123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756 |
- /*
- * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice, this
- * list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #include <LibC/assert.h>
- #include <math.h>
- #include <stdint.h>
- #include <stdlib.h>
- template<size_t>
- constexpr double e_to_power();
- template<>
- constexpr double e_to_power<0>() { return 1; }
- template<size_t exponent>
- constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
- template<size_t>
- constexpr size_t factorial();
- template<>
- constexpr size_t factorial<0>() { return 1; }
- template<size_t value>
- constexpr size_t factorial() { return value * factorial<value - 1>(); }
- template<size_t>
- constexpr size_t product_even();
- template<>
- constexpr size_t product_even<2>() { return 2; }
- template<size_t value>
- constexpr size_t product_even() { return value * product_even<value - 2>(); }
- template<size_t>
- constexpr size_t product_odd();
- template<>
- constexpr size_t product_odd<1>() { return 1; }
- template<size_t value>
- constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
- enum class RoundingMode {
- ToZero,
- Up,
- Down,
- ToEven
- };
- template<typename T>
- union FloatExtractor;
- template<>
- union FloatExtractor<double> {
- static const int mantissa_bits = 52;
- static const unsigned long long mantissa_max = (1ull << 52) - 1;
- static const int exponent_bias = 1023;
- static const int exponent_bits = 11;
- static const unsigned exponent_max = 2047;
- struct {
- unsigned long long mantissa : 52;
- unsigned exponent : 11;
- unsigned sign : 1;
- };
- double d;
- };
- template<>
- union FloatExtractor<float> {
- static const int mantissa_bits = 23;
- static const unsigned mantissa_max = (1 << 23) - 1;
- static const int exponent_bias = 127;
- static const int exponent_bits = 8;
- static const unsigned exponent_max = 255;
- struct {
- unsigned long long mantissa : 23;
- unsigned exponent : 8;
- unsigned sign : 1;
- };
- float d;
- };
- // This is much branchier than it really needs to be
- template<typename FloatType>
- static FloatType internal_to_integer(FloatType x, RoundingMode rounding_mode)
- {
- if (!isfinite(x))
- return x;
- using Extractor = FloatExtractor<decltype(x)>;
- Extractor extractor;
- extractor.d = x;
- auto unbiased_exponent = extractor.exponent - Extractor::exponent_bias;
- bool round = false;
- bool guard = false;
- if (unbiased_exponent < 0) {
- // it was easier to special case [0..1) as it saves us from
- // handling subnormals, underflows, etc
- if (unbiased_exponent == -1) {
- round = true;
- }
- guard = extractor.mantissa != 0;
- extractor.mantissa = 0;
- extractor.exponent = 0;
- } else {
- if (unbiased_exponent >= Extractor::mantissa_bits)
- return x;
- auto dead_bitcount = Extractor::mantissa_bits - unbiased_exponent;
- auto dead_mask = (1ull << dead_bitcount) - 1;
- auto dead_bits = extractor.mantissa & dead_mask;
- extractor.mantissa &= ~dead_mask;
- auto guard_mask = dead_mask >> 1;
- guard = (dead_bits & guard_mask) != 0;
- round = (dead_bits & ~guard_mask) != 0;
- }
- bool should_round = false;
- switch (rounding_mode) {
- case RoundingMode::ToEven:
- should_round = round;
- break;
- case RoundingMode::Up:
- if (!extractor.sign)
- should_round = guard || round;
- break;
- case RoundingMode::Down:
- if (extractor.sign)
- should_round = guard || round;
- break;
- case RoundingMode::ToZero:
- break;
- }
- if (should_round) {
- // We could do this ourselves, but this saves us from manually
- // handling overflow.
- if (extractor.sign)
- extractor.d -= 1.0;
- else
- extractor.d += 1.0;
- }
- return extractor.d;
- }
- // This is much branchier than it really needs to be
- template<typename FloatType>
- static FloatType internal_nextafter(FloatType x, bool up)
- {
- if (!isfinite(x))
- return x;
- using Extractor = FloatExtractor<decltype(x)>;
- Extractor extractor;
- extractor.d = x;
- if (x == 0) {
- if (!extractor.sign) {
- extractor.mantissa = 1;
- extractor.sign = !up;
- return extractor.d;
- }
- if (up) {
- extractor.sign = false;
- extractor.mantissa = 1;
- return extractor.d;
- }
- extractor.mantissa = 1;
- extractor.sign = up != extractor.sign;
- return extractor.d;
- }
- if (up != extractor.sign) {
- extractor.mantissa++;
- if (!extractor.mantissa) {
- // no need to normalize the mantissa as we just hit a power
- // of two.
- extractor.exponent++;
- if (extractor.exponent == Extractor::exponent_max) {
- extractor.exponent = Extractor::exponent_max - 1;
- extractor.mantissa = Extractor::mantissa_max;
- }
- }
- return extractor.d;
- }
- if (!extractor.mantissa) {
- if (extractor.exponent) {
- extractor.exponent--;
- extractor.mantissa = Extractor::mantissa_max;
- } else {
- extractor.d = 0;
- }
- return extractor.d;
- }
- extractor.mantissa--;
- if (extractor.mantissa != Extractor::mantissa_max)
- return extractor.d;
- if (extractor.exponent) {
- extractor.exponent--;
- // normalize
- extractor.mantissa <<= 1;
- } else {
- if (extractor.sign) {
- // Negative infinity
- extractor.mantissa = 0;
- extractor.exponent = Extractor::exponent_max;
- }
- }
- return extractor.d;
- }
- extern "C" {
- double trunc(double x) NOEXCEPT
- {
- return internal_to_integer(x, RoundingMode::ToZero);
- }
- double cos(double angle) NOEXCEPT
- {
- return sin(angle + M_PI_2);
- }
- float cosf(float angle) NOEXCEPT
- {
- return sinf(angle + M_PI_2);
- }
- // This can also be done with a taylor expansion, but for
- // now this works pretty well (and doesn't mess anything up
- // in quake in particular, which is very Floating-Point precision
- // heavy)
- double sin(double angle) NOEXCEPT
- {
- double ret = 0.0;
- __asm__(
- "fsin"
- : "=t"(ret)
- : "0"(angle));
- return ret;
- }
- float sinf(float angle) NOEXCEPT
- {
- float ret = 0.0f;
- __asm__(
- "fsin"
- : "=t"(ret)
- : "0"(angle));
- return ret;
- }
- double pow(double x, double y) NOEXCEPT
- {
- // FIXME: Please fix me. I am naive.
- if (isnan(y))
- return y;
- if (y == 0)
- return 1;
- if (x == 0)
- return 0;
- if (y == 1)
- return x;
- int y_as_int = (int)y;
- if (y == (double)y_as_int) {
- double result = x;
- for (int i = 0; i < fabs(y) - 1; ++i)
- result *= x;
- if (y < 0)
- result = 1.0 / result;
- return result;
- }
- return exp2(y * log2(x));
- }
- float powf(float x, float y) NOEXCEPT
- {
- return (float)pow(x, y);
- }
- double ldexp(double x, int exp) NOEXCEPT
- {
- return x * exp2(exp);
- }
- float ldexpf(float x, int exp) NOEXCEPT
- {
- return x * exp2f(exp);
- }
- double tanh(double x) NOEXCEPT
- {
- if (x > 0) {
- double exponentiated = exp(2 * x);
- return (exponentiated - 1) / (exponentiated + 1);
- }
- double plusX = exp(x);
- double minusX = 1 / plusX;
- return (plusX - minusX) / (plusX + minusX);
- }
- static double ampsin(double angle) NOEXCEPT
- {
- double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI;
- double looped_angle_squared = looped_angle * looped_angle;
- double quadratic_term;
- if (looped_angle > 0) {
- quadratic_term = -looped_angle_squared;
- } else {
- quadratic_term = looped_angle_squared;
- }
- double linear_term = M_PI * looped_angle;
- return quadratic_term + linear_term;
- }
- double tan(double angle) NOEXCEPT
- {
- return ampsin(angle) / ampsin(M_PI_2 + angle);
- }
- double sqrt(double x) NOEXCEPT
- {
- double res;
- __asm__("fsqrt"
- : "=t"(res)
- : "0"(x));
- return res;
- }
- float sqrtf(float x) NOEXCEPT
- {
- float res;
- __asm__("fsqrt"
- : "=t"(res)
- : "0"(x));
- return res;
- }
- double sinh(double x) NOEXCEPT
- {
- double exponentiated = exp(x);
- if (x > 0)
- return (exponentiated * exponentiated - 1) / 2 / exponentiated;
- return (exponentiated - 1 / exponentiated) / 2;
- }
- double log10(double x) NOEXCEPT
- {
- double ret = 0.0;
- __asm__(
- "fldlg2\n"
- "fld %%st(1)\n"
- "fyl2x\n"
- "fstp %%st(1)"
- : "=t"(ret)
- : "0"(x));
- return ret;
- }
- double log(double x) NOEXCEPT
- {
- double ret = 0.0;
- __asm__(
- "fldln2\n"
- "fld %%st(1)\n"
- "fyl2x\n"
- "fstp %%st(1)"
- : "=t"(ret)
- : "0"(x));
- return ret;
- }
- float logf(float x) NOEXCEPT
- {
- return (float)log(x);
- }
- double fmod(double index, double period) NOEXCEPT
- {
- return index - trunc(index / period) * period;
- }
- float fmodf(float index, float period) NOEXCEPT
- {
- return index - trunc(index / period) * period;
- }
- double exp(double exponent) NOEXCEPT
- {
- double res = 0;
- __asm__("fldl2e\n"
- "fmulp\n"
- "fld1\n"
- "fld %%st(1)\n"
- "fprem\n"
- "f2xm1\n"
- "faddp\n"
- "fscale\n"
- "fstp %%st(1)"
- : "=t"(res)
- : "0"(exponent));
- return res;
- }
- float expf(float exponent) NOEXCEPT
- {
- return (float)exp(exponent);
- }
- double exp2(double exponent) NOEXCEPT
- {
- double res = 0;
- __asm__("fld1\n"
- "fld %%st(1)\n"
- "fprem\n"
- "f2xm1\n"
- "faddp\n"
- "fscale\n"
- "fstp %%st(1)"
- : "=t"(res)
- : "0"(exponent));
- return res;
- }
- float exp2f(float exponent) NOEXCEPT
- {
- return (float)exp2(exponent);
- }
- double cosh(double x) NOEXCEPT
- {
- double exponentiated = exp(-x);
- if (x < 0)
- return (1 + exponentiated * exponentiated) / 2 / exponentiated;
- return (1 / exponentiated + exponentiated) / 2;
- }
- double atan2(double y, double x) NOEXCEPT
- {
- if (x > 0)
- return atan(y / x);
- if (x == 0) {
- if (y > 0)
- return M_PI_2;
- if (y < 0)
- return -M_PI_2;
- return 0;
- }
- if (y >= 0)
- return atan(y / x) + M_PI;
- return atan(y / x) - M_PI;
- }
- float atan2f(float y, float x) NOEXCEPT
- {
- return (float)atan2(y, x);
- }
- double atan(double x) NOEXCEPT
- {
- if (x < 0)
- return -atan(-x);
- if (x > 1)
- return M_PI_2 - atan(1 / x);
- double squared = x * x;
- return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared)))))));
- }
- double asin(double x) NOEXCEPT
- {
- if (x > 1 || x < -1)
- return NAN;
- if (x > 0.5 || x < -0.5)
- return 2 * atan(x / (1 + sqrt(1 - x * x)));
- double squared = x * x;
- double value = x;
- double i = x * squared;
- value += i * product_odd<1>() / product_even<2>() / 3;
- i *= squared;
- value += i * product_odd<3>() / product_even<4>() / 5;
- i *= squared;
- value += i * product_odd<5>() / product_even<6>() / 7;
- i *= squared;
- value += i * product_odd<7>() / product_even<8>() / 9;
- i *= squared;
- value += i * product_odd<9>() / product_even<10>() / 11;
- i *= squared;
- value += i * product_odd<11>() / product_even<12>() / 13;
- return value;
- }
- float asinf(float x) NOEXCEPT
- {
- return (float)asin(x);
- }
- double acos(double x) NOEXCEPT
- {
- return M_PI_2 - asin(x);
- }
- float acosf(float x) NOEXCEPT
- {
- return M_PI_2 - asinf(x);
- }
- double fabs(double value) NOEXCEPT
- {
- return value < 0 ? -value : value;
- }
- double log2(double x) NOEXCEPT
- {
- double ret = 0.0;
- __asm__(
- "fld1\n"
- "fld %%st(1)\n"
- "fyl2x\n"
- "fstp %%st(1)"
- : "=t"(ret)
- : "0"(x));
- return ret;
- }
- float log2f(float x) NOEXCEPT
- {
- return log2(x);
- }
- long double log2l(long double x) NOEXCEPT
- {
- return log2(x);
- }
- double frexp(double, int*) NOEXCEPT
- {
- VERIFY_NOT_REACHED();
- return 0;
- }
- float frexpf(float, int*) NOEXCEPT
- {
- VERIFY_NOT_REACHED();
- return 0;
- }
- long double frexpl(long double, int*) NOEXCEPT
- {
- VERIFY_NOT_REACHED();
- return 0;
- }
- double round(double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::ToEven);
- }
- float roundf(float value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::ToEven);
- }
- float floorf(float value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::Down);
- }
- double floor(double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::Down);
- }
- double rint(double value) NOEXCEPT
- {
- // This should be the current rounding mode
- return internal_to_integer(value, RoundingMode::ToEven);
- }
- float ceilf(float value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::Up);
- }
- double ceil(double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::Up);
- }
- double modf(double x, double* intpart) NOEXCEPT
- {
- double integer_part = internal_to_integer(x, RoundingMode::ToZero);
- *intpart = integer_part;
- auto fraction = x - integer_part;
- if (signbit(fraction) != signbit(x))
- fraction = -fraction;
- return fraction;
- }
- double gamma(double x) NOEXCEPT
- {
- // Stirling approximation
- return sqrt(2.0 * M_PI / x) * pow(x / M_E, x);
- }
- double expm1(double x) NOEXCEPT
- {
- return exp(x) - 1;
- }
- double cbrt(double x) NOEXCEPT
- {
- if (isinf(x) || x == 0)
- return x;
- if (x < 0)
- return -cbrt(-x);
- double r = x;
- double ex = 0;
- while (r < 0.125) {
- r *= 8;
- ex--;
- }
- while (r > 1.0) {
- r *= 0.125;
- ex++;
- }
- r = (-0.46946116 * r + 1.072302) * r + 0.3812513;
- while (ex < 0) {
- r *= 0.5;
- ex++;
- }
- while (ex > 0) {
- r *= 2;
- ex--;
- }
- r = (2.0 / 3.0) * r + (1.0 / 3.0) * x / (r * r);
- r = (2.0 / 3.0) * r + (1.0 / 3.0) * x / (r * r);
- r = (2.0 / 3.0) * r + (1.0 / 3.0) * x / (r * r);
- r = (2.0 / 3.0) * r + (1.0 / 3.0) * x / (r * r);
- return r;
- }
- double log1p(double x) NOEXCEPT
- {
- return log(1 + x);
- }
- double acosh(double x) NOEXCEPT
- {
- return log(x + sqrt(x * x - 1));
- }
- double asinh(double x) NOEXCEPT
- {
- return log(x + sqrt(x * x + 1));
- }
- double atanh(double x) NOEXCEPT
- {
- return log((1 + x) / (1 - x)) / 2.0;
- }
- double hypot(double x, double y) NOEXCEPT
- {
- return sqrt(x * x + y * y);
- }
- double erf(double x) NOEXCEPT
- {
- // algorithm taken from Abramowitz and Stegun (no. 26.2.17)
- double t = 1 / (1 + 0.47047 * fabs(x));
- double poly = t * (0.3480242 + t * (-0.958798 + t * 0.7478556));
- double answer = 1 - poly * exp(-x * x);
- if (x < 0)
- return -answer;
- return answer;
- }
- double erfc(double x) NOEXCEPT
- {
- return 1 - erf(x);
- }
- double nextafter(double x, double target) NOEXCEPT
- {
- if (x == target)
- return target;
- return internal_nextafter(x, target >= x);
- }
- float nextafterf(float x, float target) NOEXCEPT
- {
- if (x == target)
- return target;
- return internal_nextafter(x, target >= x);
- }
- long double nextafterl(long double, long double) NOEXCEPT
- {
- TODO();
- }
- double nexttoward(double x, long double target) NOEXCEPT
- {
- if (x == target)
- return target;
- return internal_nextafter(x, target >= x);
- }
- float nexttowardf(float x, long double target) NOEXCEPT
- {
- if (x == target)
- return target;
- return internal_nextafter(x, target >= x);
- }
- long double nexttowardl(long double, long double) NOEXCEPT
- {
- TODO();
- }
- double copysign(double x, double y)
- {
- if (x < 0 && y < 0)
- return x;
- if (x >= 0 && y < 0)
- return -x;
- if (x < 0 && y >= 0)
- return -x;
- return x;
- }
- }
|