MemoryManager.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. //#define MM_DEBUG
  13. //#define PAGE_FAULT_DEBUG
  14. static MemoryManager* s_the;
  15. MemoryManager& MM
  16. {
  17. return *s_the;
  18. }
  19. MemoryManager::MemoryManager(u32 physical_address_for_kernel_page_tables)
  20. {
  21. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(physical_address_for_kernel_page_tables));
  22. for (size_t i = 0; i < 4; ++i) {
  23. m_low_page_tables[i] = (PageTableEntry*)(physical_address_for_kernel_page_tables + PAGE_SIZE * (5 + i));
  24. memset(m_low_page_tables[i], 0, PAGE_SIZE);
  25. }
  26. initialize_paging();
  27. kprintf("MM initialized.\n");
  28. }
  29. MemoryManager::~MemoryManager()
  30. {
  31. }
  32. void MemoryManager::initialize_paging()
  33. {
  34. #ifdef MM_DEBUG
  35. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  36. #endif
  37. #ifdef MM_DEBUG
  38. dbgprintf("MM: Protect against null dereferences\n");
  39. #endif
  40. // Make null dereferences crash.
  41. map_protected(VirtualAddress(0), PAGE_SIZE);
  42. #ifdef MM_DEBUG
  43. dbgprintf("MM: Identity map bottom 8MB\n");
  44. #endif
  45. // The bottom 8 MB (except for the null page) are identity mapped & supervisor only.
  46. // Every process shares these mappings.
  47. create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (8 * MB) - PAGE_SIZE);
  48. // Disable execution from 0MB through 1MB (BIOS data, legacy things, ...)
  49. for (size_t i = 0; i < (1 * MB); ++i)
  50. ensure_pte(kernel_page_directory(), VirtualAddress(i)).set_execute_disabled(true);
  51. // Disable execution from 2MB through 8MB (kmalloc, kmalloc_eternal, slabs, page tables, ...)
  52. for (size_t i = 1; i < 4; ++i)
  53. kernel_page_directory().table().directory(0)[i].set_execute_disabled(true);
  54. // FIXME: We should move everything kernel-related above the 0xc0000000 virtual mark.
  55. // Basic physical memory map:
  56. // 0 -> 1 MB We're just leaving this alone for now.
  57. // 1 -> 3 MB Kernel image.
  58. // (last page before 2MB) Used by quickmap_page().
  59. // 2 MB -> 4 MB kmalloc_eternal() space.
  60. // 4 MB -> 7 MB kmalloc() space.
  61. // 7 MB -> 8 MB Supervisor physical pages (available for allocation!)
  62. // 8 MB -> MAX Userspace physical pages (available for allocation!)
  63. // Basic virtual memory map:
  64. // 0 -> 4 KB Null page (so nullptr dereferences crash!)
  65. // 4 KB -> 8 MB Identity mapped.
  66. // 8 MB -> 3 GB Available to userspace.
  67. // 3GB -> 4 GB Kernel-only virtual address space (>0xc0000000)
  68. #ifdef MM_DEBUG
  69. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  70. #endif
  71. m_quickmap_addr = VirtualAddress((2 * MB) - PAGE_SIZE);
  72. RefPtr<PhysicalRegion> region;
  73. bool region_is_super = false;
  74. for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  75. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  76. (u32)(mmap->addr >> 32),
  77. (u32)(mmap->addr & 0xffffffff),
  78. (u32)(mmap->len >> 32),
  79. (u32)(mmap->len & 0xffffffff),
  80. (u32)mmap->type);
  81. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  82. continue;
  83. // FIXME: Maybe make use of stuff below the 1MB mark?
  84. if (mmap->addr < (1 * MB))
  85. continue;
  86. if ((mmap->addr + mmap->len) > 0xffffffff)
  87. continue;
  88. auto diff = (u32)mmap->addr % PAGE_SIZE;
  89. if (diff != 0) {
  90. kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
  91. diff = PAGE_SIZE - diff;
  92. mmap->addr += diff;
  93. mmap->len -= diff;
  94. }
  95. if ((mmap->len % PAGE_SIZE) != 0) {
  96. kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
  97. mmap->len -= mmap->len % PAGE_SIZE;
  98. }
  99. if (mmap->len < PAGE_SIZE) {
  100. kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
  101. continue;
  102. }
  103. #ifdef MM_DEBUG
  104. kprintf("MM: considering memory at %p - %p\n",
  105. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  106. #endif
  107. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  108. auto addr = PhysicalAddress(page_base);
  109. if (page_base < 7 * MB) {
  110. // nothing
  111. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  112. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  113. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  114. region = m_super_physical_regions.last();
  115. region_is_super = true;
  116. } else {
  117. region->expand(region->lower(), addr);
  118. }
  119. } else {
  120. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  121. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  122. region = m_user_physical_regions.last();
  123. region_is_super = false;
  124. } else {
  125. region->expand(region->lower(), addr);
  126. }
  127. }
  128. }
  129. }
  130. for (auto& region : m_super_physical_regions)
  131. m_super_physical_pages += region.finalize_capacity();
  132. for (auto& region : m_user_physical_regions)
  133. m_user_physical_pages += region.finalize_capacity();
  134. #ifdef MM_DEBUG
  135. dbgprintf("MM: Installing page directory\n");
  136. #endif
  137. // Turn on CR4.PGE so the CPU will respect the G bit in page tables.
  138. asm volatile(
  139. "mov %cr4, %eax\n"
  140. "orl $0x80, %eax\n"
  141. "mov %eax, %cr4\n");
  142. // Turn on CR4.PAE
  143. asm volatile(
  144. "mov %cr4, %eax\n"
  145. "orl $0x20, %eax\n"
  146. "mov %eax, %cr4\n");
  147. // Turn on IA32_EFER.NXE
  148. asm volatile(
  149. "movl $0xc0000080, %ecx\n"
  150. "rdmsr\n"
  151. "orl $0x800, %eax\n"
  152. "wrmsr\n");
  153. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  154. asm volatile(
  155. "movl %%cr0, %%eax\n"
  156. "orl $0x80010001, %%eax\n"
  157. "movl %%eax, %%cr0\n" ::
  158. : "%eax", "memory");
  159. #ifdef MM_DEBUG
  160. dbgprintf("MM: Paging initialized.\n");
  161. #endif
  162. }
  163. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  164. {
  165. ASSERT_INTERRUPTS_DISABLED();
  166. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  167. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  168. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  169. PageDirectoryEntry& pde = page_directory.table().directory(page_directory_table_index)[page_directory_index];
  170. if (!pde.is_present()) {
  171. #ifdef MM_DEBUG
  172. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  173. #endif
  174. if (page_directory_table_index == 0 && page_directory_index < 4) {
  175. ASSERT(&page_directory == m_kernel_page_directory);
  176. pde.set_page_table_base((u32)m_low_page_tables[page_directory_index]);
  177. pde.set_user_allowed(false);
  178. pde.set_present(true);
  179. pde.set_writable(true);
  180. pde.set_global(true);
  181. } else {
  182. auto page_table = allocate_supervisor_physical_page();
  183. #ifdef MM_DEBUG
  184. dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
  185. &page_directory,
  186. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  187. page_directory.cr3(),
  188. page_directory_index,
  189. vaddr.get(),
  190. page_table->paddr().get());
  191. #endif
  192. pde.set_page_table_base(page_table->paddr().get());
  193. pde.set_user_allowed(true);
  194. pde.set_present(true);
  195. pde.set_writable(true);
  196. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  197. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  198. }
  199. }
  200. return pde.page_table_base()[page_table_index];
  201. }
  202. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  203. {
  204. InterruptDisabler disabler;
  205. ASSERT(vaddr.is_page_aligned());
  206. for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
  207. auto pte_address = vaddr.offset(offset);
  208. auto& pte = ensure_pte(kernel_page_directory(), pte_address);
  209. pte.set_physical_page_base(pte_address.get());
  210. pte.set_user_allowed(false);
  211. pte.set_present(false);
  212. pte.set_writable(false);
  213. flush_tlb(pte_address);
  214. }
  215. }
  216. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  217. {
  218. InterruptDisabler disabler;
  219. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  220. for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
  221. auto pte_address = vaddr.offset(offset);
  222. auto& pte = ensure_pte(page_directory, pte_address);
  223. pte.set_physical_page_base(pte_address.get());
  224. pte.set_user_allowed(false);
  225. pte.set_present(true);
  226. pte.set_writable(true);
  227. page_directory.flush(pte_address);
  228. }
  229. }
  230. void MemoryManager::initialize(u32 physical_address_for_kernel_page_tables)
  231. {
  232. s_the = new MemoryManager(physical_address_for_kernel_page_tables);
  233. }
  234. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  235. {
  236. if (vaddr.get() < 0xc0000000)
  237. return nullptr;
  238. for (auto& region : MM.m_kernel_regions) {
  239. if (region.contains(vaddr))
  240. return &region;
  241. }
  242. return nullptr;
  243. }
  244. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  245. {
  246. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  247. for (auto& region : process.m_regions) {
  248. if (region.contains(vaddr))
  249. return &region;
  250. }
  251. dbg() << process << " Couldn't find user region for " << vaddr;
  252. return nullptr;
  253. }
  254. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  255. {
  256. if (auto* region = kernel_region_from_vaddr(vaddr))
  257. return region;
  258. return user_region_from_vaddr(process, vaddr);
  259. }
  260. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  261. {
  262. if (auto* region = kernel_region_from_vaddr(vaddr))
  263. return region;
  264. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  265. }
  266. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  267. {
  268. if (auto* region = kernel_region_from_vaddr(vaddr))
  269. return region;
  270. auto page_directory = PageDirectory::find_by_cr3(cpu_cr3());
  271. if (!page_directory)
  272. return nullptr;
  273. ASSERT(page_directory->process());
  274. return user_region_from_vaddr(*page_directory->process(), vaddr);
  275. }
  276. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  277. {
  278. ASSERT_INTERRUPTS_DISABLED();
  279. ASSERT(current);
  280. #ifdef PAGE_FAULT_DEBUG
  281. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  282. #endif
  283. ASSERT(fault.vaddr() != m_quickmap_addr);
  284. auto* region = region_from_vaddr(fault.vaddr());
  285. if (!region) {
  286. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  287. return PageFaultResponse::ShouldCrash;
  288. }
  289. return region->handle_fault(fault);
  290. }
  291. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit)
  292. {
  293. InterruptDisabler disabler;
  294. ASSERT(!(size % PAGE_SIZE));
  295. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  296. ASSERT(range.is_valid());
  297. OwnPtr<Region> region;
  298. if (user_accessible)
  299. region = Region::create_user_accessible(range, name, access);
  300. else
  301. region = Region::create_kernel_only(range, name, access);
  302. region->map(kernel_page_directory());
  303. // FIXME: It would be cool if these could zero-fill on demand instead.
  304. if (should_commit)
  305. region->commit();
  306. return region;
  307. }
  308. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access)
  309. {
  310. return allocate_kernel_region(size, name, access, true);
  311. }
  312. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access)
  313. {
  314. InterruptDisabler disabler;
  315. ASSERT(!(size % PAGE_SIZE));
  316. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  317. ASSERT(range.is_valid());
  318. auto region = make<Region>(range, vmobject, 0, name, access);
  319. region->map(kernel_page_directory());
  320. return region;
  321. }
  322. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  323. {
  324. for (auto& region : m_user_physical_regions) {
  325. if (!region.contains(page)) {
  326. kprintf(
  327. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  328. page.paddr().get(), region.lower().get(), region.upper().get());
  329. continue;
  330. }
  331. region.return_page(move(page));
  332. --m_user_physical_pages_used;
  333. return;
  334. }
  335. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr().get());
  336. ASSERT_NOT_REACHED();
  337. }
  338. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  339. {
  340. RefPtr<PhysicalPage> page;
  341. for (auto& region : m_user_physical_regions) {
  342. page = region.take_free_page(false);
  343. if (!page.is_null())
  344. break;
  345. }
  346. return page;
  347. }
  348. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  349. {
  350. InterruptDisabler disabler;
  351. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  352. if (!page) {
  353. if (m_user_physical_regions.is_empty()) {
  354. kprintf("MM: no user physical regions available (?)\n");
  355. }
  356. kprintf("MM: no user physical pages available\n");
  357. ASSERT_NOT_REACHED();
  358. return {};
  359. }
  360. #ifdef MM_DEBUG
  361. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  362. #endif
  363. if (should_zero_fill == ShouldZeroFill::Yes) {
  364. auto* ptr = (u32*)quickmap_page(*page);
  365. fast_u32_fill(ptr, 0, PAGE_SIZE / sizeof(u32));
  366. unquickmap_page();
  367. }
  368. ++m_user_physical_pages_used;
  369. return page;
  370. }
  371. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  372. {
  373. for (auto& region : m_super_physical_regions) {
  374. if (!region.contains(page)) {
  375. kprintf(
  376. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  377. page.paddr().get(), region.lower().get(), region.upper().get());
  378. continue;
  379. }
  380. region.return_page(move(page));
  381. --m_super_physical_pages_used;
  382. return;
  383. }
  384. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr().get());
  385. ASSERT_NOT_REACHED();
  386. }
  387. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  388. {
  389. InterruptDisabler disabler;
  390. RefPtr<PhysicalPage> page;
  391. for (auto& region : m_super_physical_regions) {
  392. page = region.take_free_page(true);
  393. if (page.is_null())
  394. continue;
  395. }
  396. if (!page) {
  397. if (m_super_physical_regions.is_empty()) {
  398. kprintf("MM: no super physical regions available (?)\n");
  399. }
  400. kprintf("MM: no super physical pages available\n");
  401. ASSERT_NOT_REACHED();
  402. return {};
  403. }
  404. #ifdef MM_DEBUG
  405. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  406. #endif
  407. fast_u32_fill((u32*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  408. ++m_super_physical_pages_used;
  409. return page;
  410. }
  411. void MemoryManager::enter_process_paging_scope(Process& process)
  412. {
  413. ASSERT(current);
  414. InterruptDisabler disabler;
  415. current->tss().cr3 = process.page_directory().cr3();
  416. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  417. : "memory");
  418. }
  419. void MemoryManager::flush_entire_tlb()
  420. {
  421. asm volatile(
  422. "mov %%cr3, %%eax\n"
  423. "mov %%eax, %%cr3\n" ::
  424. : "%eax", "memory");
  425. }
  426. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  427. {
  428. asm volatile("invlpg %0"
  429. :
  430. : "m"(*(char*)vaddr.get())
  431. : "memory");
  432. }
  433. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr, bool cache_disabled)
  434. {
  435. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  436. pte.set_physical_page_base(paddr.get());
  437. pte.set_present(true);
  438. pte.set_writable(true);
  439. pte.set_user_allowed(false);
  440. pte.set_cache_disabled(cache_disabled);
  441. flush_tlb(vaddr);
  442. }
  443. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  444. {
  445. ASSERT_INTERRUPTS_DISABLED();
  446. ASSERT(!m_quickmap_in_use);
  447. m_quickmap_in_use = true;
  448. auto page_vaddr = m_quickmap_addr;
  449. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  450. pte.set_physical_page_base(physical_page.paddr().get());
  451. pte.set_present(true);
  452. pte.set_writable(true);
  453. pte.set_user_allowed(false);
  454. flush_tlb(page_vaddr);
  455. ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
  456. #ifdef MM_DEBUG
  457. dbg() << "MM: >> quickmap_page " << page_vaddr << " => " << physical_page.paddr() << " @ PTE=" << (void*)pte.raw() << " {" << &pte << "}";
  458. #endif
  459. return page_vaddr.as_ptr();
  460. }
  461. void MemoryManager::unquickmap_page()
  462. {
  463. ASSERT_INTERRUPTS_DISABLED();
  464. ASSERT(m_quickmap_in_use);
  465. auto page_vaddr = m_quickmap_addr;
  466. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  467. #ifdef MM_DEBUG
  468. auto old_physical_address = pte.physical_page_base();
  469. #endif
  470. pte.set_physical_page_base(0);
  471. pte.set_present(false);
  472. pte.set_writable(false);
  473. flush_tlb(page_vaddr);
  474. #ifdef MM_DEBUG
  475. dbg() << "MM: >> unquickmap_page " << page_vaddr << " =/> " << old_physical_address;
  476. #endif
  477. m_quickmap_in_use = false;
  478. }
  479. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  480. {
  481. auto* region = region_from_vaddr(process, vaddr);
  482. return region && region->is_stack();
  483. }
  484. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
  485. {
  486. auto* region = region_from_vaddr(process, vaddr);
  487. return region && region->is_readable();
  488. }
  489. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
  490. {
  491. auto* region = region_from_vaddr(process, vaddr);
  492. return region && region->is_writable();
  493. }
  494. void MemoryManager::register_vmobject(VMObject& vmobject)
  495. {
  496. InterruptDisabler disabler;
  497. m_vmobjects.append(&vmobject);
  498. }
  499. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  500. {
  501. InterruptDisabler disabler;
  502. m_vmobjects.remove(&vmobject);
  503. }
  504. void MemoryManager::register_region(Region& region)
  505. {
  506. InterruptDisabler disabler;
  507. if (region.vaddr().get() >= 0xc0000000)
  508. m_kernel_regions.append(&region);
  509. else
  510. m_user_regions.append(&region);
  511. }
  512. void MemoryManager::unregister_region(Region& region)
  513. {
  514. InterruptDisabler disabler;
  515. if (region.vaddr().get() >= 0xc0000000)
  516. m_kernel_regions.remove(&region);
  517. else
  518. m_user_regions.remove(&region);
  519. }
  520. ProcessPagingScope::ProcessPagingScope(Process& process)
  521. {
  522. ASSERT(current);
  523. MM.enter_process_paging_scope(process);
  524. }
  525. ProcessPagingScope::~ProcessPagingScope()
  526. {
  527. MM.enter_process_paging_scope(current->process());
  528. }