Process.cpp 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532
  1. #include "types.h"
  2. #include "Process.h"
  3. #include "kmalloc.h"
  4. #include "StdLib.h"
  5. #include "i386.h"
  6. #include "system.h"
  7. #include <Kernel/FileDescriptor.h>
  8. #include <Kernel/VirtualFileSystem.h>
  9. #include <Kernel/NullDevice.h>
  10. #include "ELFLoader.h"
  11. #include "MemoryManager.h"
  12. #include "i8253.h"
  13. #include "RTC.h"
  14. #include <AK/StdLibExtras.h>
  15. #include <LibC/signal_numbers.h>
  16. #include <LibC/errno_numbers.h>
  17. #include "Syscall.h"
  18. #include "Scheduler.h"
  19. #include "FIFO.h"
  20. #include "KSyms.h"
  21. #include <Kernel/Socket.h>
  22. #include "MasterPTY.h"
  23. #include "elf.h"
  24. #include <AK/StringBuilder.h>
  25. //#define DEBUG_IO
  26. //#define TASK_DEBUG
  27. //#define FORK_DEBUG
  28. #define SIGNAL_DEBUG
  29. #define MAX_PROCESS_GIDS 32
  30. //#define SHARED_BUFFER_DEBUG
  31. static const dword default_kernel_stack_size = 16384;
  32. static const dword default_userspace_stack_size = 65536;
  33. static pid_t next_pid;
  34. InlineLinkedList<Process>* g_processes;
  35. static String* s_hostname;
  36. static Lock* s_hostname_lock;
  37. CoolGlobals* g_cool_globals;
  38. void Process::initialize()
  39. {
  40. #ifdef COOL_GLOBALS
  41. g_cool_globals = reinterpret_cast<CoolGlobals*>(0x1000);
  42. #endif
  43. next_pid = 0;
  44. g_processes = new InlineLinkedList<Process>;
  45. s_hostname = new String("courage");
  46. s_hostname_lock = new Lock;
  47. Scheduler::initialize();
  48. }
  49. Vector<pid_t> Process::all_pids()
  50. {
  51. Vector<pid_t> pids;
  52. pids.ensure_capacity(system.nprocess);
  53. InterruptDisabler disabler;
  54. for (auto* process = g_processes->head(); process; process = process->next())
  55. pids.append(process->pid());
  56. return pids;
  57. }
  58. Vector<Process*> Process::all_processes()
  59. {
  60. Vector<Process*> processes;
  61. processes.ensure_capacity(system.nprocess);
  62. InterruptDisabler disabler;
  63. for (auto* process = g_processes->head(); process; process = process->next())
  64. processes.append(process);
  65. return processes;
  66. }
  67. Region* Process::allocate_region(LinearAddress laddr, size_t size, String&& name, bool is_readable, bool is_writable, bool commit)
  68. {
  69. size = PAGE_ROUND_UP(size);
  70. // FIXME: This needs sanity checks. What if this overlaps existing regions?
  71. if (laddr.is_null()) {
  72. laddr = m_next_region;
  73. m_next_region = m_next_region.offset(size).offset(PAGE_SIZE);
  74. }
  75. laddr.mask(0xfffff000);
  76. m_regions.append(adopt(*new Region(laddr, size, move(name), is_readable, is_writable)));
  77. MM.map_region(*this, *m_regions.last());
  78. if (commit)
  79. m_regions.last()->commit();
  80. return m_regions.last().ptr();
  81. }
  82. Region* Process::allocate_file_backed_region(LinearAddress laddr, size_t size, RetainPtr<Inode>&& inode, String&& name, bool is_readable, bool is_writable)
  83. {
  84. size = PAGE_ROUND_UP(size);
  85. // FIXME: This needs sanity checks. What if this overlaps existing regions?
  86. if (laddr.is_null()) {
  87. laddr = m_next_region;
  88. m_next_region = m_next_region.offset(size).offset(PAGE_SIZE);
  89. }
  90. laddr.mask(0xfffff000);
  91. m_regions.append(adopt(*new Region(laddr, size, move(inode), move(name), is_readable, is_writable)));
  92. MM.map_region(*this, *m_regions.last());
  93. return m_regions.last().ptr();
  94. }
  95. Region* Process::allocate_region_with_vmo(LinearAddress laddr, size_t size, Retained<VMObject>&& vmo, size_t offset_in_vmo, String&& name, bool is_readable, bool is_writable)
  96. {
  97. size = PAGE_ROUND_UP(size);
  98. // FIXME: This needs sanity checks. What if this overlaps existing regions?
  99. if (laddr.is_null()) {
  100. laddr = m_next_region;
  101. m_next_region = m_next_region.offset(size).offset(PAGE_SIZE);
  102. }
  103. laddr.mask(0xfffff000);
  104. offset_in_vmo &= PAGE_MASK;
  105. size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE;
  106. m_regions.append(adopt(*new Region(laddr, size, move(vmo), offset_in_vmo, move(name), is_readable, is_writable)));
  107. MM.map_region(*this, *m_regions.last());
  108. return m_regions.last().ptr();
  109. }
  110. bool Process::deallocate_region(Region& region)
  111. {
  112. InterruptDisabler disabler;
  113. for (int i = 0; i < m_regions.size(); ++i) {
  114. if (m_regions[i].ptr() == &region) {
  115. MM.unmap_region(region);
  116. m_regions.remove(i);
  117. return true;
  118. }
  119. }
  120. return false;
  121. }
  122. Region* Process::region_from_range(LinearAddress laddr, size_t size)
  123. {
  124. size = PAGE_ROUND_UP(size);
  125. for (auto& region : m_regions) {
  126. if (region->laddr() == laddr && region->size() == size)
  127. return region.ptr();
  128. }
  129. return nullptr;
  130. }
  131. int Process::sys$set_mmap_name(void* addr, size_t size, const char* name)
  132. {
  133. if (!validate_read_str(name))
  134. return -EFAULT;
  135. auto* region = region_from_range(LinearAddress((dword)addr), size);
  136. if (!region)
  137. return -EINVAL;
  138. region->set_name(String(name));
  139. return 0;
  140. }
  141. void* Process::sys$mmap(const Syscall::SC_mmap_params* params)
  142. {
  143. if (!validate_read(params, sizeof(Syscall::SC_mmap_params)))
  144. return (void*)-EFAULT;
  145. void* addr = (void*)params->addr;
  146. size_t size = params->size;
  147. int prot = params->prot;
  148. int flags = params->flags;
  149. int fd = params->fd;
  150. off_t offset = params->offset;
  151. if (size == 0)
  152. return (void*)-EINVAL;
  153. if ((dword)addr & ~PAGE_MASK)
  154. return (void*)-EINVAL;
  155. if (flags & MAP_ANONYMOUS) {
  156. auto* region = allocate_region(LinearAddress((dword)addr), size, "mmap", prot & PROT_READ, prot & PROT_WRITE, false);
  157. if (!region)
  158. return (void*)-ENOMEM;
  159. if (flags & MAP_SHARED)
  160. region->set_shared(true);
  161. return region->laddr().as_ptr();
  162. }
  163. if (offset & ~PAGE_MASK)
  164. return (void*)-EINVAL;
  165. auto* descriptor = file_descriptor(fd);
  166. if (!descriptor)
  167. return (void*)-EBADF;
  168. if (!descriptor->supports_mmap())
  169. return (void*)-ENODEV;
  170. auto* region = descriptor->mmap(*this, LinearAddress((dword)addr), offset, size, prot);
  171. if (!region)
  172. return (void*)-ENOMEM;
  173. if (flags & MAP_SHARED)
  174. region->set_shared(true);
  175. return region->laddr().as_ptr();
  176. }
  177. int Process::sys$munmap(void* addr, size_t size)
  178. {
  179. auto* region = region_from_range(LinearAddress((dword)addr), size);
  180. if (!region)
  181. return -EINVAL;
  182. if (!deallocate_region(*region))
  183. return -EINVAL;
  184. return 0;
  185. }
  186. int Process::sys$gethostname(char* buffer, ssize_t size)
  187. {
  188. if (size < 0)
  189. return -EINVAL;
  190. if (!validate_write(buffer, size))
  191. return -EFAULT;
  192. LOCKER(*s_hostname_lock);
  193. if (size < (s_hostname->length() + 1))
  194. return -ENAMETOOLONG;
  195. strcpy(buffer, s_hostname->characters());
  196. return 0;
  197. }
  198. Process* Process::fork(RegisterDump& regs)
  199. {
  200. auto* child = new Process(String(m_name), m_uid, m_gid, m_pid, m_ring, m_cwd.copy_ref(), m_executable.copy_ref(), m_tty, this);
  201. if (!child)
  202. return nullptr;
  203. memcpy(child->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  204. child->m_signal_mask = m_signal_mask;
  205. #ifdef FORK_DEBUG
  206. dbgprintf("fork: child=%p\n", child);
  207. #endif
  208. for (auto& region : m_regions) {
  209. #ifdef FORK_DEBUG
  210. dbgprintf("fork: cloning Region{%p} \"%s\" L%x\n", region.ptr(), region->name().characters(), region->laddr().get());
  211. #endif
  212. auto cloned_region = region->clone();
  213. child->m_regions.append(move(cloned_region));
  214. MM.map_region(*child, *child->m_regions.last());
  215. if (region.ptr() == m_display_framebuffer_region.ptr())
  216. child->m_display_framebuffer_region = child->m_regions.last().copy_ref();
  217. }
  218. for (auto gid : m_gids)
  219. child->m_gids.set(gid);
  220. child->m_tss.eax = 0; // fork() returns 0 in the child :^)
  221. child->m_tss.ebx = regs.ebx;
  222. child->m_tss.ecx = regs.ecx;
  223. child->m_tss.edx = regs.edx;
  224. child->m_tss.ebp = regs.ebp;
  225. child->m_tss.esp = regs.esp_if_crossRing;
  226. child->m_tss.esi = regs.esi;
  227. child->m_tss.edi = regs.edi;
  228. child->m_tss.eflags = regs.eflags;
  229. child->m_tss.eip = regs.eip;
  230. child->m_tss.cs = regs.cs;
  231. child->m_tss.ds = regs.ds;
  232. child->m_tss.es = regs.es;
  233. child->m_tss.fs = regs.fs;
  234. child->m_tss.gs = regs.gs;
  235. child->m_tss.ss = regs.ss_if_crossRing;
  236. child->m_fpu_state = m_fpu_state;
  237. child->m_has_used_fpu = m_has_used_fpu;
  238. #ifdef FORK_DEBUG
  239. dbgprintf("fork: child will begin executing at %w:%x with stack %w:%x\n", child->m_tss.cs, child->m_tss.eip, child->m_tss.ss, child->m_tss.esp);
  240. #endif
  241. {
  242. InterruptDisabler disabler;
  243. g_processes->prepend(child);
  244. system.nprocess++;
  245. }
  246. #ifdef TASK_DEBUG
  247. kprintf("Process %u (%s) forked from %u @ %p\n", child->pid(), child->name().characters(), m_pid, child->m_tss.eip);
  248. #endif
  249. return child;
  250. }
  251. pid_t Process::sys$fork(RegisterDump& regs)
  252. {
  253. auto* child = fork(regs);
  254. ASSERT(child);
  255. return child->pid();
  256. }
  257. int Process::do_exec(String path, Vector<String> arguments, Vector<String> environment)
  258. {
  259. ASSERT(is_ring3());
  260. auto parts = path.split('/');
  261. if (parts.is_empty())
  262. return -ENOENT;
  263. int error;
  264. auto descriptor = VFS::the().open(path, error, 0, 0, cwd_inode());
  265. if (!descriptor) {
  266. ASSERT(error != 0);
  267. return error;
  268. }
  269. if (!descriptor->metadata().may_execute(m_euid, m_gids))
  270. return -EACCES;
  271. if (!descriptor->metadata().size) {
  272. kprintf("exec() of 0-length binaries not supported\n");
  273. return -ENOTIMPL;
  274. }
  275. dword entry_eip = 0;
  276. // FIXME: Is there a race here?
  277. auto old_page_directory = move(m_page_directory);
  278. m_page_directory = PageDirectory::create();
  279. #ifdef MM_DEBUG
  280. dbgprintf("Process %u exec: PD=%x created\n", pid(), m_page_directory.ptr());
  281. #endif
  282. ProcessPagingScope paging_scope(*this);
  283. auto vmo = VMObject::create_file_backed(descriptor->inode());
  284. vmo->set_name(descriptor->absolute_path());
  285. RetainPtr<Region> region = allocate_region_with_vmo(LinearAddress(), descriptor->metadata().size, vmo.copy_ref(), 0, "executable", true, false);
  286. // FIXME: Should we consider doing on-demand paging here? Is it actually useful?
  287. bool success = region->page_in();
  288. ASSERT(success);
  289. {
  290. // Okay, here comes the sleight of hand, pay close attention..
  291. auto old_regions = move(m_regions);
  292. ELFLoader loader(region->laddr().as_ptr());
  293. loader.map_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, size_t offset_in_image, bool is_readable, bool is_writable, const String& name) {
  294. ASSERT(size);
  295. ASSERT(alignment == PAGE_SIZE);
  296. size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div?
  297. (void) allocate_region_with_vmo(laddr, size, vmo.copy_ref(), offset_in_image, String(name), is_readable, is_writable);
  298. return laddr.as_ptr();
  299. };
  300. loader.alloc_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) {
  301. ASSERT(size);
  302. ASSERT(alignment == PAGE_SIZE);
  303. size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div?
  304. (void) allocate_region(laddr, size, String(name), is_readable, is_writable);
  305. return laddr.as_ptr();
  306. };
  307. bool success = loader.load();
  308. if (!success) {
  309. m_page_directory = move(old_page_directory);
  310. // FIXME: RAII this somehow instead.
  311. ASSERT(current == this);
  312. MM.enter_process_paging_scope(*this);
  313. m_regions = move(old_regions);
  314. kprintf("sys$execve: Failure loading %s\n", path.characters());
  315. return -ENOEXEC;
  316. }
  317. entry_eip = loader.entry().get();
  318. if (!entry_eip) {
  319. m_page_directory = move(old_page_directory);
  320. // FIXME: RAII this somehow instead.
  321. ASSERT(current == this);
  322. MM.enter_process_paging_scope(*this);
  323. m_regions = move(old_regions);
  324. return -ENOEXEC;
  325. }
  326. }
  327. m_signal_stack_kernel_region = nullptr;
  328. m_signal_stack_user_region = nullptr;
  329. m_display_framebuffer_region = nullptr;
  330. set_default_signal_dispositions();
  331. m_signal_mask = 0xffffffff;
  332. m_pending_signals = 0;
  333. for (int i = 0; i < m_fds.size(); ++i) {
  334. auto& daf = m_fds[i];
  335. if (daf.descriptor && daf.flags & FD_CLOEXEC) {
  336. daf.descriptor->close();
  337. daf = { };
  338. }
  339. }
  340. // We cli() manually here because we don't want to get interrupted between do_exec() and Schedule::yield().
  341. // The reason is that the task redirection we've set up above will be clobbered by the timer IRQ.
  342. // If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec().
  343. if (current == this)
  344. cli();
  345. Scheduler::prepare_to_modify_tss(*this);
  346. m_name = parts.take_last();
  347. dword old_esp0 = m_tss.esp0;
  348. memset(&m_tss, 0, sizeof(m_tss));
  349. m_tss.eflags = 0x0202;
  350. m_tss.eip = entry_eip;
  351. m_tss.cs = 0x1b;
  352. m_tss.ds = 0x23;
  353. m_tss.es = 0x23;
  354. m_tss.fs = 0x23;
  355. m_tss.gs = 0x23;
  356. m_tss.ss = 0x23;
  357. m_tss.cr3 = page_directory().cr3();
  358. make_userspace_stack(move(arguments), move(environment));
  359. m_tss.ss0 = 0x10;
  360. m_tss.esp0 = old_esp0;
  361. m_tss.ss2 = m_pid;
  362. m_executable = descriptor->inode();
  363. if (descriptor->metadata().is_setuid())
  364. m_euid = descriptor->metadata().uid;
  365. if (descriptor->metadata().is_setgid())
  366. m_egid = descriptor->metadata().gid;
  367. #ifdef TASK_DEBUG
  368. kprintf("Process %u (%s) exec'd %s @ %p\n", pid(), name().characters(), path.characters(), m_tss.eip);
  369. #endif
  370. set_state(Skip1SchedulerPass);
  371. return 0;
  372. }
  373. void Process::make_userspace_stack(Vector<String> arguments, Vector<String> environment)
  374. {
  375. auto* region = allocate_region(LinearAddress(), default_userspace_stack_size, "stack");
  376. ASSERT(region);
  377. m_stack_top3 = region->laddr().offset(default_userspace_stack_size).get();
  378. m_tss.esp = m_stack_top3;
  379. char* stack_base = (char*)region->laddr().get();
  380. int argc = arguments.size();
  381. char** argv = (char**)stack_base;
  382. char** env = argv + arguments.size() + 1;
  383. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  384. size_t total_blob_size = 0;
  385. for (auto& a : arguments)
  386. total_blob_size += a.length() + 1;
  387. for (auto& e : environment)
  388. total_blob_size += e.length() + 1;
  389. size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
  390. // FIXME: It would be better if this didn't make us panic.
  391. ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
  392. for (int i = 0; i < arguments.size(); ++i) {
  393. argv[i] = bufptr;
  394. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  395. bufptr += arguments[i].length();
  396. *(bufptr++) = '\0';
  397. }
  398. argv[arguments.size()] = nullptr;
  399. for (int i = 0; i < environment.size(); ++i) {
  400. env[i] = bufptr;
  401. memcpy(bufptr, environment[i].characters(), environment[i].length());
  402. bufptr += environment[i].length();
  403. *(bufptr++) = '\0';
  404. }
  405. env[environment.size()] = nullptr;
  406. // NOTE: The stack needs to be 16-byte aligned.
  407. push_value_on_stack((dword)env);
  408. push_value_on_stack((dword)argv);
  409. push_value_on_stack((dword)argc);
  410. push_value_on_stack(0);
  411. }
  412. int Process::exec(String path, Vector<String> arguments, Vector<String> environment)
  413. {
  414. // The bulk of exec() is done by do_exec(), which ensures that all locals
  415. // are cleaned up by the time we yield-teleport below.
  416. int rc = do_exec(move(path), move(arguments), move(environment));
  417. if (rc < 0)
  418. return rc;
  419. if (current == this) {
  420. Scheduler::yield();
  421. ASSERT_NOT_REACHED();
  422. }
  423. return 0;
  424. }
  425. int Process::sys$execve(const char* filename, const char** argv, const char** envp)
  426. {
  427. // NOTE: Be extremely careful with allocating any kernel memory in exec().
  428. // On success, the kernel stack will be lost.
  429. if (!validate_read_str(filename))
  430. return -EFAULT;
  431. if (argv) {
  432. if (!validate_read_typed(argv))
  433. return -EFAULT;
  434. for (size_t i = 0; argv[i]; ++i) {
  435. if (!validate_read_str(argv[i]))
  436. return -EFAULT;
  437. }
  438. }
  439. if (envp) {
  440. if (!validate_read_typed(envp))
  441. return -EFAULT;
  442. for (size_t i = 0; envp[i]; ++i) {
  443. if (!validate_read_str(envp[i]))
  444. return -EFAULT;
  445. }
  446. }
  447. String path(filename);
  448. Vector<String> arguments;
  449. Vector<String> environment;
  450. {
  451. auto parts = path.split('/');
  452. if (argv) {
  453. for (size_t i = 0; argv[i]; ++i) {
  454. arguments.append(argv[i]);
  455. }
  456. } else {
  457. arguments.append(parts.last());
  458. }
  459. if (envp) {
  460. for (size_t i = 0; envp[i]; ++i)
  461. environment.append(envp[i]);
  462. }
  463. }
  464. int rc = exec(move(path), move(arguments), move(environment));
  465. ASSERT(rc < 0); // We should never continue after a successful exec!
  466. return rc;
  467. }
  468. Process* Process::create_user_process(const String& path, uid_t uid, gid_t gid, pid_t parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
  469. {
  470. // FIXME: Don't split() the path twice (sys$spawn also does it...)
  471. auto parts = path.split('/');
  472. if (arguments.is_empty()) {
  473. arguments.append(parts.last());
  474. }
  475. RetainPtr<Inode> cwd;
  476. {
  477. InterruptDisabler disabler;
  478. if (auto* parent = Process::from_pid(parent_pid))
  479. cwd = parent->m_cwd.copy_ref();
  480. }
  481. if (!cwd)
  482. cwd = VFS::the().root_inode();
  483. auto* process = new Process(parts.take_last(), uid, gid, parent_pid, Ring3, move(cwd), nullptr, tty);
  484. error = process->exec(path, move(arguments), move(environment));
  485. if (error != 0) {
  486. delete process;
  487. return nullptr;
  488. }
  489. {
  490. InterruptDisabler disabler;
  491. g_processes->prepend(process);
  492. system.nprocess++;
  493. }
  494. #ifdef TASK_DEBUG
  495. kprintf("Process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip);
  496. #endif
  497. error = 0;
  498. return process;
  499. }
  500. Process* Process::create_kernel_process(String&& name, void (*e)())
  501. {
  502. auto* process = new Process(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0);
  503. process->m_tss.eip = (dword)e;
  504. if (process->pid() != 0) {
  505. {
  506. InterruptDisabler disabler;
  507. g_processes->prepend(process);
  508. system.nprocess++;
  509. }
  510. #ifdef TASK_DEBUG
  511. kprintf("Kernel process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip);
  512. #endif
  513. }
  514. return process;
  515. }
  516. Process::Process(String&& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring, RetainPtr<Inode>&& cwd, RetainPtr<Inode>&& executable, TTY* tty, Process* fork_parent)
  517. : m_name(move(name))
  518. , m_pid(next_pid++) // FIXME: RACE: This variable looks racy!
  519. , m_uid(uid)
  520. , m_gid(gid)
  521. , m_euid(uid)
  522. , m_egid(gid)
  523. , m_state(Runnable)
  524. , m_ring(ring)
  525. , m_cwd(move(cwd))
  526. , m_executable(move(executable))
  527. , m_tty(tty)
  528. , m_ppid(ppid)
  529. {
  530. set_default_signal_dispositions();
  531. memset(&m_fpu_state, 0, sizeof(FPUState));
  532. m_gids.set(m_gid);
  533. if (fork_parent) {
  534. m_sid = fork_parent->m_sid;
  535. m_pgid = fork_parent->m_pgid;
  536. } else {
  537. // FIXME: Use a ProcessHandle? Presumably we're executing *IN* the parent right now though..
  538. InterruptDisabler disabler;
  539. if (auto* parent = Process::from_pid(m_ppid)) {
  540. m_sid = parent->m_sid;
  541. m_pgid = parent->m_pgid;
  542. }
  543. }
  544. m_page_directory = PageDirectory::create();
  545. #ifdef MM_DEBUG
  546. dbgprintf("Process %u ctor: PD=%x created\n", pid(), m_page_directory.ptr());
  547. #endif
  548. if (fork_parent) {
  549. m_fds.resize(fork_parent->m_fds.size());
  550. for (int i = 0; i < fork_parent->m_fds.size(); ++i) {
  551. if (!fork_parent->m_fds[i].descriptor)
  552. continue;
  553. #ifdef FORK_DEBUG
  554. dbgprintf("fork: cloning fd %u... (%p) istty? %u\n", i, fork_parent->m_fds[i].descriptor.ptr(), fork_parent->m_fds[i].descriptor->is_tty());
  555. #endif
  556. m_fds[i].descriptor = fork_parent->m_fds[i].descriptor->clone();
  557. m_fds[i].flags = fork_parent->m_fds[i].flags;
  558. }
  559. } else {
  560. m_fds.resize(m_max_open_file_descriptors);
  561. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
  562. int error;
  563. m_fds[0].set(device_to_use_as_tty.open(error, O_RDONLY));
  564. m_fds[1].set(device_to_use_as_tty.open(error, O_WRONLY));
  565. m_fds[2].set(device_to_use_as_tty.open(error, O_WRONLY));
  566. }
  567. if (fork_parent)
  568. m_next_region = fork_parent->m_next_region;
  569. else
  570. m_next_region = LinearAddress(0x10000000);
  571. if (fork_parent) {
  572. memcpy(&m_tss, &fork_parent->m_tss, sizeof(m_tss));
  573. } else {
  574. memset(&m_tss, 0, sizeof(m_tss));
  575. // Only IF is set when a process boots.
  576. m_tss.eflags = 0x0202;
  577. word cs, ds, ss;
  578. if (is_ring0()) {
  579. cs = 0x08;
  580. ds = 0x10;
  581. ss = 0x10;
  582. } else {
  583. cs = 0x1b;
  584. ds = 0x23;
  585. ss = 0x23;
  586. }
  587. m_tss.ds = ds;
  588. m_tss.es = ds;
  589. m_tss.fs = ds;
  590. m_tss.gs = ds;
  591. m_tss.ss = ss;
  592. m_tss.cs = cs;
  593. }
  594. m_tss.cr3 = page_directory().cr3();
  595. if (is_ring0()) {
  596. // FIXME: This memory is leaked.
  597. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  598. dword stack_bottom = (dword)kmalloc_eternal(default_kernel_stack_size);
  599. m_stack_top0 = (stack_bottom + default_kernel_stack_size) & 0xffffff8;
  600. m_tss.esp = m_stack_top0;
  601. } else {
  602. // Ring3 processes need a separate stack for Ring0.
  603. m_kernel_stack = kmalloc(default_kernel_stack_size);
  604. m_stack_top0 = ((dword)m_kernel_stack + default_kernel_stack_size) & 0xffffff8;
  605. m_tss.ss0 = 0x10;
  606. m_tss.esp0 = m_stack_top0;
  607. }
  608. if (fork_parent) {
  609. m_sid = fork_parent->m_sid;
  610. m_pgid = fork_parent->m_pgid;
  611. m_umask = fork_parent->m_umask;
  612. }
  613. // HACK: Ring2 SS in the TSS is the current PID.
  614. m_tss.ss2 = m_pid;
  615. m_far_ptr.offset = 0x98765432;
  616. }
  617. Process::~Process()
  618. {
  619. {
  620. InterruptDisabler disabler;
  621. system.nprocess--;
  622. }
  623. if (g_last_fpu_process == this)
  624. g_last_fpu_process = nullptr;
  625. if (selector())
  626. gdt_free_entry(selector());
  627. if (m_kernel_stack) {
  628. kfree(m_kernel_stack);
  629. m_kernel_stack = nullptr;
  630. }
  631. }
  632. void Process::dump_regions()
  633. {
  634. kprintf("Process %s(%u) regions:\n", name().characters(), pid());
  635. kprintf("BEGIN END SIZE NAME\n");
  636. for (auto& region : m_regions) {
  637. kprintf("%x -- %x %x %s\n",
  638. region->laddr().get(),
  639. region->laddr().offset(region->size() - 1).get(),
  640. region->size(),
  641. region->name().characters());
  642. }
  643. }
  644. void Process::sys$exit(int status)
  645. {
  646. cli();
  647. #ifdef TASK_DEBUG
  648. kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status);
  649. #endif
  650. m_termination_status = status;
  651. m_termination_signal = 0;
  652. die();
  653. ASSERT_NOT_REACHED();
  654. }
  655. void Process::terminate_due_to_signal(byte signal)
  656. {
  657. ASSERT_INTERRUPTS_DISABLED();
  658. ASSERT(signal < 32);
  659. dbgprintf("terminate_due_to_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
  660. m_termination_status = 0;
  661. m_termination_signal = signal;
  662. die();
  663. }
  664. void Process::send_signal(byte signal, Process* sender)
  665. {
  666. ASSERT(signal < 32);
  667. if (sender)
  668. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, name().characters(), pid());
  669. else
  670. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, name().characters(), pid());
  671. InterruptDisabler disabler;
  672. m_pending_signals |= 1 << signal;
  673. }
  674. bool Process::has_unmasked_pending_signals() const
  675. {
  676. return m_pending_signals & m_signal_mask;
  677. }
  678. ShouldUnblockProcess Process::dispatch_one_pending_signal()
  679. {
  680. ASSERT_INTERRUPTS_DISABLED();
  681. dword signal_candidates = m_pending_signals & m_signal_mask;
  682. ASSERT(signal_candidates);
  683. byte signal = 0;
  684. for (; signal < 32; ++signal) {
  685. if (signal_candidates & (1 << signal)) {
  686. break;
  687. }
  688. }
  689. return dispatch_signal(signal);
  690. }
  691. ShouldUnblockProcess Process::dispatch_signal(byte signal)
  692. {
  693. ASSERT_INTERRUPTS_DISABLED();
  694. ASSERT(signal < 32);
  695. dbgprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
  696. auto& action = m_signal_action_data[signal];
  697. // FIXME: Implement SA_SIGINFO signal handlers.
  698. ASSERT(!(action.flags & SA_SIGINFO));
  699. // Mark this signal as handled.
  700. m_pending_signals &= ~(1 << signal);
  701. auto handler_laddr = action.handler_or_sigaction;
  702. if (handler_laddr.is_null()) {
  703. // FIXME: Is termination really always the appropriate action?
  704. terminate_due_to_signal(signal);
  705. return ShouldUnblockProcess::No;
  706. }
  707. if (handler_laddr.as_ptr() == SIG_IGN) {
  708. dbgprintf("%s(%u) ignored signal %u\n", name().characters(), pid(), signal);
  709. return ShouldUnblockProcess::Yes;
  710. }
  711. Scheduler::prepare_to_modify_tss(*this);
  712. word ret_cs = m_tss.cs;
  713. dword ret_eip = m_tss.eip;
  714. dword ret_eflags = m_tss.eflags;
  715. bool interrupting_in_kernel = (ret_cs & 3) == 0;
  716. if (interrupting_in_kernel) {
  717. dbgprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
  718. ASSERT(is_blocked());
  719. m_tss_to_resume_kernel = m_tss;
  720. #ifdef SIGNAL_DEBUG
  721. dbgprintf("resume tss pc: %w:%x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel.eip);
  722. #endif
  723. }
  724. ProcessPagingScope paging_scope(*this);
  725. if (interrupting_in_kernel) {
  726. if (!m_signal_stack_user_region) {
  727. m_signal_stack_user_region = allocate_region(LinearAddress(), default_userspace_stack_size, "signal stack (user)");
  728. ASSERT(m_signal_stack_user_region);
  729. m_signal_stack_kernel_region = allocate_region(LinearAddress(), default_userspace_stack_size, "signal stack (kernel)");
  730. ASSERT(m_signal_stack_user_region);
  731. }
  732. m_tss.ss = 0x23;
  733. m_tss.esp = m_signal_stack_user_region->laddr().offset(default_userspace_stack_size).get() & 0xfffffff8;
  734. m_tss.ss0 = 0x10;
  735. m_tss.esp0 = m_signal_stack_kernel_region->laddr().offset(default_userspace_stack_size).get() & 0xfffffff8;
  736. push_value_on_stack(ret_eflags);
  737. push_value_on_stack(ret_cs);
  738. push_value_on_stack(ret_eip);
  739. } else {
  740. push_value_on_stack(ret_cs);
  741. push_value_on_stack(ret_eip);
  742. push_value_on_stack(ret_eflags);
  743. }
  744. // PUSHA
  745. dword old_esp = m_tss.esp;
  746. push_value_on_stack(m_tss.eax);
  747. push_value_on_stack(m_tss.ecx);
  748. push_value_on_stack(m_tss.edx);
  749. push_value_on_stack(m_tss.ebx);
  750. push_value_on_stack(old_esp);
  751. push_value_on_stack(m_tss.ebp);
  752. push_value_on_stack(m_tss.esi);
  753. push_value_on_stack(m_tss.edi);
  754. m_tss.eax = (dword)signal;
  755. m_tss.cs = 0x1b;
  756. m_tss.ds = 0x23;
  757. m_tss.es = 0x23;
  758. m_tss.fs = 0x23;
  759. m_tss.gs = 0x23;
  760. m_tss.eip = handler_laddr.get();
  761. if (m_return_to_ring3_from_signal_trampoline.is_null()) {
  762. // FIXME: This should be a global trampoline shared by all processes, not one created per process!
  763. // FIXME: Remap as read-only after setup.
  764. auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "signal_trampoline", true, true);
  765. m_return_to_ring3_from_signal_trampoline = region->laddr();
  766. byte* code_ptr = m_return_to_ring3_from_signal_trampoline.as_ptr();
  767. *code_ptr++ = 0x61; // popa
  768. *code_ptr++ = 0x9d; // popf
  769. *code_ptr++ = 0xc3; // ret
  770. *code_ptr++ = 0x0f; // ud2
  771. *code_ptr++ = 0x0b;
  772. m_return_to_ring0_from_signal_trampoline = LinearAddress((dword)code_ptr);
  773. *code_ptr++ = 0x61; // popa
  774. *code_ptr++ = 0xb8; // mov eax, <dword>
  775. *(dword*)code_ptr = Syscall::SC_sigreturn;
  776. code_ptr += sizeof(dword);
  777. *code_ptr++ = 0xcd; // int 0x82
  778. *code_ptr++ = 0x82;
  779. *code_ptr++ = 0x0f; // ud2
  780. *code_ptr++ = 0x0b;
  781. // FIXME: For !SA_NODEFER, maybe we could do something like emitting an int 0x80 syscall here that
  782. // unmasks the signal so it can be received again? I guess then I would need one trampoline
  783. // per signal number if it's hard-coded, but it's just a few bytes per each.
  784. }
  785. if (interrupting_in_kernel)
  786. push_value_on_stack(m_return_to_ring0_from_signal_trampoline.get());
  787. else
  788. push_value_on_stack(m_return_to_ring3_from_signal_trampoline.get());
  789. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  790. set_state(Skip1SchedulerPass);
  791. #ifdef SIGNAL_DEBUG
  792. dbgprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
  793. #endif
  794. return ShouldUnblockProcess::Yes;
  795. }
  796. void Process::sys$sigreturn()
  797. {
  798. InterruptDisabler disabler;
  799. Scheduler::prepare_to_modify_tss(*this);
  800. m_tss = m_tss_to_resume_kernel;
  801. #ifdef SIGNAL_DEBUG
  802. dbgprintf("sys$sigreturn in %s(%u)\n", name().characters(), pid());
  803. dbgprintf(" -> resuming execution at %w:%x\n", m_tss.cs, m_tss.eip);
  804. #endif
  805. set_state(Skip1SchedulerPass);
  806. Scheduler::yield();
  807. kprintf("sys$sigreturn failed in %s(%u)\n", name().characters(), pid());
  808. ASSERT_NOT_REACHED();
  809. }
  810. void Process::push_value_on_stack(dword value)
  811. {
  812. m_tss.esp -= 4;
  813. dword* stack_ptr = (dword*)m_tss.esp;
  814. *stack_ptr = value;
  815. }
  816. void Process::crash()
  817. {
  818. ASSERT_INTERRUPTS_DISABLED();
  819. ASSERT(state() != Dead);
  820. m_termination_signal = SIGSEGV;
  821. dump_regions();
  822. ASSERT(is_ring3());
  823. die();
  824. ASSERT_NOT_REACHED();
  825. }
  826. Process* Process::from_pid(pid_t pid)
  827. {
  828. ASSERT_INTERRUPTS_DISABLED();
  829. for (auto* process = g_processes->head(); process; process = process->next()) {
  830. if (process->pid() == pid)
  831. return process;
  832. }
  833. return nullptr;
  834. }
  835. FileDescriptor* Process::file_descriptor(int fd)
  836. {
  837. if (fd < 0)
  838. return nullptr;
  839. if (fd < m_fds.size())
  840. return m_fds[fd].descriptor.ptr();
  841. return nullptr;
  842. }
  843. const FileDescriptor* Process::file_descriptor(int fd) const
  844. {
  845. if (fd < 0)
  846. return nullptr;
  847. if (fd < m_fds.size())
  848. return m_fds[fd].descriptor.ptr();
  849. return nullptr;
  850. }
  851. ssize_t Process::sys$get_dir_entries(int fd, void* buffer, ssize_t size)
  852. {
  853. if (size < 0)
  854. return -EINVAL;
  855. if (!validate_write(buffer, size))
  856. return -EFAULT;
  857. auto* descriptor = file_descriptor(fd);
  858. if (!descriptor)
  859. return -EBADF;
  860. return descriptor->get_dir_entries((byte*)buffer, size);
  861. }
  862. int Process::sys$lseek(int fd, off_t offset, int whence)
  863. {
  864. auto* descriptor = file_descriptor(fd);
  865. if (!descriptor)
  866. return -EBADF;
  867. return descriptor->seek(offset, whence);
  868. }
  869. int Process::sys$ttyname_r(int fd, char* buffer, ssize_t size)
  870. {
  871. if (size < 0)
  872. return -EINVAL;
  873. if (!validate_write(buffer, size))
  874. return -EFAULT;
  875. auto* descriptor = file_descriptor(fd);
  876. if (!descriptor)
  877. return -EBADF;
  878. if (!descriptor->is_tty())
  879. return -ENOTTY;
  880. auto tty_name = descriptor->tty()->tty_name();
  881. if (size < tty_name.length() + 1)
  882. return -ERANGE;
  883. strcpy(buffer, tty_name.characters());
  884. return 0;
  885. }
  886. int Process::sys$ptsname_r(int fd, char* buffer, ssize_t size)
  887. {
  888. if (size < 0)
  889. return -EINVAL;
  890. if (!validate_write(buffer, size))
  891. return -EFAULT;
  892. auto* descriptor = file_descriptor(fd);
  893. if (!descriptor)
  894. return -EBADF;
  895. auto* master_pty = descriptor->master_pty();
  896. if (!master_pty)
  897. return -ENOTTY;
  898. auto pts_name = master_pty->pts_name();
  899. if (size < pts_name.length() + 1)
  900. return -ERANGE;
  901. strcpy(buffer, pts_name.characters());
  902. return 0;
  903. }
  904. ssize_t Process::sys$write(int fd, const byte* data, ssize_t size)
  905. {
  906. if (size < 0)
  907. return -EINVAL;
  908. if (!validate_read(data, size))
  909. return -EFAULT;
  910. #ifdef DEBUG_IO
  911. dbgprintf("%s(%u): sys$write(%d, %p, %u)\n", name().characters(), pid(), fd, data, size);
  912. #endif
  913. auto* descriptor = file_descriptor(fd);
  914. if (!descriptor)
  915. return -EBADF;
  916. ssize_t nwritten = 0;
  917. if (descriptor->is_blocking()) {
  918. while (nwritten < (ssize_t)size) {
  919. #ifdef IO_DEBUG
  920. dbgprintf("while %u < %u\n", nwritten, size);
  921. #endif
  922. if (!descriptor->can_write(*this)) {
  923. #ifdef IO_DEBUG
  924. dbgprintf("block write on %d\n", fd);
  925. #endif
  926. m_blocked_fd = fd;
  927. block(BlockedWrite);
  928. Scheduler::yield();
  929. }
  930. ssize_t rc = descriptor->write(*this, (const byte*)data + nwritten, size - nwritten);
  931. #ifdef IO_DEBUG
  932. dbgprintf(" -> write returned %d\n", rc);
  933. #endif
  934. if (rc < 0) {
  935. // FIXME: Support returning partial nwritten with errno.
  936. ASSERT(nwritten == 0);
  937. return rc;
  938. }
  939. if (rc == 0)
  940. break;
  941. if (has_unmasked_pending_signals()) {
  942. block(BlockedSignal);
  943. Scheduler::yield();
  944. if (nwritten == 0)
  945. return -EINTR;
  946. }
  947. nwritten += rc;
  948. }
  949. } else {
  950. nwritten = descriptor->write(*this, (const byte*)data, size);
  951. }
  952. if (has_unmasked_pending_signals()) {
  953. block(BlockedSignal);
  954. Scheduler::yield();
  955. if (nwritten == 0)
  956. return -EINTR;
  957. }
  958. return nwritten;
  959. }
  960. ssize_t Process::sys$read(int fd, byte* buffer, ssize_t size)
  961. {
  962. if (size < 0)
  963. return -EINVAL;
  964. if (!validate_write(buffer, size))
  965. return -EFAULT;
  966. #ifdef DEBUG_IO
  967. dbgprintf("%s(%u) sys$read(%d, %p, %u)\n", name().characters(), pid(), fd, buffer, size);
  968. #endif
  969. auto* descriptor = file_descriptor(fd);
  970. if (!descriptor)
  971. return -EBADF;
  972. if (descriptor->is_blocking()) {
  973. if (!descriptor->can_read(*this)) {
  974. m_blocked_fd = fd;
  975. block(BlockedRead);
  976. Scheduler::yield();
  977. if (m_was_interrupted_while_blocked)
  978. return -EINTR;
  979. }
  980. }
  981. return descriptor->read(*this, buffer, size);
  982. }
  983. int Process::sys$close(int fd)
  984. {
  985. auto* descriptor = file_descriptor(fd);
  986. if (!descriptor)
  987. return -EBADF;
  988. int rc = descriptor->close();
  989. m_fds[fd] = { };
  990. return rc;
  991. }
  992. int Process::sys$utime(const char* pathname, const utimbuf* buf)
  993. {
  994. if (!validate_read_str(pathname))
  995. return -EFAULT;
  996. if (buf && !validate_read_typed(buf))
  997. return -EFAULT;
  998. time_t atime;
  999. time_t mtime;
  1000. if (buf) {
  1001. atime = buf->actime;
  1002. mtime = buf->modtime;
  1003. } else {
  1004. auto now = RTC::now();
  1005. mtime = now;
  1006. atime = now;
  1007. }
  1008. return VFS::the().utime(String(pathname), cwd_inode(), atime, mtime);
  1009. }
  1010. int Process::sys$access(const char* pathname, int mode)
  1011. {
  1012. if (!validate_read_str(pathname))
  1013. return -EFAULT;
  1014. return VFS::the().access(String(pathname), mode, cwd_inode());
  1015. }
  1016. int Process::sys$fcntl(int fd, int cmd, dword arg)
  1017. {
  1018. (void) cmd;
  1019. (void) arg;
  1020. dbgprintf("sys$fcntl: fd=%d, cmd=%d, arg=%u\n", fd, cmd, arg);
  1021. auto* descriptor = file_descriptor(fd);
  1022. if (!descriptor)
  1023. return -EBADF;
  1024. // NOTE: The FD flags are not shared between FileDescriptor objects.
  1025. // This means that dup() doesn't copy the FD_CLOEXEC flag!
  1026. switch (cmd) {
  1027. case F_DUPFD: {
  1028. int arg_fd = (int)arg;
  1029. if (arg_fd < 0)
  1030. return -EINVAL;
  1031. int new_fd = -1;
  1032. for (int i = arg_fd; i < (int)m_max_open_file_descriptors; ++i) {
  1033. if (!m_fds[i]) {
  1034. new_fd = i;
  1035. break;
  1036. }
  1037. }
  1038. if (new_fd == -1)
  1039. return -EMFILE;
  1040. m_fds[new_fd].set(descriptor);
  1041. break;
  1042. }
  1043. case F_GETFD:
  1044. return m_fds[fd].flags;
  1045. case F_SETFD:
  1046. m_fds[fd].flags = arg;
  1047. break;
  1048. case F_GETFL:
  1049. return descriptor->file_flags();
  1050. case F_SETFL:
  1051. // FIXME: Support changing O_NONBLOCK
  1052. descriptor->set_file_flags(arg);
  1053. break;
  1054. default:
  1055. ASSERT_NOT_REACHED();
  1056. }
  1057. return 0;
  1058. }
  1059. int Process::sys$fstat(int fd, stat* statbuf)
  1060. {
  1061. if (!validate_write_typed(statbuf))
  1062. return -EFAULT;
  1063. auto* descriptor = file_descriptor(fd);
  1064. if (!descriptor)
  1065. return -EBADF;
  1066. return descriptor->fstat(statbuf);
  1067. }
  1068. int Process::sys$lstat(const char* path, stat* statbuf)
  1069. {
  1070. if (!validate_write_typed(statbuf))
  1071. return -EFAULT;
  1072. int error;
  1073. if (!VFS::the().stat(move(path), error, O_NOFOLLOW_NOERROR, cwd_inode(), *statbuf))
  1074. return error;
  1075. return 0;
  1076. }
  1077. int Process::sys$stat(const char* path, stat* statbuf)
  1078. {
  1079. if (!validate_write_typed(statbuf))
  1080. return -EFAULT;
  1081. int error;
  1082. if (!VFS::the().stat(move(path), error, 0, cwd_inode(), *statbuf))
  1083. return error;
  1084. return 0;
  1085. }
  1086. int Process::sys$readlink(const char* path, char* buffer, ssize_t size)
  1087. {
  1088. if (size < 0)
  1089. return -EINVAL;
  1090. if (!validate_read_str(path))
  1091. return -EFAULT;
  1092. if (!validate_write(buffer, size))
  1093. return -EFAULT;
  1094. int error;
  1095. auto descriptor = VFS::the().open(path, error, O_RDONLY | O_NOFOLLOW_NOERROR, 0, cwd_inode());
  1096. if (!descriptor)
  1097. return error;
  1098. if (!descriptor->metadata().is_symlink())
  1099. return -EINVAL;
  1100. auto contents = descriptor->read_entire_file(*this);
  1101. if (!contents)
  1102. return -EIO; // FIXME: Get a more detailed error from VFS.
  1103. memcpy(buffer, contents.pointer(), min(size, (ssize_t)contents.size()));
  1104. if (contents.size() + 1 < size)
  1105. buffer[contents.size()] = '\0';
  1106. return 0;
  1107. }
  1108. int Process::sys$chdir(const char* path)
  1109. {
  1110. if (!validate_read_str(path))
  1111. return -EFAULT;
  1112. int error;
  1113. auto descriptor = VFS::the().open(path, error, 0, 0, cwd_inode());
  1114. if (!descriptor)
  1115. return error;
  1116. if (!descriptor->is_directory())
  1117. return -ENOTDIR;
  1118. m_cwd = descriptor->inode();
  1119. return 0;
  1120. }
  1121. int Process::sys$getcwd(char* buffer, ssize_t size)
  1122. {
  1123. if (size < 0)
  1124. return -EINVAL;
  1125. if (!validate_write(buffer, size))
  1126. return -EFAULT;
  1127. auto path = VFS::the().absolute_path(cwd_inode());
  1128. if (path.is_null())
  1129. return -EINVAL;
  1130. if (size < path.length() + 1)
  1131. return -ERANGE;
  1132. strcpy(buffer, path.characters());
  1133. return 0;
  1134. }
  1135. size_t Process::number_of_open_file_descriptors() const
  1136. {
  1137. size_t count = 0;
  1138. for (auto& descriptor : m_fds) {
  1139. if (descriptor)
  1140. ++count;
  1141. }
  1142. return count;
  1143. }
  1144. int Process::sys$open(const char* path, int options, mode_t mode)
  1145. {
  1146. #ifdef DEBUG_IO
  1147. dbgprintf("%s(%u) sys$open(\"%s\")\n", name().characters(), pid(), path);
  1148. #endif
  1149. if (!validate_read_str(path))
  1150. return -EFAULT;
  1151. if (number_of_open_file_descriptors() >= m_max_open_file_descriptors)
  1152. return -EMFILE;
  1153. int error = -EWHYTHO;
  1154. auto descriptor = VFS::the().open(path, error, options, mode & ~umask(), cwd_inode());
  1155. if (!descriptor)
  1156. return error;
  1157. if (options & O_DIRECTORY && !descriptor->is_directory())
  1158. return -ENOTDIR; // FIXME: This should be handled by VFS::open.
  1159. if (options & O_NONBLOCK)
  1160. descriptor->set_blocking(false);
  1161. int fd = 0;
  1162. for (; fd < (int)m_max_open_file_descriptors; ++fd) {
  1163. if (!m_fds[fd])
  1164. break;
  1165. }
  1166. dword flags = (options & O_CLOEXEC) ? FD_CLOEXEC : 0;
  1167. m_fds[fd].set(move(descriptor), flags);
  1168. return fd;
  1169. }
  1170. int Process::alloc_fd()
  1171. {
  1172. int fd = -1;
  1173. for (int i = 0; i < (int)m_max_open_file_descriptors; ++i) {
  1174. if (!m_fds[i]) {
  1175. fd = i;
  1176. break;
  1177. }
  1178. }
  1179. return fd;
  1180. }
  1181. int Process::sys$pipe(int pipefd[2])
  1182. {
  1183. if (!validate_write_typed(pipefd))
  1184. return -EFAULT;
  1185. if (number_of_open_file_descriptors() + 2 > max_open_file_descriptors())
  1186. return -EMFILE;
  1187. auto fifo = FIFO::create();
  1188. int reader_fd = alloc_fd();
  1189. m_fds[reader_fd].set(FileDescriptor::create_pipe_reader(*fifo));
  1190. pipefd[0] = reader_fd;
  1191. int writer_fd = alloc_fd();
  1192. m_fds[writer_fd].set(FileDescriptor::create_pipe_writer(*fifo));
  1193. pipefd[1] = writer_fd;
  1194. return 0;
  1195. }
  1196. int Process::sys$killpg(int pgrp, int signum)
  1197. {
  1198. if (signum < 1 || signum >= 32)
  1199. return -EINVAL;
  1200. (void) pgrp;
  1201. ASSERT_NOT_REACHED();
  1202. }
  1203. int Process::sys$setuid(uid_t uid)
  1204. {
  1205. if (uid != m_uid && !is_superuser())
  1206. return -EPERM;
  1207. m_uid = uid;
  1208. m_euid = uid;
  1209. return 0;
  1210. }
  1211. int Process::sys$setgid(gid_t gid)
  1212. {
  1213. if (gid != m_gid && !is_superuser())
  1214. return -EPERM;
  1215. m_gid = gid;
  1216. m_egid = gid;
  1217. return 0;
  1218. }
  1219. unsigned Process::sys$alarm(unsigned seconds)
  1220. {
  1221. (void) seconds;
  1222. ASSERT_NOT_REACHED();
  1223. }
  1224. int Process::sys$uname(utsname* buf)
  1225. {
  1226. if (!validate_write_typed(buf))
  1227. return -EFAULT;
  1228. strcpy(buf->sysname, "Serenity");
  1229. strcpy(buf->release, "1.0-dev");
  1230. strcpy(buf->version, "FIXME");
  1231. strcpy(buf->machine, "i386");
  1232. LOCKER(*s_hostname_lock);
  1233. strncpy(buf->nodename, s_hostname->characters(), sizeof(utsname::nodename));
  1234. return 0;
  1235. }
  1236. int Process::sys$isatty(int fd)
  1237. {
  1238. auto* descriptor = file_descriptor(fd);
  1239. if (!descriptor)
  1240. return -EBADF;
  1241. if (!descriptor->is_tty())
  1242. return -ENOTTY;
  1243. return 1;
  1244. }
  1245. int Process::sys$kill(pid_t pid, int signal)
  1246. {
  1247. if (pid == 0) {
  1248. // FIXME: Send to same-group processes.
  1249. ASSERT(pid != 0);
  1250. }
  1251. if (pid == -1) {
  1252. // FIXME: Send to all processes.
  1253. ASSERT(pid != -1);
  1254. }
  1255. ASSERT(pid != current->pid()); // FIXME: Support this scenario.
  1256. Process* peer = nullptr;
  1257. {
  1258. InterruptDisabler disabler;
  1259. peer = Process::from_pid(pid);
  1260. }
  1261. if (!peer)
  1262. return -ESRCH;
  1263. peer->send_signal(signal, this);
  1264. return 0;
  1265. }
  1266. int Process::sys$usleep(useconds_t usec)
  1267. {
  1268. if (!usec)
  1269. return 0;
  1270. sleep(usec / 1000);
  1271. if (m_wakeup_time > system.uptime) {
  1272. ASSERT(m_was_interrupted_while_blocked);
  1273. dword ticks_left_until_original_wakeup_time = m_wakeup_time - system.uptime;
  1274. return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND;
  1275. }
  1276. return 0;
  1277. }
  1278. int Process::sys$sleep(unsigned seconds)
  1279. {
  1280. if (!seconds)
  1281. return 0;
  1282. sleep(seconds * TICKS_PER_SECOND);
  1283. if (m_wakeup_time > system.uptime) {
  1284. ASSERT(m_was_interrupted_while_blocked);
  1285. dword ticks_left_until_original_wakeup_time = m_wakeup_time - system.uptime;
  1286. return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND;
  1287. }
  1288. return 0;
  1289. }
  1290. int Process::sys$gettimeofday(timeval* tv)
  1291. {
  1292. if (!validate_write_typed(tv))
  1293. return -EFAULT;
  1294. auto now = RTC::now();
  1295. tv->tv_sec = now;
  1296. tv->tv_usec = PIT::ticks_since_boot() % 1000;
  1297. return 0;
  1298. }
  1299. uid_t Process::sys$getuid()
  1300. {
  1301. return m_uid;
  1302. }
  1303. gid_t Process::sys$getgid()
  1304. {
  1305. return m_gid;
  1306. }
  1307. uid_t Process::sys$geteuid()
  1308. {
  1309. return m_euid;
  1310. }
  1311. gid_t Process::sys$getegid()
  1312. {
  1313. return m_egid;
  1314. }
  1315. pid_t Process::sys$getpid()
  1316. {
  1317. return m_pid;
  1318. }
  1319. pid_t Process::sys$getppid()
  1320. {
  1321. return m_ppid;
  1322. }
  1323. mode_t Process::sys$umask(mode_t mask)
  1324. {
  1325. auto old_mask = m_umask;
  1326. m_umask = mask & 0777;
  1327. return old_mask;
  1328. }
  1329. int Process::reap(Process& process)
  1330. {
  1331. InterruptDisabler disabler;
  1332. int exit_status = (process.m_termination_status << 8) | process.m_termination_signal;
  1333. if (process.ppid()) {
  1334. auto* parent = Process::from_pid(process.ppid());
  1335. if (parent) {
  1336. parent->m_ticks_in_user_for_dead_children += process.m_ticks_in_user + process.m_ticks_in_user_for_dead_children;
  1337. parent->m_ticks_in_kernel_for_dead_children += process.m_ticks_in_kernel + process.m_ticks_in_kernel_for_dead_children;
  1338. }
  1339. }
  1340. dbgprintf("reap: %s(%u) {%s}\n", process.name().characters(), process.pid(), to_string(process.state()));
  1341. ASSERT(process.state() == Dead);
  1342. g_processes->remove(&process);
  1343. delete &process;
  1344. return exit_status;
  1345. }
  1346. pid_t Process::sys$waitpid(pid_t waitee, int* wstatus, int options)
  1347. {
  1348. dbgprintf("sys$waitpid(%d, %p, %d)\n", waitee, wstatus, options);
  1349. // FIXME: Respect options
  1350. (void) options;
  1351. if (wstatus)
  1352. if (!validate_write_typed(wstatus))
  1353. return -EFAULT;
  1354. int dummy_wstatus;
  1355. int& exit_status = wstatus ? *wstatus : dummy_wstatus;
  1356. {
  1357. InterruptDisabler disabler;
  1358. if (waitee != -1 && !Process::from_pid(waitee))
  1359. return -ECHILD;
  1360. }
  1361. if (options & WNOHANG) {
  1362. if (waitee == -1) {
  1363. pid_t reaped_pid = 0;
  1364. InterruptDisabler disabler;
  1365. for_each_child([&reaped_pid, &exit_status] (Process& process) {
  1366. if (process.state() == Dead) {
  1367. reaped_pid = process.pid();
  1368. exit_status = reap(process);
  1369. }
  1370. return true;
  1371. });
  1372. return reaped_pid;
  1373. } else {
  1374. ASSERT(waitee > 0); // FIXME: Implement other PID specs.
  1375. auto* waitee_process = Process::from_pid(waitee);
  1376. if (!waitee_process)
  1377. return -ECHILD;
  1378. if (waitee_process->state() == Dead) {
  1379. exit_status = reap(*waitee_process);
  1380. return waitee;
  1381. }
  1382. return 0;
  1383. }
  1384. }
  1385. m_waitee_pid = waitee;
  1386. block(BlockedWait);
  1387. Scheduler::yield();
  1388. if (m_was_interrupted_while_blocked)
  1389. return -EINTR;
  1390. Process* waitee_process;
  1391. {
  1392. InterruptDisabler disabler;
  1393. // NOTE: If waitee was -1, m_waitee will have been filled in by the scheduler.
  1394. waitee_process = Process::from_pid(m_waitee_pid);
  1395. }
  1396. ASSERT(waitee_process);
  1397. exit_status = reap(*waitee_process);
  1398. return m_waitee_pid;
  1399. }
  1400. void Process::unblock()
  1401. {
  1402. if (current == this) {
  1403. system.nblocked--;
  1404. m_state = Process::Running;
  1405. return;
  1406. }
  1407. ASSERT(m_state != Process::Runnable && m_state != Process::Running);
  1408. system.nblocked--;
  1409. m_state = Process::Runnable;
  1410. }
  1411. void Process::block(Process::State new_state)
  1412. {
  1413. if (state() != Process::Running) {
  1414. kprintf("Process::block: %s(%u) block(%u/%s) with state=%u/%s\n", name().characters(), pid(), new_state, to_string(new_state), state(), to_string(state()));
  1415. }
  1416. ASSERT(state() == Process::Running);
  1417. system.nblocked++;
  1418. m_was_interrupted_while_blocked = false;
  1419. set_state(new_state);
  1420. }
  1421. void block(Process::State state)
  1422. {
  1423. current->block(state);
  1424. Scheduler::yield();
  1425. }
  1426. void sleep(dword ticks)
  1427. {
  1428. ASSERT(current->state() == Process::Running);
  1429. current->set_wakeup_time(system.uptime + ticks);
  1430. current->block(Process::BlockedSleep);
  1431. Scheduler::yield();
  1432. }
  1433. enum class KernelMemoryCheckResult {
  1434. NotInsideKernelMemory,
  1435. AccessGranted,
  1436. AccessDenied
  1437. };
  1438. static KernelMemoryCheckResult check_kernel_memory_access(LinearAddress laddr, bool is_write)
  1439. {
  1440. auto* kernel_elf_header = (Elf32_Ehdr*)0xf000;
  1441. auto* kernel_program_headers = (Elf32_Phdr*)(0xf000 + kernel_elf_header->e_phoff);
  1442. for (unsigned i = 0; i < kernel_elf_header->e_phnum; ++i) {
  1443. auto& segment = kernel_program_headers[i];
  1444. if (segment.p_type != PT_LOAD || !segment.p_vaddr || !segment.p_memsz)
  1445. continue;
  1446. if (laddr.get() < segment.p_vaddr || laddr.get() > (segment.p_vaddr + segment.p_memsz))
  1447. continue;
  1448. if (is_write && !(kernel_program_headers[i].p_flags & PF_W))
  1449. return KernelMemoryCheckResult::AccessDenied;
  1450. if (!is_write && !(kernel_program_headers[i].p_flags & PF_R))
  1451. return KernelMemoryCheckResult::AccessDenied;
  1452. return KernelMemoryCheckResult::AccessGranted;
  1453. }
  1454. return KernelMemoryCheckResult::NotInsideKernelMemory;
  1455. }
  1456. bool Process::validate_read_from_kernel(LinearAddress laddr) const
  1457. {
  1458. // We check extra carefully here since the first 4MB of the address space is identity-mapped.
  1459. // This code allows access outside of the known used address ranges to get caught.
  1460. auto kmc_result = check_kernel_memory_access(laddr, false);
  1461. if (kmc_result == KernelMemoryCheckResult::AccessGranted)
  1462. return true;
  1463. if (kmc_result == KernelMemoryCheckResult::AccessDenied)
  1464. return false;
  1465. if (is_kmalloc_address(laddr.as_ptr()))
  1466. return true;
  1467. return validate_read(laddr.as_ptr(), 1);
  1468. }
  1469. bool Process::validate_read_str(const char* str)
  1470. {
  1471. if (!validate_read(str, 1))
  1472. return false;
  1473. return validate_read(str, strlen(str) + 1);
  1474. }
  1475. bool Process::validate_read(const void* address, ssize_t size) const
  1476. {
  1477. ASSERT(size >= 0);
  1478. LinearAddress first_address((dword)address);
  1479. LinearAddress last_address = first_address.offset(size - 1);
  1480. if (is_ring0()) {
  1481. auto kmc_result = check_kernel_memory_access(first_address, false);
  1482. if (kmc_result == KernelMemoryCheckResult::AccessGranted)
  1483. return true;
  1484. if (kmc_result == KernelMemoryCheckResult::AccessDenied)
  1485. return false;
  1486. if (is_kmalloc_address(address))
  1487. return true;
  1488. }
  1489. ASSERT(size);
  1490. if (!size)
  1491. return false;
  1492. if (first_address.page_base() != last_address.page_base()) {
  1493. if (!MM.validate_user_read(*this, last_address))
  1494. return false;
  1495. }
  1496. return MM.validate_user_read(*this, first_address);
  1497. }
  1498. bool Process::validate_write(void* address, ssize_t size) const
  1499. {
  1500. ASSERT(size >= 0);
  1501. LinearAddress first_address((dword)address);
  1502. LinearAddress last_address = first_address.offset(size - 1);
  1503. if (is_ring0()) {
  1504. if (is_kmalloc_address(address))
  1505. return true;
  1506. auto kmc_result = check_kernel_memory_access(first_address, true);
  1507. if (kmc_result == KernelMemoryCheckResult::AccessGranted)
  1508. return true;
  1509. if (kmc_result == KernelMemoryCheckResult::AccessDenied)
  1510. return false;
  1511. }
  1512. if (!size)
  1513. return false;
  1514. if (first_address.page_base() != last_address.page_base()) {
  1515. if (!MM.validate_user_write(*this, last_address))
  1516. return false;
  1517. }
  1518. return MM.validate_user_write(*this, last_address);
  1519. }
  1520. pid_t Process::sys$getsid(pid_t pid)
  1521. {
  1522. if (pid == 0)
  1523. return m_sid;
  1524. InterruptDisabler disabler;
  1525. auto* process = Process::from_pid(pid);
  1526. if (!process)
  1527. return -ESRCH;
  1528. if (m_sid != process->m_sid)
  1529. return -EPERM;
  1530. return process->m_sid;
  1531. }
  1532. pid_t Process::sys$setsid()
  1533. {
  1534. InterruptDisabler disabler;
  1535. bool found_process_with_same_pgid_as_my_pid = false;
  1536. Process::for_each_in_pgrp(pid(), [&] (auto&) {
  1537. found_process_with_same_pgid_as_my_pid = true;
  1538. return false;
  1539. });
  1540. if (found_process_with_same_pgid_as_my_pid)
  1541. return -EPERM;
  1542. m_sid = m_pid;
  1543. m_pgid = m_pid;
  1544. return m_sid;
  1545. }
  1546. pid_t Process::sys$getpgid(pid_t pid)
  1547. {
  1548. if (pid == 0)
  1549. return m_pgid;
  1550. InterruptDisabler disabler; // FIXME: Use a ProcessHandle
  1551. auto* process = Process::from_pid(pid);
  1552. if (!process)
  1553. return -ESRCH;
  1554. return process->m_pgid;
  1555. }
  1556. pid_t Process::sys$getpgrp()
  1557. {
  1558. return m_pgid;
  1559. }
  1560. static pid_t get_sid_from_pgid(pid_t pgid)
  1561. {
  1562. InterruptDisabler disabler;
  1563. auto* group_leader = Process::from_pid(pgid);
  1564. if (!group_leader)
  1565. return -1;
  1566. return group_leader->sid();
  1567. }
  1568. int Process::sys$setpgid(pid_t specified_pid, pid_t specified_pgid)
  1569. {
  1570. InterruptDisabler disabler; // FIXME: Use a ProcessHandle
  1571. pid_t pid = specified_pid ? specified_pid : m_pid;
  1572. if (specified_pgid < 0)
  1573. return -EINVAL;
  1574. auto* process = Process::from_pid(pid);
  1575. if (!process)
  1576. return -ESRCH;
  1577. pid_t new_pgid = specified_pgid ? specified_pgid : process->m_pid;
  1578. pid_t current_sid = get_sid_from_pgid(process->m_pgid);
  1579. pid_t new_sid = get_sid_from_pgid(new_pgid);
  1580. if (current_sid != new_sid) {
  1581. // Can't move a process between sessions.
  1582. return -EPERM;
  1583. }
  1584. // FIXME: There are more EPERM conditions to check for here..
  1585. process->m_pgid = new_pgid;
  1586. return 0;
  1587. }
  1588. int Process::sys$ioctl(int fd, unsigned request, unsigned arg)
  1589. {
  1590. auto* descriptor = file_descriptor(fd);
  1591. if (!descriptor)
  1592. return -EBADF;
  1593. if (descriptor->is_socket() && request == 413) {
  1594. auto* pid = (pid_t*)arg;
  1595. if (!validate_write_typed(pid))
  1596. return -EFAULT;
  1597. *pid = descriptor->socket()->origin_pid();
  1598. return 0;
  1599. }
  1600. if (!descriptor->is_device())
  1601. return -ENOTTY;
  1602. return descriptor->device()->ioctl(*this, request, arg);
  1603. }
  1604. int Process::sys$getdtablesize()
  1605. {
  1606. return m_max_open_file_descriptors;
  1607. }
  1608. int Process::sys$dup(int old_fd)
  1609. {
  1610. auto* descriptor = file_descriptor(old_fd);
  1611. if (!descriptor)
  1612. return -EBADF;
  1613. if (number_of_open_file_descriptors() == m_max_open_file_descriptors)
  1614. return -EMFILE;
  1615. int new_fd = 0;
  1616. for (; new_fd < (int)m_max_open_file_descriptors; ++new_fd) {
  1617. if (!m_fds[new_fd])
  1618. break;
  1619. }
  1620. m_fds[new_fd].set(descriptor);
  1621. return new_fd;
  1622. }
  1623. int Process::sys$dup2(int old_fd, int new_fd)
  1624. {
  1625. auto* descriptor = file_descriptor(old_fd);
  1626. if (!descriptor)
  1627. return -EBADF;
  1628. if (number_of_open_file_descriptors() == m_max_open_file_descriptors)
  1629. return -EMFILE;
  1630. m_fds[new_fd].set(descriptor);
  1631. return new_fd;
  1632. }
  1633. int Process::sys$sigprocmask(int how, const sigset_t* set, sigset_t* old_set)
  1634. {
  1635. if (old_set) {
  1636. if (!validate_write_typed(old_set))
  1637. return -EFAULT;
  1638. *old_set = m_signal_mask;
  1639. }
  1640. if (set) {
  1641. if (!validate_read_typed(set))
  1642. return -EFAULT;
  1643. switch (how) {
  1644. case SIG_BLOCK:
  1645. m_signal_mask &= ~(*set);
  1646. break;
  1647. case SIG_UNBLOCK:
  1648. m_signal_mask |= *set;
  1649. break;
  1650. case SIG_SETMASK:
  1651. m_signal_mask = *set;
  1652. break;
  1653. default:
  1654. return -EINVAL;
  1655. }
  1656. }
  1657. return 0;
  1658. }
  1659. int Process::sys$sigpending(sigset_t* set)
  1660. {
  1661. if (!validate_write_typed(set))
  1662. return -EFAULT;
  1663. *set = m_pending_signals;
  1664. return 0;
  1665. }
  1666. void Process::set_default_signal_dispositions()
  1667. {
  1668. // FIXME: Set up all the right default actions. See signal(7).
  1669. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  1670. m_signal_action_data[SIGCHLD].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
  1671. m_signal_action_data[SIGWINCH].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
  1672. }
  1673. int Process::sys$sigaction(int signum, const sigaction* act, sigaction* old_act)
  1674. {
  1675. if (signum < 1 || signum >= 32 || signum == SIGKILL || signum == SIGSTOP)
  1676. return -EINVAL;
  1677. if (!validate_read_typed(act))
  1678. return -EFAULT;
  1679. InterruptDisabler disabler; // FIXME: This should use a narrower lock. Maybe a way to ignore signals temporarily?
  1680. auto& action = m_signal_action_data[signum];
  1681. if (old_act) {
  1682. if (!validate_write_typed(old_act))
  1683. return -EFAULT;
  1684. old_act->sa_flags = action.flags;
  1685. old_act->sa_restorer = (decltype(old_act->sa_restorer))action.restorer.get();
  1686. old_act->sa_sigaction = (decltype(old_act->sa_sigaction))action.handler_or_sigaction.get();
  1687. }
  1688. action.restorer = LinearAddress((dword)act->sa_restorer);
  1689. action.flags = act->sa_flags;
  1690. action.handler_or_sigaction = LinearAddress((dword)act->sa_sigaction);
  1691. return 0;
  1692. }
  1693. int Process::sys$getgroups(ssize_t count, gid_t* gids)
  1694. {
  1695. if (count < 0)
  1696. return -EINVAL;
  1697. ASSERT(m_gids.size() < MAX_PROCESS_GIDS);
  1698. if (!count)
  1699. return m_gids.size();
  1700. if (count != (int)m_gids.size())
  1701. return -EINVAL;
  1702. if (!validate_write_typed(gids, m_gids.size()))
  1703. return -EFAULT;
  1704. size_t i = 0;
  1705. for (auto gid : m_gids)
  1706. gids[i++] = gid;
  1707. return 0;
  1708. }
  1709. int Process::sys$setgroups(ssize_t count, const gid_t* gids)
  1710. {
  1711. if (count < 0)
  1712. return -EINVAL;
  1713. if (!is_superuser())
  1714. return -EPERM;
  1715. if (count >= MAX_PROCESS_GIDS)
  1716. return -EINVAL;
  1717. if (!validate_read(gids, count))
  1718. return -EFAULT;
  1719. m_gids.clear();
  1720. m_gids.set(m_gid);
  1721. for (int i = 0; i < count; ++i)
  1722. m_gids.set(gids[i]);
  1723. return 0;
  1724. }
  1725. int Process::sys$mkdir(const char* pathname, mode_t mode)
  1726. {
  1727. if (!validate_read_str(pathname))
  1728. return -EFAULT;
  1729. size_t pathname_length = strlen(pathname);
  1730. if (pathname_length == 0)
  1731. return -EINVAL;
  1732. if (pathname_length >= 255)
  1733. return -ENAMETOOLONG;
  1734. return VFS::the().mkdir(String(pathname, pathname_length), mode & ~umask(), cwd_inode());
  1735. }
  1736. clock_t Process::sys$times(tms* times)
  1737. {
  1738. if (!validate_write_typed(times))
  1739. return -EFAULT;
  1740. times->tms_utime = m_ticks_in_user;
  1741. times->tms_stime = m_ticks_in_kernel;
  1742. times->tms_cutime = m_ticks_in_user_for_dead_children;
  1743. times->tms_cstime = m_ticks_in_kernel_for_dead_children;
  1744. return 0;
  1745. }
  1746. int Process::sys$select(const Syscall::SC_select_params* params)
  1747. {
  1748. if (!validate_read_typed(params))
  1749. return -EFAULT;
  1750. if (params->writefds && !validate_read_typed(params->writefds))
  1751. return -EFAULT;
  1752. if (params->readfds && !validate_read_typed(params->readfds))
  1753. return -EFAULT;
  1754. if (params->exceptfds && !validate_read_typed(params->exceptfds))
  1755. return -EFAULT;
  1756. if (params->timeout && !validate_read_typed(params->timeout))
  1757. return -EFAULT;
  1758. int nfds = params->nfds;
  1759. fd_set* writefds = params->writefds;
  1760. fd_set* readfds = params->readfds;
  1761. fd_set* exceptfds = params->exceptfds;
  1762. auto* timeout = params->timeout;
  1763. // FIXME: Implement exceptfds support.
  1764. //ASSERT(!exceptfds);
  1765. if (exceptfds)
  1766. kprintf("%s(%u): FIXME: select() with exceptfds\n", name().characters(), pid());
  1767. if (timeout) {
  1768. m_select_timeout = *timeout;
  1769. m_select_has_timeout = true;
  1770. } else {
  1771. m_select_has_timeout = false;
  1772. }
  1773. if (nfds < 0)
  1774. return -EINVAL;
  1775. // FIXME: Return -EINTR if a signal is caught.
  1776. // FIXME: Return -EINVAL if timeout is invalid.
  1777. auto transfer_fds = [this, nfds] (fd_set* set, auto& vector) -> int {
  1778. if (!set)
  1779. return 0;
  1780. vector.clear_with_capacity();
  1781. auto bitmap = Bitmap::wrap((byte*)set, FD_SETSIZE);
  1782. for (int i = 0; i < nfds; ++i) {
  1783. if (bitmap.get(i)) {
  1784. if (!file_descriptor(i))
  1785. return -EBADF;
  1786. vector.append(i);
  1787. }
  1788. }
  1789. return 0;
  1790. };
  1791. int error = 0;
  1792. error = transfer_fds(writefds, m_select_write_fds);
  1793. if (error)
  1794. return error;
  1795. error = transfer_fds(readfds, m_select_read_fds);
  1796. if (error)
  1797. return error;
  1798. #ifdef DEBUG_IO
  1799. dbgprintf("%s<%u> selecting on (read:%u, write:%u), wakeup_req:%u, timeout=%p\n", name().characters(), pid(), m_select_read_fds.size(), m_select_write_fds.size(), m_wakeup_requested, timeout);
  1800. #endif
  1801. if (!m_wakeup_requested && (!timeout || (timeout->tv_sec || timeout->tv_usec))) {
  1802. block(BlockedSelect);
  1803. Scheduler::yield();
  1804. }
  1805. m_wakeup_requested = false;
  1806. int markedfds = 0;
  1807. if (readfds) {
  1808. memset(readfds, 0, sizeof(fd_set));
  1809. auto bitmap = Bitmap::wrap((byte*)readfds, FD_SETSIZE);
  1810. for (int fd : m_select_read_fds) {
  1811. auto* descriptor = file_descriptor(fd);
  1812. if (!descriptor)
  1813. continue;
  1814. if (descriptor->can_read(*this)) {
  1815. bitmap.set(fd, true);
  1816. ++markedfds;
  1817. }
  1818. }
  1819. }
  1820. if (writefds) {
  1821. memset(writefds, 0, sizeof(fd_set));
  1822. auto bitmap = Bitmap::wrap((byte*)writefds, FD_SETSIZE);
  1823. for (int fd : m_select_write_fds) {
  1824. auto* descriptor = file_descriptor(fd);
  1825. if (!descriptor)
  1826. continue;
  1827. if (descriptor->can_write(*this)) {
  1828. bitmap.set(fd, true);
  1829. ++markedfds;
  1830. }
  1831. }
  1832. }
  1833. return markedfds;
  1834. }
  1835. int Process::sys$poll(pollfd* fds, int nfds, int timeout)
  1836. {
  1837. if (!validate_read_typed(fds))
  1838. return -EFAULT;
  1839. m_select_write_fds.clear_with_capacity();
  1840. m_select_read_fds.clear_with_capacity();
  1841. for (int i = 0; i < nfds; ++i) {
  1842. if (fds[i].events & POLLIN)
  1843. m_select_read_fds.append(fds[i].fd);
  1844. if (fds[i].events & POLLOUT)
  1845. m_select_write_fds.append(fds[i].fd);
  1846. }
  1847. if (!m_wakeup_requested && timeout < 0) {
  1848. block(BlockedSelect);
  1849. Scheduler::yield();
  1850. }
  1851. m_wakeup_requested = false;
  1852. int fds_with_revents = 0;
  1853. for (int i = 0; i < nfds; ++i) {
  1854. auto* descriptor = file_descriptor(fds[i].fd);
  1855. if (!descriptor) {
  1856. fds[i].revents = POLLNVAL;
  1857. continue;
  1858. }
  1859. fds[i].revents = 0;
  1860. if (fds[i].events & POLLIN && descriptor->can_read(*this))
  1861. fds[i].revents |= POLLIN;
  1862. if (fds[i].events & POLLOUT && descriptor->can_write(*this))
  1863. fds[i].revents |= POLLOUT;
  1864. if (fds[i].revents)
  1865. ++fds_with_revents;
  1866. }
  1867. return fds_with_revents;
  1868. }
  1869. Inode& Process::cwd_inode()
  1870. {
  1871. // FIXME: This is retarded factoring.
  1872. if (!m_cwd)
  1873. m_cwd = VFS::the().root_inode();
  1874. return *m_cwd;
  1875. }
  1876. int Process::sys$link(const char* old_path, const char* new_path)
  1877. {
  1878. if (!validate_read_str(old_path))
  1879. return -EFAULT;
  1880. if (!validate_read_str(new_path))
  1881. return -EFAULT;
  1882. int error;
  1883. if (!VFS::the().link(String(old_path), String(new_path), cwd_inode(), error))
  1884. return error;
  1885. return 0;
  1886. }
  1887. int Process::sys$unlink(const char* pathname)
  1888. {
  1889. if (!validate_read_str(pathname))
  1890. return -EFAULT;
  1891. int error;
  1892. if (!VFS::the().unlink(String(pathname), cwd_inode(), error))
  1893. return error;
  1894. return 0;
  1895. }
  1896. int Process::sys$rmdir(const char* pathname)
  1897. {
  1898. if (!validate_read_str(pathname))
  1899. return -EFAULT;
  1900. int error;
  1901. if (!VFS::the().rmdir(String(pathname), cwd_inode(), error))
  1902. return error;
  1903. return 0;
  1904. }
  1905. int Process::sys$read_tsc(dword* lsw, dword* msw)
  1906. {
  1907. if (!validate_write_typed(lsw))
  1908. return -EFAULT;
  1909. if (!validate_write_typed(msw))
  1910. return -EFAULT;
  1911. read_tsc(*lsw, *msw);
  1912. return 0;
  1913. }
  1914. int Process::sys$chmod(const char* pathname, mode_t mode)
  1915. {
  1916. if (!validate_read_str(pathname))
  1917. return -EFAULT;
  1918. return VFS::the().chmod(String(pathname), mode, cwd_inode());
  1919. }
  1920. void Process::finalize()
  1921. {
  1922. ASSERT(current == g_finalizer);
  1923. m_fds.clear();
  1924. m_tty = nullptr;
  1925. disown_all_shared_buffers();
  1926. {
  1927. InterruptDisabler disabler;
  1928. if (auto* parent_process = Process::from_pid(m_ppid)) {
  1929. parent_process->send_signal(SIGCHLD, this);
  1930. }
  1931. }
  1932. set_state(Dead);
  1933. }
  1934. void Process::die()
  1935. {
  1936. set_state(Dying);
  1937. if (!Scheduler::is_active())
  1938. Scheduler::pick_next_and_switch_now();
  1939. }
  1940. size_t Process::amount_virtual() const
  1941. {
  1942. size_t amount = 0;
  1943. for (auto& region : m_regions) {
  1944. amount += region->size();
  1945. }
  1946. return amount;
  1947. }
  1948. size_t Process::amount_resident() const
  1949. {
  1950. // FIXME: This will double count if multiple regions use the same physical page.
  1951. size_t amount = 0;
  1952. for (auto& region : m_regions) {
  1953. amount += region->amount_resident();
  1954. }
  1955. return amount;
  1956. }
  1957. size_t Process::amount_shared() const
  1958. {
  1959. // FIXME: This will double count if multiple regions use the same physical page.
  1960. // FIXME: It doesn't work at the moment, since it relies on PhysicalPage retain counts,
  1961. // and each PhysicalPage is only retained by its VMObject. This needs to be refactored
  1962. // so that every Region contributes +1 retain to each of its PhysicalPages.
  1963. size_t amount = 0;
  1964. for (auto& region : m_regions) {
  1965. amount += region->amount_shared();
  1966. }
  1967. return amount;
  1968. }
  1969. void Process::finalize_dying_processes()
  1970. {
  1971. Vector<Process*> dying_processes;
  1972. {
  1973. InterruptDisabler disabler;
  1974. dying_processes.ensure_capacity(system.nprocess);
  1975. for (auto* process = g_processes->head(); process; process = process->next()) {
  1976. if (process->state() == Process::Dying)
  1977. dying_processes.append(process);
  1978. }
  1979. }
  1980. for (auto* process : dying_processes)
  1981. process->finalize();
  1982. }
  1983. bool Process::tick()
  1984. {
  1985. ++m_ticks;
  1986. if (tss().cs & 3)
  1987. ++m_ticks_in_user;
  1988. else
  1989. ++m_ticks_in_kernel;
  1990. return --m_ticks_left;
  1991. }
  1992. int Process::sys$socket(int domain, int type, int protocol)
  1993. {
  1994. if (number_of_open_file_descriptors() >= m_max_open_file_descriptors)
  1995. return -EMFILE;
  1996. int fd = 0;
  1997. for (; fd < (int)m_max_open_file_descriptors; ++fd) {
  1998. if (!m_fds[fd])
  1999. break;
  2000. }
  2001. int error;
  2002. auto socket = Socket::create(domain, type, protocol, error);
  2003. if (!socket)
  2004. return error;
  2005. auto descriptor = FileDescriptor::create(move(socket));
  2006. unsigned flags = 0;
  2007. if (type & SOCK_CLOEXEC)
  2008. flags |= FD_CLOEXEC;
  2009. if (type & SOCK_NONBLOCK)
  2010. descriptor->set_blocking(false);
  2011. m_fds[fd].set(move(descriptor), flags);
  2012. return fd;
  2013. }
  2014. int Process::sys$bind(int sockfd, const sockaddr* address, socklen_t address_length)
  2015. {
  2016. if (!validate_read(address, address_length))
  2017. return -EFAULT;
  2018. auto* descriptor = file_descriptor(sockfd);
  2019. if (!descriptor)
  2020. return -EBADF;
  2021. if (!descriptor->is_socket())
  2022. return -ENOTSOCK;
  2023. auto& socket = *descriptor->socket();
  2024. int error;
  2025. if (!socket.bind(address, address_length, error))
  2026. return error;
  2027. return 0;
  2028. }
  2029. int Process::sys$listen(int sockfd, int backlog)
  2030. {
  2031. auto* descriptor = file_descriptor(sockfd);
  2032. if (!descriptor)
  2033. return -EBADF;
  2034. if (!descriptor->is_socket())
  2035. return -ENOTSOCK;
  2036. auto& socket = *descriptor->socket();
  2037. int error;
  2038. if (!socket.listen(backlog, error))
  2039. return error;
  2040. descriptor->set_socket_role(SocketRole::Listener);
  2041. return 0;
  2042. }
  2043. int Process::sys$accept(int accepting_socket_fd, sockaddr* address, socklen_t* address_size)
  2044. {
  2045. if (!validate_write_typed(address_size))
  2046. return -EFAULT;
  2047. if (!validate_write(address, *address_size))
  2048. return -EFAULT;
  2049. if (number_of_open_file_descriptors() >= m_max_open_file_descriptors)
  2050. return -EMFILE;
  2051. int accepted_socket_fd = 0;
  2052. for (; accepted_socket_fd < (int)m_max_open_file_descriptors; ++accepted_socket_fd) {
  2053. if (!m_fds[accepted_socket_fd])
  2054. break;
  2055. }
  2056. auto* accepting_socket_descriptor = file_descriptor(accepting_socket_fd);
  2057. if (!accepting_socket_descriptor)
  2058. return -EBADF;
  2059. if (!accepting_socket_descriptor->is_socket())
  2060. return -ENOTSOCK;
  2061. auto& socket = *accepting_socket_descriptor->socket();
  2062. if (!socket.can_accept()) {
  2063. ASSERT(!accepting_socket_descriptor->is_blocking());
  2064. return -EAGAIN;
  2065. }
  2066. auto accepted_socket = socket.accept();
  2067. ASSERT(accepted_socket);
  2068. bool success = accepted_socket->get_address(address, address_size);
  2069. ASSERT(success);
  2070. auto accepted_socket_descriptor = FileDescriptor::create(move(accepted_socket), SocketRole::Accepted);
  2071. // NOTE: The accepted socket inherits fd flags from the accepting socket.
  2072. // I'm not sure if this matches other systems but it makes sense to me.
  2073. accepted_socket_descriptor->set_blocking(accepting_socket_descriptor->is_blocking());
  2074. m_fds[accepted_socket_fd].set(move(accepted_socket_descriptor), m_fds[accepting_socket_fd].flags);
  2075. return accepted_socket_fd;
  2076. }
  2077. int Process::sys$connect(int sockfd, const sockaddr* address, socklen_t address_size)
  2078. {
  2079. if (!validate_read(address, address_size))
  2080. return -EFAULT;
  2081. if (number_of_open_file_descriptors() >= m_max_open_file_descriptors)
  2082. return -EMFILE;
  2083. int fd = 0;
  2084. for (; fd < (int)m_max_open_file_descriptors; ++fd) {
  2085. if (!m_fds[fd])
  2086. break;
  2087. }
  2088. auto* descriptor = file_descriptor(sockfd);
  2089. if (!descriptor)
  2090. return -EBADF;
  2091. if (!descriptor->is_socket())
  2092. return -ENOTSOCK;
  2093. auto& socket = *descriptor->socket();
  2094. int error;
  2095. if (!socket.connect(address, address_size, error))
  2096. return error;
  2097. descriptor->set_socket_role(SocketRole::Connected);
  2098. return 0;
  2099. }
  2100. bool Process::wait_for_connect(Socket& socket, int& error)
  2101. {
  2102. if (socket.is_connected())
  2103. return true;
  2104. m_blocked_connecting_socket = socket;
  2105. block(BlockedConnect);
  2106. Scheduler::yield();
  2107. m_blocked_connecting_socket = nullptr;
  2108. if (!socket.is_connected()) {
  2109. error = -ECONNREFUSED;
  2110. return false;
  2111. }
  2112. return true;
  2113. }
  2114. struct SharedBuffer {
  2115. SharedBuffer(pid_t pid1, pid_t pid2, size_t size)
  2116. : m_pid1(pid1)
  2117. , m_pid2(pid2)
  2118. , m_vmo(VMObject::create_anonymous(size))
  2119. {
  2120. ASSERT(pid1 != pid2);
  2121. }
  2122. void* retain(Process& process)
  2123. {
  2124. if (m_pid1 == process.pid()) {
  2125. ++m_pid1_retain_count;
  2126. if (!m_pid1_region) {
  2127. m_pid1_region = process.allocate_region_with_vmo(LinearAddress(), size(), m_vmo.copy_ref(), 0, "SharedBuffer", true, true);
  2128. m_pid1_region->set_shared(true);
  2129. }
  2130. return m_pid1_region->laddr().as_ptr();
  2131. } else if (m_pid2 == process.pid()) {
  2132. ++m_pid2_retain_count;
  2133. if (!m_pid2_region) {
  2134. m_pid2_region = process.allocate_region_with_vmo(LinearAddress(), size(), m_vmo.copy_ref(), 0, "SharedBuffer", true, true);
  2135. m_pid2_region->set_shared(true);
  2136. }
  2137. return m_pid2_region->laddr().as_ptr();
  2138. }
  2139. return nullptr;
  2140. }
  2141. void release(Process& process)
  2142. {
  2143. if (m_pid1 == process.pid()) {
  2144. ASSERT(m_pid1_retain_count);
  2145. --m_pid1_retain_count;
  2146. if (!m_pid1_retain_count) {
  2147. if (m_pid1_region)
  2148. process.deallocate_region(*m_pid1_region);
  2149. m_pid1_region = nullptr;
  2150. }
  2151. destroy_if_unused();
  2152. } else if (m_pid2 == process.pid()) {
  2153. ASSERT(m_pid2_retain_count);
  2154. --m_pid2_retain_count;
  2155. if (!m_pid2_retain_count) {
  2156. if (m_pid2_region)
  2157. process.deallocate_region(*m_pid2_region);
  2158. m_pid2_region = nullptr;
  2159. }
  2160. destroy_if_unused();
  2161. }
  2162. }
  2163. void disown(pid_t pid)
  2164. {
  2165. if (m_pid1 == pid) {
  2166. m_pid1 = 0;
  2167. m_pid1_retain_count = 0;
  2168. destroy_if_unused();
  2169. } else if (m_pid2 == pid) {
  2170. m_pid2 = 0;
  2171. m_pid2_retain_count = 0;
  2172. destroy_if_unused();
  2173. }
  2174. }
  2175. pid_t pid1() const { return m_pid1; }
  2176. pid_t pid2() const { return m_pid2; }
  2177. unsigned pid1_retain_count() const { return m_pid1_retain_count; }
  2178. unsigned pid2_retain_count() const { return m_pid2_retain_count; }
  2179. size_t size() const { return m_vmo->size(); }
  2180. void destroy_if_unused();
  2181. int m_shared_buffer_id { -1 };
  2182. pid_t m_pid1;
  2183. pid_t m_pid2;
  2184. unsigned m_pid1_retain_count { 1 };
  2185. unsigned m_pid2_retain_count { 0 };
  2186. Region* m_pid1_region { nullptr };
  2187. Region* m_pid2_region { nullptr };
  2188. Retained<VMObject> m_vmo;
  2189. };
  2190. static int s_next_shared_buffer_id;
  2191. Lockable<HashMap<int, OwnPtr<SharedBuffer>>>& shared_buffers()
  2192. {
  2193. static Lockable<HashMap<int, OwnPtr<SharedBuffer>>>* map;
  2194. if (!map)
  2195. map = new Lockable<HashMap<int, OwnPtr<SharedBuffer>>>;
  2196. return *map;
  2197. }
  2198. void SharedBuffer::destroy_if_unused()
  2199. {
  2200. if (!m_pid1_retain_count && !m_pid2_retain_count) {
  2201. LOCKER(shared_buffers().lock());
  2202. #ifdef SHARED_BUFFER_DEBUG
  2203. dbgprintf("Destroying unused SharedBuffer{%p} id: %d (pid1: %d, pid2: %d)\n", this, m_shared_buffer_id, m_pid1, m_pid2);
  2204. #endif
  2205. size_t count_before = shared_buffers().resource().size();
  2206. shared_buffers().resource().remove(m_shared_buffer_id);
  2207. ASSERT(count_before != shared_buffers().resource().size());
  2208. }
  2209. }
  2210. void Process::disown_all_shared_buffers()
  2211. {
  2212. LOCKER(shared_buffers().lock());
  2213. Vector<SharedBuffer*> buffers_to_disown;
  2214. for (auto& it : shared_buffers().resource())
  2215. buffers_to_disown.append(it.value.ptr());
  2216. for (auto* shared_buffer : buffers_to_disown)
  2217. shared_buffer->disown(m_pid);
  2218. }
  2219. int Process::sys$create_shared_buffer(pid_t peer_pid, size_t size, void** buffer)
  2220. {
  2221. if (!size)
  2222. return -EINVAL;
  2223. size = PAGE_ROUND_UP(size);
  2224. if (!peer_pid || peer_pid < 0 || peer_pid == m_pid)
  2225. return -EINVAL;
  2226. if (!validate_write_typed(buffer))
  2227. return -EFAULT;
  2228. {
  2229. InterruptDisabler disabler;
  2230. auto* peer = Process::from_pid(peer_pid);
  2231. if (!peer)
  2232. return -ESRCH;
  2233. }
  2234. LOCKER(shared_buffers().lock());
  2235. int shared_buffer_id = ++s_next_shared_buffer_id;
  2236. auto shared_buffer = make<SharedBuffer>(m_pid, peer_pid, size);
  2237. shared_buffer->m_shared_buffer_id = shared_buffer_id;
  2238. ASSERT(shared_buffer->size() >= size);
  2239. shared_buffer->m_pid1_region = allocate_region_with_vmo(LinearAddress(), shared_buffer->size(), shared_buffer->m_vmo.copy_ref(), 0, "SharedBuffer", true, true);
  2240. shared_buffer->m_pid1_region->set_shared(true);
  2241. *buffer = shared_buffer->m_pid1_region->laddr().as_ptr();
  2242. #ifdef SHARED_BUFFER_DEBUG
  2243. dbgprintf("%s(%u): Created shared buffer %d (%u bytes, vmo is %u) for sharing with %d\n", name().characters(), pid(),shared_buffer_id, size, shared_buffer->size(), peer_pid);
  2244. #endif
  2245. shared_buffers().resource().set(shared_buffer_id, move(shared_buffer));
  2246. return shared_buffer_id;
  2247. }
  2248. int Process::sys$release_shared_buffer(int shared_buffer_id)
  2249. {
  2250. LOCKER(shared_buffers().lock());
  2251. auto it = shared_buffers().resource().find(shared_buffer_id);
  2252. if (it == shared_buffers().resource().end())
  2253. return -EINVAL;
  2254. auto& shared_buffer = *(*it).value;
  2255. #ifdef SHARED_BUFFER_DEBUG
  2256. dbgprintf("%s(%u): Releasing shared buffer %d, buffer count: %u\n", name().characters(), pid(), shared_buffer_id, shared_buffers().resource().size());
  2257. #endif
  2258. shared_buffer.release(*this);
  2259. return 0;
  2260. }
  2261. void* Process::sys$get_shared_buffer(int shared_buffer_id)
  2262. {
  2263. LOCKER(shared_buffers().lock());
  2264. auto it = shared_buffers().resource().find(shared_buffer_id);
  2265. if (it == shared_buffers().resource().end())
  2266. return (void*)-EINVAL;
  2267. auto& shared_buffer = *(*it).value;
  2268. if (shared_buffer.pid1() != m_pid && shared_buffer.pid2() != m_pid)
  2269. return (void*)-EINVAL;
  2270. #ifdef SHARED_BUFFER_DEBUG
  2271. dbgprintf("%s(%u): Retaining shared buffer %d, buffer count: %u\n", name().characters(), pid(), shared_buffer_id, shared_buffers().resource().size());
  2272. #endif
  2273. return shared_buffer.retain(*this);
  2274. }