init.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Types.h>
  7. #include <Kernel/Arch/InterruptManagement.h>
  8. #include <Kernel/Arch/Processor.h>
  9. #include <Kernel/BootInfo.h>
  10. #include <Kernel/Bus/PCI/Access.h>
  11. #include <Kernel/Bus/PCI/Initializer.h>
  12. #include <Kernel/Bus/USB/USBManagement.h>
  13. #include <Kernel/Bus/VirtIO/Device.h>
  14. #include <Kernel/CommandLine.h>
  15. #include <Kernel/Devices/Audio/Management.h>
  16. #include <Kernel/Devices/DeviceControlDevice.h>
  17. #include <Kernel/Devices/DeviceManagement.h>
  18. #include <Kernel/Devices/FullDevice.h>
  19. #include <Kernel/Devices/HID/HIDManagement.h>
  20. #include <Kernel/Devices/KCOVDevice.h>
  21. #include <Kernel/Devices/MemoryDevice.h>
  22. #include <Kernel/Devices/NullDevice.h>
  23. #include <Kernel/Devices/PCISerialDevice.h>
  24. #include <Kernel/Devices/RandomDevice.h>
  25. #include <Kernel/Devices/SelfTTYDevice.h>
  26. #include <Kernel/Devices/SerialDevice.h>
  27. #include <Kernel/Devices/ZeroDevice.h>
  28. #include <Kernel/FileSystem/SysFS/Registry.h>
  29. #include <Kernel/FileSystem/SysFS/Subsystems/Firmware/Directory.h>
  30. #include <Kernel/FileSystem/VirtualFileSystem.h>
  31. #include <Kernel/Firmware/ACPI/Initialize.h>
  32. #include <Kernel/Firmware/ACPI/Parser.h>
  33. #include <Kernel/Graphics/Console/BootFramebufferConsole.h>
  34. #include <Kernel/Graphics/Console/VGATextModeConsole.h>
  35. #include <Kernel/Graphics/GraphicsManagement.h>
  36. #include <Kernel/Heap/kmalloc.h>
  37. #include <Kernel/KSyms.h>
  38. #include <Kernel/Memory/MemoryManager.h>
  39. #include <Kernel/Multiboot.h>
  40. #include <Kernel/Net/NetworkTask.h>
  41. #include <Kernel/Net/NetworkingManagement.h>
  42. #include <Kernel/Panic.h>
  43. #include <Kernel/Prekernel/Prekernel.h>
  44. #include <Kernel/Process.h>
  45. #include <Kernel/Random.h>
  46. #include <Kernel/Scheduler.h>
  47. #include <Kernel/Sections.h>
  48. #include <Kernel/Storage/StorageManagement.h>
  49. #include <Kernel/TTY/ConsoleManagement.h>
  50. #include <Kernel/TTY/PTYMultiplexer.h>
  51. #include <Kernel/TTY/VirtualConsole.h>
  52. #include <Kernel/Tasks/FinalizerTask.h>
  53. #include <Kernel/Tasks/SyncTask.h>
  54. #include <Kernel/Time/TimeManagement.h>
  55. #include <Kernel/WorkQueue.h>
  56. #include <Kernel/kstdio.h>
  57. #if ARCH(X86_64)
  58. # include <Kernel/Arch/x86_64/Hypervisor/VMWareBackdoor.h>
  59. # include <Kernel/Arch/x86_64/Interrupts/APIC.h>
  60. # include <Kernel/Arch/x86_64/Interrupts/PIC.h>
  61. #elif ARCH(AARCH64)
  62. # include <Kernel/Arch/aarch64/RPi/Framebuffer.h>
  63. # include <Kernel/Arch/aarch64/RPi/Mailbox.h>
  64. #endif
  65. // Defined in the linker script
  66. typedef void (*ctor_func_t)();
  67. extern ctor_func_t start_heap_ctors[];
  68. extern ctor_func_t end_heap_ctors[];
  69. extern ctor_func_t start_ctors[];
  70. extern ctor_func_t end_ctors[];
  71. extern uintptr_t __stack_chk_guard;
  72. READONLY_AFTER_INIT uintptr_t __stack_chk_guard __attribute__((used));
  73. #if ARCH(X86_64)
  74. extern "C" u8 start_of_safemem_text[];
  75. extern "C" u8 end_of_safemem_text[];
  76. extern "C" u8 start_of_safemem_atomic_text[];
  77. extern "C" u8 end_of_safemem_atomic_text[];
  78. #endif
  79. extern "C" u8 end_of_kernel_image[];
  80. multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  81. size_t multiboot_copy_boot_modules_count;
  82. READONLY_AFTER_INIT bool g_in_early_boot;
  83. namespace Kernel {
  84. [[noreturn]] static void init_stage2(void*);
  85. static void setup_serial_debug();
  86. // boot.S expects these functions to exactly have the following signatures.
  87. // We declare them here to ensure their signatures don't accidentally change.
  88. extern "C" void init_finished(u32 cpu) __attribute__((used));
  89. extern "C" [[noreturn]] void init_ap(FlatPtr cpu, Processor* processor_info);
  90. extern "C" [[noreturn]] void init(BootInfo const&);
  91. READONLY_AFTER_INIT VirtualConsole* tty0;
  92. ProcessID g_init_pid { 0 };
  93. ALWAYS_INLINE static Processor& bsp_processor()
  94. {
  95. // This solves a problem where the bsp Processor instance
  96. // gets "re"-initialized in init() when we run all global constructors.
  97. alignas(Processor) static u8 bsp_processor_storage[sizeof(Processor)];
  98. return (Processor&)bsp_processor_storage;
  99. }
  100. // SerenityOS Kernel C++ entry point :^)
  101. //
  102. // This is where C++ execution begins, after boot.S transfers control here.
  103. //
  104. // The purpose of init() is to start multi-tasking. It does the bare minimum
  105. // amount of work needed to start the scheduler.
  106. //
  107. // Once multi-tasking is ready, we spawn a new thread that starts in the
  108. // init_stage2() function. Initialization continues there.
  109. extern "C" {
  110. READONLY_AFTER_INIT PhysicalAddress start_of_prekernel_image;
  111. READONLY_AFTER_INIT PhysicalAddress end_of_prekernel_image;
  112. READONLY_AFTER_INIT size_t physical_to_virtual_offset;
  113. READONLY_AFTER_INIT FlatPtr kernel_mapping_base;
  114. READONLY_AFTER_INIT FlatPtr kernel_load_base;
  115. READONLY_AFTER_INIT PhysicalAddress boot_pml4t;
  116. READONLY_AFTER_INIT PhysicalAddress boot_pdpt;
  117. READONLY_AFTER_INIT PhysicalAddress boot_pd0;
  118. READONLY_AFTER_INIT PhysicalAddress boot_pd_kernel;
  119. READONLY_AFTER_INIT Memory::PageTableEntry* boot_pd_kernel_pt1023;
  120. READONLY_AFTER_INIT char const* kernel_cmdline;
  121. READONLY_AFTER_INIT u32 multiboot_flags;
  122. READONLY_AFTER_INIT multiboot_memory_map_t* multiboot_memory_map;
  123. READONLY_AFTER_INIT size_t multiboot_memory_map_count;
  124. READONLY_AFTER_INIT multiboot_module_entry_t* multiboot_modules;
  125. READONLY_AFTER_INIT size_t multiboot_modules_count;
  126. READONLY_AFTER_INIT PhysicalAddress multiboot_framebuffer_addr;
  127. READONLY_AFTER_INIT u32 multiboot_framebuffer_pitch;
  128. READONLY_AFTER_INIT u32 multiboot_framebuffer_width;
  129. READONLY_AFTER_INIT u32 multiboot_framebuffer_height;
  130. READONLY_AFTER_INIT u8 multiboot_framebuffer_bpp;
  131. READONLY_AFTER_INIT u8 multiboot_framebuffer_type;
  132. }
  133. Atomic<Graphics::Console*> g_boot_console;
  134. extern "C" [[noreturn]] UNMAP_AFTER_INIT void init([[maybe_unused]] BootInfo const& boot_info)
  135. {
  136. g_in_early_boot = true;
  137. #if ARCH(X86_64)
  138. start_of_prekernel_image = PhysicalAddress { boot_info.start_of_prekernel_image };
  139. end_of_prekernel_image = PhysicalAddress { boot_info.end_of_prekernel_image };
  140. physical_to_virtual_offset = boot_info.physical_to_virtual_offset;
  141. kernel_mapping_base = boot_info.kernel_mapping_base;
  142. kernel_load_base = boot_info.kernel_load_base;
  143. gdt64ptr = boot_info.gdt64ptr;
  144. code64_sel = boot_info.code64_sel;
  145. boot_pml4t = PhysicalAddress { boot_info.boot_pml4t };
  146. boot_pdpt = PhysicalAddress { boot_info.boot_pdpt };
  147. boot_pd0 = PhysicalAddress { boot_info.boot_pd0 };
  148. boot_pd_kernel = PhysicalAddress { boot_info.boot_pd_kernel };
  149. boot_pd_kernel_pt1023 = (Memory::PageTableEntry*)boot_info.boot_pd_kernel_pt1023;
  150. kernel_cmdline = (char const*)boot_info.kernel_cmdline;
  151. multiboot_flags = boot_info.multiboot_flags;
  152. multiboot_memory_map = (multiboot_memory_map_t*)boot_info.multiboot_memory_map;
  153. multiboot_memory_map_count = boot_info.multiboot_memory_map_count;
  154. multiboot_modules = (multiboot_module_entry_t*)boot_info.multiboot_modules;
  155. multiboot_modules_count = boot_info.multiboot_modules_count;
  156. multiboot_framebuffer_addr = PhysicalAddress { boot_info.multiboot_framebuffer_addr };
  157. multiboot_framebuffer_pitch = boot_info.multiboot_framebuffer_pitch;
  158. multiboot_framebuffer_width = boot_info.multiboot_framebuffer_width;
  159. multiboot_framebuffer_height = boot_info.multiboot_framebuffer_height;
  160. multiboot_framebuffer_bpp = boot_info.multiboot_framebuffer_bpp;
  161. multiboot_framebuffer_type = boot_info.multiboot_framebuffer_type;
  162. #elif ARCH(AARCH64)
  163. // FIXME: For the aarch64 platforms, we should get the information by parsing a device tree instead of using multiboot.
  164. multiboot_memory_map_t mmap[] = {
  165. { sizeof(struct multiboot_mmap_entry) - sizeof(u32),
  166. (u64)0x0,
  167. (u64)0x3F000000,
  168. MULTIBOOT_MEMORY_AVAILABLE }
  169. };
  170. multiboot_memory_map = mmap;
  171. multiboot_memory_map_count = 1;
  172. multiboot_module_entry_t modules[] = {};
  173. multiboot_modules = modules;
  174. multiboot_modules_count = 0;
  175. kernel_cmdline = "";
  176. #endif
  177. setup_serial_debug();
  178. // We need to copy the command line before kmalloc is initialized,
  179. // as it may overwrite parts of multiboot!
  180. CommandLine::early_initialize(kernel_cmdline);
  181. memcpy(multiboot_copy_boot_modules_array, multiboot_modules, multiboot_modules_count * sizeof(multiboot_module_entry_t));
  182. multiboot_copy_boot_modules_count = multiboot_modules_count;
  183. new (&bsp_processor()) Processor();
  184. bsp_processor().early_initialize(0);
  185. // Invoke the constructors needed for the kernel heap
  186. for (ctor_func_t* ctor = start_heap_ctors; ctor < end_heap_ctors; ctor++)
  187. (*ctor)();
  188. kmalloc_init();
  189. load_kernel_symbol_table();
  190. bsp_processor().initialize(0);
  191. CommandLine::initialize();
  192. Memory::MemoryManager::initialize(0);
  193. #if ARCH(AARCH64)
  194. auto firmware_version = RPi::Mailbox::the().query_firmware_version();
  195. dmesgln("RPi: Firmware version: {}", firmware_version);
  196. RPi::Framebuffer::initialize();
  197. #endif
  198. // NOTE: If the bootloader provided a framebuffer, then set up an initial console.
  199. // If the bootloader didn't provide a framebuffer, then set up an initial text console.
  200. // We do so we can see the output on the screen as soon as possible.
  201. if (!kernel_command_line().is_early_boot_console_disabled()) {
  202. if (!multiboot_framebuffer_addr.is_null() && multiboot_framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_RGB) {
  203. g_boot_console = &try_make_lock_ref_counted<Graphics::BootFramebufferConsole>(multiboot_framebuffer_addr, multiboot_framebuffer_width, multiboot_framebuffer_height, multiboot_framebuffer_pitch).value().leak_ref();
  204. #if ARCH(AARCH64)
  205. RPi::Framebuffer::the().draw_logo(static_cast<Graphics::BootFramebufferConsole*>(g_boot_console.load())->unsafe_framebuffer_data());
  206. #endif
  207. } else {
  208. g_boot_console = &Graphics::VGATextModeConsole::initialize().leak_ref();
  209. }
  210. }
  211. dmesgln("Starting SerenityOS...");
  212. DeviceManagement::initialize();
  213. SysFSComponentRegistry::initialize();
  214. DeviceManagement::the().attach_null_device(*NullDevice::must_initialize());
  215. DeviceManagement::the().attach_console_device(*ConsoleDevice::must_create());
  216. DeviceManagement::the().attach_device_control_device(*DeviceControlDevice::must_create());
  217. MM.unmap_prekernel();
  218. #if ARCH(X86_64)
  219. // Ensure that the safemem sections are not empty. This could happen if the linker accidentally discards the sections.
  220. VERIFY(+start_of_safemem_text != +end_of_safemem_text);
  221. VERIFY(+start_of_safemem_atomic_text != +end_of_safemem_atomic_text);
  222. #endif
  223. // Invoke all static global constructors in the kernel.
  224. // Note that we want to do this as early as possible.
  225. for (ctor_func_t* ctor = start_ctors; ctor < end_ctors; ctor++)
  226. (*ctor)();
  227. InterruptManagement::initialize();
  228. ACPI::initialize();
  229. // Initialize TimeManagement before using randomness!
  230. TimeManagement::initialize(0);
  231. __stack_chk_guard = get_fast_random<uintptr_t>();
  232. Process::initialize();
  233. Scheduler::initialize();
  234. #if ARCH(X86_64)
  235. // FIXME: Add an abstraction for the smp related functions, instead of using ifdefs in this file.
  236. if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
  237. // We must set up the AP boot environment before switching to a kernel process,
  238. // as pages below address USER_RANGE_BASE are only accessible through the kernel
  239. // page directory.
  240. APIC::the().setup_ap_boot_environment();
  241. }
  242. #endif
  243. MUST(Process::create_kernel_process(KString::must_create("init_stage2"sv), init_stage2, nullptr, THREAD_AFFINITY_DEFAULT, Process::RegisterProcess::No));
  244. Scheduler::start();
  245. VERIFY_NOT_REACHED();
  246. }
  247. #if ARCH(X86_64)
  248. //
  249. // This is where C++ execution begins for APs, after boot.S transfers control here.
  250. //
  251. // The purpose of init_ap() is to initialize APs for multi-tasking.
  252. //
  253. extern "C" [[noreturn]] UNMAP_AFTER_INIT void init_ap(FlatPtr cpu, Processor* processor_info)
  254. {
  255. processor_info->early_initialize(cpu);
  256. processor_info->initialize(cpu);
  257. Memory::MemoryManager::initialize(cpu);
  258. Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu));
  259. Scheduler::start();
  260. VERIFY_NOT_REACHED();
  261. }
  262. //
  263. // This method is called once a CPU enters the scheduler and its idle thread
  264. // At this point the initial boot stack can be freed
  265. //
  266. extern "C" UNMAP_AFTER_INIT void init_finished(u32 cpu)
  267. {
  268. if (cpu == 0) {
  269. // TODO: we can reuse the boot stack, maybe for kmalloc()?
  270. } else {
  271. APIC::the().init_finished(cpu);
  272. TimeManagement::initialize(cpu);
  273. }
  274. }
  275. #endif
  276. void init_stage2(void*)
  277. {
  278. // This is a little bit of a hack. We can't register our process at the time we're
  279. // creating it, but we need to be registered otherwise finalization won't be happy.
  280. // The colonel process gets away without having to do this because it never exits.
  281. Process::register_new(Process::current());
  282. WorkQueue::initialize();
  283. #if ARCH(X86_64)
  284. if (kernel_command_line().is_smp_enabled() && APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
  285. // We can't start the APs until we have a scheduler up and running.
  286. // We need to be able to process ICI messages, otherwise another
  287. // core may send too many and end up deadlocking once the pool is
  288. // exhausted
  289. APIC::the().boot_aps();
  290. }
  291. #endif
  292. // Initialize the PCI Bus as early as possible, for early boot (PCI based) serial logging
  293. PCI::initialize();
  294. if (!PCI::Access::is_disabled()) {
  295. PCISerialDevice::detect();
  296. }
  297. VirtualFileSystem::initialize();
  298. #if ARCH(X86_64)
  299. if (!is_serial_debug_enabled())
  300. (void)SerialDevice::must_create(0).leak_ref();
  301. (void)SerialDevice::must_create(1).leak_ref();
  302. (void)SerialDevice::must_create(2).leak_ref();
  303. (void)SerialDevice::must_create(3).leak_ref();
  304. #endif
  305. #if ARCH(X86_64)
  306. VMWareBackdoor::the(); // don't wait until first mouse packet
  307. #endif
  308. MUST(HIDManagement::initialize());
  309. GraphicsManagement::the().initialize();
  310. ConsoleManagement::the().initialize();
  311. SyncTask::spawn();
  312. FinalizerTask::spawn();
  313. auto boot_profiling = kernel_command_line().is_boot_profiling_enabled();
  314. if (!PCI::Access::is_disabled()) {
  315. USB::USBManagement::initialize();
  316. }
  317. FirmwareSysFSDirectory::initialize();
  318. if (!PCI::Access::is_disabled()) {
  319. VirtIO::detect();
  320. }
  321. NetworkingManagement::the().initialize();
  322. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  323. (void)KCOVDevice::must_create().leak_ref();
  324. #endif
  325. (void)MemoryDevice::must_create().leak_ref();
  326. (void)ZeroDevice::must_create().leak_ref();
  327. (void)FullDevice::must_create().leak_ref();
  328. (void)RandomDevice::must_create().leak_ref();
  329. (void)SelfTTYDevice::must_create().leak_ref();
  330. PTYMultiplexer::initialize();
  331. AudioManagement::the().initialize();
  332. StorageManagement::the().initialize(kernel_command_line().root_device(), kernel_command_line().is_force_pio(), kernel_command_line().is_nvme_polling_enabled());
  333. if (VirtualFileSystem::the().mount_root(StorageManagement::the().root_filesystem()).is_error()) {
  334. PANIC("VirtualFileSystem::mount_root failed");
  335. }
  336. // Switch out of early boot mode.
  337. g_in_early_boot = false;
  338. // NOTE: Everything marked READONLY_AFTER_INIT becomes non-writable after this point.
  339. MM.protect_readonly_after_init_memory();
  340. // NOTE: Everything in the .ksyms section becomes read-only after this point.
  341. MM.protect_ksyms_after_init();
  342. // NOTE: Everything marked UNMAP_AFTER_INIT becomes inaccessible after this point.
  343. MM.unmap_text_after_init();
  344. auto userspace_init = kernel_command_line().userspace_init();
  345. auto init_args = kernel_command_line().userspace_init_args();
  346. auto init_or_error = Process::create_user_process(userspace_init, UserID(0), GroupID(0), move(init_args), {}, tty0);
  347. if (init_or_error.is_error())
  348. PANIC("init_stage2: Error spawning init process: {}", init_or_error.error());
  349. auto [init_process, init_thread] = init_or_error.release_value();
  350. g_init_pid = init_process->pid();
  351. init_thread->set_priority(THREAD_PRIORITY_HIGH);
  352. if (boot_profiling) {
  353. dbgln("Starting full system boot profiling");
  354. MutexLocker mutex_locker(Process::current().big_lock());
  355. auto const enable_all = ~(u64)0;
  356. auto result = Process::current().profiling_enable(-1, enable_all);
  357. VERIFY(!result.is_error());
  358. }
  359. NetworkTask::spawn();
  360. Process::current().sys$exit(0);
  361. VERIFY_NOT_REACHED();
  362. }
  363. UNMAP_AFTER_INIT void setup_serial_debug()
  364. {
  365. // serial_debug will output all the dbgln() data to COM1 at
  366. // 8-N-1 57600 baud. this is particularly useful for debugging the boot
  367. // process on live hardware.
  368. if (StringView { kernel_cmdline, strlen(kernel_cmdline) }.contains("serial_debug"sv)) {
  369. set_serial_debug_enabled(true);
  370. }
  371. }
  372. // Define some Itanium C++ ABI methods to stop the linker from complaining.
  373. // If we actually call these something has gone horribly wrong
  374. void* __dso_handle __attribute__((visibility("hidden")));
  375. }