical pages available\n");
  489. ASSERT_NOT_REACHED();
  490. return {};
  491. }
  492. #ifdef MM_DEBUG
  493. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  494. #endif
  495. fast_u32_fill((u32*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  496. ++m_super_physical_pages_used;
  497. return page;
  498. }
  499. void MemoryManager::enter_process_paging_scope(Process& process)
  500. {
  501. ASSERT(current);
  502. InterruptDisabler disabler;
  503. current->tss().cr3 = process.page_directory().cr3();
  504. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  505. : "memory");
  506. }
  507. void MemoryManager::flush_entire_tlb()
  508. {
  509. asm volatile(
  510. "mov %%cr3, %%eax\n"
  511. "mov %%eax, %%cr3\n" ::
  512. : "%eax", "memory");
  513. }
  514. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  515. {
  516. asm volatile("invlpg %0"
  517. :
  518. : "m"(*(char*)vaddr.get())
  519. : "memory");
  520. }
  521. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr)
  522. {
  523. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  524. pte.set_physical_page_base(paddr.get());
  525. pte.set_present(true);
  526. pte.set_writable(true);
  527. pte.set_user_allowed(false);
  528. flush_tlb(vaddr);
  529. }
  530. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  531. {
  532. ASSERT_INTERRUPTS_DISABLED();
  533. ASSERT(!m_quickmap_in_use);
  534. m_quickmap_in_use = true;
  535. auto page_vaddr = m_quickmap_addr;
  536. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  537. pte.set_physical_page_base(physical_page.paddr().get());
  538. pte.set_present(true);
  539. pte.set_writable(true);
  540. pte.set_user_allowed(false);
  541. flush_tlb(page_vaddr);
  542. ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
  543. #ifdef MM_DEBUG
  544. dbgprintf("MM: >> quickmap_page V%p => P%x @ PTE=%p\n", page_vaddr, physical_page.paddr().get(), pte.ptr());
  545. #endif
  546. return page_vaddr.as_ptr();
  547. }
  548. void MemoryManager::unquickmap_page()
  549. {
  550. ASSERT_INTERRUPTS_DISABLED();
  551. ASSERT(m_quickmap_in_use);
  552. auto page_vaddr = m_quickmap_addr;
  553. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  554. #ifdef MM_DEBUG
  555. auto old_physical_address = pte.physical_page_base();
  556. #endif
  557. pte.set_physical_page_base(0);
  558. pte.set_present(false);
  559. pte.set_writable(false);
  560. flush_tlb(page_vaddr);
  561. #ifdef MM_DEBUG
  562. dbgprintf("MM: >> unquickmap_page V%p =/> P%x\n", page_vaddr, old_physical_address);
  563. #endif
  564. m_quickmap_in_use = false;
  565. }
  566. void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_region)
  567. {
  568. ASSERT(region.page_directory());
  569. InterruptDisabler disabler;
  570. auto page_vaddr = region.vaddr().offset(page_index_in_region * PAGE_SIZE);
  571. auto& pte = ensure_pte(*region.page_directory(), page_vaddr);
  572. auto& physical_page = region.vmobject().physical_pages()[page_index_in_region];
  573. ASSERT(physical_page);
  574. pte.set_physical_page_base(physical_page->paddr().get());
  575. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  576. if (region.should_cow(page_index_in_region))
  577. pte.set_writable(false);
  578. else
  579. pte.set_writable(region.is_writable());
  580. pte.set_user_allowed(region.is_user_accessible());
  581. region.page_directory()->flush(page_vaddr);
  582. #ifdef MM_DEBUG
  583. dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' V%p => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_vaddr.get(), physical_page->paddr().get(), physical_page.ptr());
  584. #endif
  585. }
  586. void MemoryManager::remap_region(PageDirectory& page_directory, Region& region)
  587. {
  588. InterruptDisabler disabler;
  589. ASSERT(region.page_directory() == &page_directory);
  590. map_region_at_address(page_directory, region, region.vaddr());
  591. }
  592. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, VirtualAddress vaddr)
  593. {
  594. InterruptDisabler disabler;
  595. region.set_page_directory(page_directory);
  596. auto& vmo = region.vmobject();
  597. #ifdef MM_DEBUG
  598. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  599. #endif
  600. for (size_t i = 0; i < region.page_count(); ++i) {
  601. auto page_vaddr = vaddr.offset(i * PAGE_SIZE);
  602. auto& pte = ensure_pte(page_directory, page_vaddr);
  603. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  604. if (physical_page) {
  605. pte.set_physical_page_base(physical_page->paddr().get());
  606. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  607. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  608. if (region.should_cow(region.first_page_index() + i))
  609. pte.set_writable(false);
  610. else
  611. pte.set_writable(region.is_writable());
  612. } else {
  613. pte.set_physical_page_base(0);
  614. pte.set_present(false);
  615. pte.set_writable(region.is_writable());
  616. }
  617. pte.set_user_allowed(region.is_user_accessible());
  618. page_directory.flush(page_vaddr);
  619. #ifdef MM_DEBUG
  620. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' V%p => P%x (@%p)\n", &page_directory, region.name().characters(), page_vaddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  621. #endif
  622. }
  623. }
  624. bool MemoryManager::unmap_region(Region& region)
  625. {
  626. ASSERT(region.page_directory());
  627. InterruptDisabler disabler;
  628. for (size_t i = 0; i < region.page_count(); ++i) {
  629. auto vaddr = region.vaddr().offset(i * PAGE_SIZE);
  630. auto& pte = ensure_pte(*region.page_directory(), vaddr);
  631. pte.set_physical_page_base(0);
  632. pte.set_present(false);
  633. pte.set_writable(false);
  634. pte.set_user_allowed(false);
  635. region.page_directory()->flush(vaddr);
  636. #ifdef MM_DEBUG
  637. auto& physical_page = region.vmobject().physical_pages()[region.first_page_index() + i];
  638. dbgprintf("MM: >> Unmapped V%p => P%x <<\n", vaddr, physical_page ? physical_page->paddr().get() : 0);
  639. #endif
  640. }
  641. region.page_directory()->range_allocator().deallocate({ region.vaddr(), region.size() });
  642. region.release_page_directory();
  643. return true;
  644. }
  645. bool MemoryManager::map_region(Process& process, Region& region)
  646. {
  647. map_region_at_address(process.page_directory(), region, region.vaddr());
  648. return true;
  649. }
  650. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
  651. {
  652. auto* region = region_from_vaddr(process, vaddr);
  653. return region && region->is_readable();
  654. }
  655. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
  656. {
  657. auto* region = region_from_vaddr(process, vaddr);
  658. return region && region->is_writable();
  659. }
  660. void MemoryManager::register_vmo(VMObject& vmo)
  661. {
  662. InterruptDisabler disabler;
  663. m_vmobjects.append(&vmo);
  664. }
  665. void MemoryManager::unregister_vmo(VMObject& vmo)
  666. {
  667. InterruptDisabler disabler;
  668. m_vmobjects.remove(&vmo);
  669. }
  670. void MemoryManager::register_region(Region& region)
  671. {
  672. InterruptDisabler disabler;
  673. if (region.vaddr().get() >= 0xc0000000)
  674. m_kernel_regions.append(&region);
  675. else
  676. m_user_regions.append(&region);
  677. }
  678. void MemoryManager::unregister_region(Region& region)
  679. {
  680. InterruptDisabler disabler;
  681. if (region.vaddr().get() >= 0xc0000000)
  682. m_kernel_regions.remove(&region);
  683. else
  684. m_user_regions.remove(&region);
  685. }
  686. ProcessPagingScope::ProcessPagingScope(Process& process)
  687. {
  688. ASSERT(current);
  689. MM.enter_process_paging_scope(process);
  690. }
  691. ProcessPagingScope::~ProcessPagingScope()
  692. {
  693. MM.enter_process_paging_scope(current->process());
  694. }