Thread.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529
  1. #include <Kernel/Thread.h>
  2. #include <Kernel/Scheduler.h>
  3. #include <Kernel/system.h>
  4. #include <Kernel/Process.h>
  5. #include <Kernel/MemoryManager.h>
  6. #include <LibC/signal_numbers.h>
  7. InlineLinkedList<Thread>* g_threads;
  8. static const dword default_kernel_stack_size = 16384;
  9. static const dword default_userspace_stack_size = 65536;
  10. Thread::Thread(Process& process)
  11. : m_process(process)
  12. , m_tid(process.m_next_tid++)
  13. {
  14. dbgprintf("Thread: New thread TID=%u in %s(%u)\n", m_tid, process.name().characters(), process.pid());
  15. set_default_signal_dispositions();
  16. m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  17. memset(&m_tss, 0, sizeof(m_tss));
  18. // Only IF is set when a process boots.
  19. m_tss.eflags = 0x0202;
  20. word cs, ds, ss;
  21. if (m_process.is_ring0()) {
  22. cs = 0x08;
  23. ds = 0x10;
  24. ss = 0x10;
  25. } else {
  26. cs = 0x1b;
  27. ds = 0x23;
  28. ss = 0x23;
  29. }
  30. m_tss.ds = ds;
  31. m_tss.es = ds;
  32. m_tss.fs = ds;
  33. m_tss.gs = ds;
  34. m_tss.ss = ss;
  35. m_tss.cs = cs;
  36. m_tss.cr3 = m_process.page_directory().cr3();
  37. if (m_process.is_ring0()) {
  38. // FIXME: This memory is leaked.
  39. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  40. dword stack_bottom = (dword)kmalloc_eternal(default_kernel_stack_size);
  41. m_stack_top0 = (stack_bottom + default_kernel_stack_size) & 0xffffff8;
  42. m_tss.esp = m_stack_top0;
  43. } else {
  44. // Ring3 processes need a separate stack for Ring0.
  45. m_kernel_stack = kmalloc(default_kernel_stack_size);
  46. m_stack_top0 = ((dword)m_kernel_stack + default_kernel_stack_size) & 0xffffff8;
  47. m_tss.ss0 = 0x10;
  48. m_tss.esp0 = m_stack_top0;
  49. }
  50. // HACK: Ring2 SS in the TSS is the current PID.
  51. m_tss.ss2 = m_process.pid();
  52. m_far_ptr.offset = 0x98765432;
  53. if (m_process.pid() != 0) {
  54. InterruptDisabler disabler;
  55. g_threads->prepend(this);
  56. }
  57. }
  58. Thread::~Thread()
  59. {
  60. dbgprintf("~Thread{%p}\n", this);
  61. kfree_aligned(m_fpu_state);
  62. {
  63. InterruptDisabler disabler;
  64. g_threads->remove(this);
  65. }
  66. if (g_last_fpu_thread == this)
  67. g_last_fpu_thread = nullptr;
  68. if (selector())
  69. gdt_free_entry(selector());
  70. if (m_kernel_stack) {
  71. kfree(m_kernel_stack);
  72. m_kernel_stack = nullptr;
  73. }
  74. if (m_kernel_stack_for_signal_handler) {
  75. kfree(m_kernel_stack_for_signal_handler);
  76. m_kernel_stack_for_signal_handler = nullptr;
  77. }
  78. }
  79. void Thread::unblock()
  80. {
  81. if (current == this) {
  82. m_state = Thread::Running;
  83. return;
  84. }
  85. ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
  86. m_state = Thread::Runnable;
  87. }
  88. void Thread::snooze_until(Alarm& alarm)
  89. {
  90. m_snoozing_alarm = &alarm;
  91. block(Thread::BlockedSnoozing);
  92. Scheduler::yield();
  93. }
  94. void Thread::block(Thread::State new_state)
  95. {
  96. bool did_unlock = process().big_lock().unlock_if_locked();
  97. if (state() != Thread::Running) {
  98. kprintf("Thread::block: %s(%u) block(%u/%s) with state=%u/%s\n", process().name().characters(), process().pid(), new_state, to_string(new_state), state(), to_string(state()));
  99. }
  100. ASSERT(state() == Thread::Running);
  101. m_was_interrupted_while_blocked = false;
  102. set_state(new_state);
  103. Scheduler::yield();
  104. if (did_unlock)
  105. process().big_lock().lock();
  106. }
  107. void Thread::sleep(dword ticks)
  108. {
  109. ASSERT(state() == Thread::Running);
  110. current->set_wakeup_time(system.uptime + ticks);
  111. current->block(Thread::BlockedSleep);
  112. }
  113. const char* to_string(Thread::State state)
  114. {
  115. switch (state) {
  116. case Thread::Invalid: return "Invalid";
  117. case Thread::Runnable: return "Runnable";
  118. case Thread::Running: return "Running";
  119. case Thread::Dying: return "Dying";
  120. case Thread::Dead: return "Dead";
  121. case Thread::Stopped: return "Stopped";
  122. case Thread::Skip1SchedulerPass: return "Skip1";
  123. case Thread::Skip0SchedulerPasses: return "Skip0";
  124. case Thread::BlockedSleep: return "Sleep";
  125. case Thread::BlockedWait: return "Wait";
  126. case Thread::BlockedRead: return "Read";
  127. case Thread::BlockedWrite: return "Write";
  128. case Thread::BlockedSignal: return "Signal";
  129. case Thread::BlockedSelect: return "Select";
  130. case Thread::BlockedLurking: return "Lurking";
  131. case Thread::BlockedConnect: return "Connect";
  132. case Thread::BlockedReceive: return "Receive";
  133. case Thread::BlockedSnoozing: return "Snoozing";
  134. }
  135. kprintf("to_string(Thread::State): Invalid state: %u\n", state);
  136. ASSERT_NOT_REACHED();
  137. return nullptr;
  138. }
  139. void Thread::finalize()
  140. {
  141. dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
  142. m_blocked_socket = nullptr;
  143. set_state(Thread::State::Dead);
  144. if (this == &m_process.main_thread())
  145. m_process.finalize();
  146. }
  147. void Thread::finalize_dying_threads()
  148. {
  149. Vector<Thread*> dying_threads;
  150. {
  151. InterruptDisabler disabler;
  152. for_each_in_state(Thread::State::Dying, [&] (Thread& thread) {
  153. dying_threads.append(&thread);
  154. });
  155. }
  156. for (auto* thread : dying_threads)
  157. thread->finalize();
  158. }
  159. bool Thread::tick()
  160. {
  161. ++m_ticks;
  162. if (tss().cs & 3)
  163. ++m_process.m_ticks_in_user;
  164. else
  165. ++m_process.m_ticks_in_kernel;
  166. return --m_ticks_left;
  167. }
  168. void Thread::send_signal(byte signal, Process* sender)
  169. {
  170. ASSERT(signal < 32);
  171. if (sender)
  172. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
  173. else
  174. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
  175. InterruptDisabler disabler;
  176. m_pending_signals |= 1 << signal;
  177. }
  178. bool Thread::has_unmasked_pending_signals() const
  179. {
  180. return m_pending_signals & ~m_signal_mask;
  181. }
  182. ShouldUnblockThread Thread::dispatch_one_pending_signal()
  183. {
  184. ASSERT_INTERRUPTS_DISABLED();
  185. dword signal_candidates = m_pending_signals & ~m_signal_mask;
  186. ASSERT(signal_candidates);
  187. byte signal = 0;
  188. for (; signal < 32; ++signal) {
  189. if (signal_candidates & (1 << signal)) {
  190. break;
  191. }
  192. }
  193. return dispatch_signal(signal);
  194. }
  195. enum class DefaultSignalAction {
  196. Terminate,
  197. Ignore,
  198. DumpCore,
  199. Stop,
  200. Continue,
  201. };
  202. DefaultSignalAction default_signal_action(byte signal)
  203. {
  204. ASSERT(signal && signal < NSIG);
  205. switch (signal) {
  206. case SIGHUP:
  207. case SIGINT:
  208. case SIGKILL:
  209. case SIGPIPE:
  210. case SIGALRM:
  211. case SIGUSR1:
  212. case SIGUSR2:
  213. case SIGVTALRM:
  214. case SIGSTKFLT:
  215. case SIGIO:
  216. case SIGPROF:
  217. case SIGTERM:
  218. case SIGPWR:
  219. return DefaultSignalAction::Terminate;
  220. case SIGCHLD:
  221. case SIGURG:
  222. case SIGWINCH:
  223. return DefaultSignalAction::Ignore;
  224. case SIGQUIT:
  225. case SIGILL:
  226. case SIGTRAP:
  227. case SIGABRT:
  228. case SIGBUS:
  229. case SIGFPE:
  230. case SIGSEGV:
  231. case SIGXCPU:
  232. case SIGXFSZ:
  233. case SIGSYS:
  234. return DefaultSignalAction::DumpCore;
  235. case SIGCONT:
  236. return DefaultSignalAction::Continue;
  237. case SIGSTOP:
  238. case SIGTSTP:
  239. case SIGTTIN:
  240. case SIGTTOU:
  241. return DefaultSignalAction::Stop;
  242. }
  243. ASSERT_NOT_REACHED();
  244. }
  245. ShouldUnblockThread Thread::dispatch_signal(byte signal)
  246. {
  247. ASSERT_INTERRUPTS_DISABLED();
  248. ASSERT(signal < 32);
  249. #ifdef SIGNAL_DEBUG
  250. kprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
  251. #endif
  252. auto& action = m_signal_action_data[signal];
  253. // FIXME: Implement SA_SIGINFO signal handlers.
  254. ASSERT(!(action.flags & SA_SIGINFO));
  255. // Mark this signal as handled.
  256. m_pending_signals &= ~(1 << signal);
  257. if (signal == SIGSTOP) {
  258. set_state(Stopped);
  259. return ShouldUnblockThread::No;
  260. }
  261. if (signal == SIGCONT && state() == Stopped)
  262. set_state(Runnable);
  263. auto handler_laddr = action.handler_or_sigaction;
  264. if (handler_laddr.is_null()) {
  265. switch (default_signal_action(signal)) {
  266. case DefaultSignalAction::Stop:
  267. set_state(Stopped);
  268. return ShouldUnblockThread::No;
  269. case DefaultSignalAction::DumpCore:
  270. case DefaultSignalAction::Terminate:
  271. m_process.terminate_due_to_signal(signal);
  272. return ShouldUnblockThread::No;
  273. case DefaultSignalAction::Ignore:
  274. return ShouldUnblockThread::No;
  275. case DefaultSignalAction::Continue:
  276. return ShouldUnblockThread::Yes;
  277. }
  278. ASSERT_NOT_REACHED();
  279. }
  280. if (handler_laddr.as_ptr() == SIG_IGN) {
  281. #ifdef SIGNAL_DEBUG
  282. kprintf("%s(%u) ignored signal %u\n", name().characters(), pid(), signal);
  283. #endif
  284. return ShouldUnblockThread::Yes;
  285. }
  286. dword old_signal_mask = m_signal_mask;
  287. dword new_signal_mask = action.mask;
  288. if (action.flags & SA_NODEFER)
  289. new_signal_mask &= ~(1 << signal);
  290. else
  291. new_signal_mask |= 1 << signal;
  292. m_signal_mask |= new_signal_mask;
  293. Scheduler::prepare_to_modify_tss(*this);
  294. word ret_cs = m_tss.cs;
  295. dword ret_eip = m_tss.eip;
  296. dword ret_eflags = m_tss.eflags;
  297. bool interrupting_in_kernel = (ret_cs & 3) == 0;
  298. ProcessPagingScope paging_scope(m_process);
  299. m_process.create_signal_trampolines_if_needed();
  300. if (interrupting_in_kernel) {
  301. #ifdef SIGNAL_DEBUG
  302. kprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
  303. #endif
  304. ASSERT(is_blocked());
  305. m_tss_to_resume_kernel = m_tss;
  306. #ifdef SIGNAL_DEBUG
  307. kprintf("resume tss pc: %w:%x stack: %w:%x flags: %x cr3: %x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel.eip, m_tss_to_resume_kernel.ss, m_tss_to_resume_kernel.esp, m_tss_to_resume_kernel.eflags, m_tss_to_resume_kernel.cr3);
  308. #endif
  309. if (!m_signal_stack_user_region) {
  310. m_signal_stack_user_region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "Signal stack (user)");
  311. ASSERT(m_signal_stack_user_region);
  312. }
  313. if (!m_kernel_stack_for_signal_handler) {
  314. m_kernel_stack_for_signal_handler = kmalloc(default_kernel_stack_size);
  315. ASSERT(m_kernel_stack_for_signal_handler);
  316. }
  317. m_tss.ss = 0x23;
  318. m_tss.esp = m_signal_stack_user_region->laddr().offset(default_userspace_stack_size).get();
  319. m_tss.ss0 = 0x10;
  320. m_tss.esp0 = (dword)m_kernel_stack_for_signal_handler + default_kernel_stack_size;
  321. push_value_on_stack(0);
  322. } else {
  323. push_value_on_stack(ret_eip);
  324. push_value_on_stack(ret_eflags);
  325. // PUSHA
  326. dword old_esp = m_tss.esp;
  327. push_value_on_stack(m_tss.eax);
  328. push_value_on_stack(m_tss.ecx);
  329. push_value_on_stack(m_tss.edx);
  330. push_value_on_stack(m_tss.ebx);
  331. push_value_on_stack(old_esp);
  332. push_value_on_stack(m_tss.ebp);
  333. push_value_on_stack(m_tss.esi);
  334. push_value_on_stack(m_tss.edi);
  335. // Align the stack.
  336. m_tss.esp -= 12;
  337. }
  338. // PUSH old_signal_mask
  339. push_value_on_stack(old_signal_mask);
  340. m_tss.cs = 0x1b;
  341. m_tss.ds = 0x23;
  342. m_tss.es = 0x23;
  343. m_tss.fs = 0x23;
  344. m_tss.gs = 0x23;
  345. m_tss.eip = handler_laddr.get();
  346. // FIXME: Should we worry about the stack being 16 byte aligned when entering a signal handler?
  347. push_value_on_stack(signal);
  348. if (interrupting_in_kernel)
  349. push_value_on_stack(m_process.m_return_to_ring0_from_signal_trampoline.get());
  350. else
  351. push_value_on_stack(m_process.m_return_to_ring3_from_signal_trampoline.get());
  352. ASSERT((m_tss.esp % 16) == 0);
  353. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  354. set_state(Skip1SchedulerPass);
  355. #ifdef SIGNAL_DEBUG
  356. kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
  357. #endif
  358. return ShouldUnblockThread::Yes;
  359. }
  360. void Thread::set_default_signal_dispositions()
  361. {
  362. // FIXME: Set up all the right default actions. See signal(7).
  363. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  364. m_signal_action_data[SIGCHLD].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
  365. m_signal_action_data[SIGWINCH].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
  366. }
  367. void Thread::push_value_on_stack(dword value)
  368. {
  369. m_tss.esp -= 4;
  370. dword* stack_ptr = (dword*)m_tss.esp;
  371. *stack_ptr = value;
  372. }
  373. void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
  374. {
  375. auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "stack");
  376. ASSERT(region);
  377. m_stack_top3 = region->laddr().offset(default_userspace_stack_size).get();
  378. m_tss.esp = m_stack_top3;
  379. char* stack_base = (char*)region->laddr().get();
  380. int argc = arguments.size();
  381. char** argv = (char**)stack_base;
  382. char** env = argv + arguments.size() + 1;
  383. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  384. size_t total_blob_size = 0;
  385. for (auto& a : arguments)
  386. total_blob_size += a.length() + 1;
  387. for (auto& e : environment)
  388. total_blob_size += e.length() + 1;
  389. size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
  390. // FIXME: It would be better if this didn't make us panic.
  391. ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
  392. for (int i = 0; i < arguments.size(); ++i) {
  393. argv[i] = bufptr;
  394. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  395. bufptr += arguments[i].length();
  396. *(bufptr++) = '\0';
  397. }
  398. argv[arguments.size()] = nullptr;
  399. for (int i = 0; i < environment.size(); ++i) {
  400. env[i] = bufptr;
  401. memcpy(bufptr, environment[i].characters(), environment[i].length());
  402. bufptr += environment[i].length();
  403. *(bufptr++) = '\0';
  404. }
  405. env[environment.size()] = nullptr;
  406. // NOTE: The stack needs to be 16-byte aligned.
  407. push_value_on_stack((dword)env);
  408. push_value_on_stack((dword)argv);
  409. push_value_on_stack((dword)argc);
  410. push_value_on_stack(0);
  411. }
  412. void Thread::make_userspace_stack_for_secondary_thread(void *argument)
  413. {
  414. auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, String::format("Thread %u Stack", tid()));
  415. ASSERT(region);
  416. m_stack_top3 = region->laddr().offset(default_userspace_stack_size).get();
  417. m_tss.esp = m_stack_top3;
  418. // NOTE: The stack needs to be 16-byte aligned.
  419. push_value_on_stack((dword)argument);
  420. push_value_on_stack(0);
  421. }
  422. Thread* Thread::clone(Process& process)
  423. {
  424. auto* clone = new Thread(process);
  425. memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  426. clone->m_signal_mask = m_signal_mask;
  427. clone->m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  428. memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
  429. clone->m_has_used_fpu = m_has_used_fpu;
  430. return clone;
  431. }
  432. KResult Thread::wait_for_connect(Socket& socket)
  433. {
  434. if (socket.is_connected())
  435. return KSuccess;
  436. m_blocked_socket = socket;
  437. block(Thread::State::BlockedConnect);
  438. Scheduler::yield();
  439. m_blocked_socket = nullptr;
  440. if (!socket.is_connected())
  441. return KResult(-ECONNREFUSED);
  442. return KSuccess;
  443. }
  444. void Thread::initialize()
  445. {
  446. g_threads = new InlineLinkedList<Thread>;
  447. Scheduler::initialize();
  448. }
  449. Vector<Thread*> Thread::all_threads()
  450. {
  451. Vector<Thread*> threads;
  452. InterruptDisabler disabler;
  453. for (auto* thread = g_threads->head(); thread; thread = thread->next())
  454. threads.append(thread);
  455. return threads;
  456. }