Region.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Arch/x86/PageFault.h>
  9. #include <Kernel/Debug.h>
  10. #include <Kernel/FileSystem/Inode.h>
  11. #include <Kernel/Memory/AnonymousVMObject.h>
  12. #include <Kernel/Memory/MemoryManager.h>
  13. #include <Kernel/Memory/PageDirectory.h>
  14. #include <Kernel/Memory/Region.h>
  15. #include <Kernel/Memory/SharedInodeVMObject.h>
  16. #include <Kernel/Panic.h>
  17. #include <Kernel/Process.h>
  18. #include <Kernel/Thread.h>
  19. namespace Kernel::Memory {
  20. Region::Region(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  21. : m_range(range)
  22. , m_offset_in_vmobject(offset_in_vmobject)
  23. , m_vmobject(move(vmobject))
  24. , m_name(move(name))
  25. , m_access(access | ((access & 0x7) << 4))
  26. , m_shared(shared)
  27. , m_cacheable(cacheable == Cacheable::Yes)
  28. {
  29. VERIFY(m_range.base().is_page_aligned());
  30. VERIFY(m_range.size());
  31. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  32. m_vmobject->add_region(*this);
  33. if (is_kernel())
  34. MM.register_kernel_region(*this);
  35. }
  36. Region::~Region()
  37. {
  38. if (is_writable() && vmobject().is_shared_inode()) {
  39. // FIXME: This is very aggressive. Find a way to do less work!
  40. (void)static_cast<SharedInodeVMObject&>(vmobject()).sync();
  41. }
  42. m_vmobject->remove_region(*this);
  43. if (is_kernel())
  44. MM.unregister_kernel_region(*this);
  45. if (m_page_directory) {
  46. SpinlockLocker page_lock(m_page_directory->get_lock());
  47. SpinlockLocker lock(s_mm_lock);
  48. unmap(ShouldDeallocateVirtualRange::Yes);
  49. VERIFY(!m_page_directory);
  50. }
  51. }
  52. ErrorOr<NonnullOwnPtr<Region>> Region::try_clone()
  53. {
  54. VERIFY(Process::has_current());
  55. if (m_shared) {
  56. VERIFY(!m_stack);
  57. if (vmobject().is_inode())
  58. VERIFY(vmobject().is_shared_inode());
  59. // Create a new region backed by the same VMObject.
  60. OwnPtr<KString> region_name;
  61. if (m_name)
  62. region_name = TRY(m_name->try_clone());
  63. auto region = TRY(Region::try_create_user_accessible(
  64. m_range, m_vmobject, m_offset_in_vmobject, move(region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  65. region->set_mmap(m_mmap);
  66. region->set_shared(m_shared);
  67. region->set_syscall_region(is_syscall_region());
  68. return region;
  69. }
  70. if (vmobject().is_inode())
  71. VERIFY(vmobject().is_private_inode());
  72. auto vmobject_clone = TRY(vmobject().try_clone());
  73. // Set up a COW region. The parent (this) region becomes COW as well!
  74. remap();
  75. OwnPtr<KString> clone_region_name;
  76. if (m_name)
  77. clone_region_name = TRY(m_name->try_clone());
  78. auto clone_region = TRY(Region::try_create_user_accessible(
  79. m_range, move(vmobject_clone), m_offset_in_vmobject, move(clone_region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  80. if (m_stack) {
  81. VERIFY(is_readable());
  82. VERIFY(is_writable());
  83. VERIFY(vmobject().is_anonymous());
  84. clone_region->set_stack(true);
  85. }
  86. clone_region->set_syscall_region(is_syscall_region());
  87. clone_region->set_mmap(m_mmap);
  88. return clone_region;
  89. }
  90. void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
  91. {
  92. if (m_vmobject.ptr() == obj.ptr())
  93. return;
  94. m_vmobject->remove_region(*this);
  95. m_vmobject = move(obj);
  96. m_vmobject->add_region(*this);
  97. }
  98. size_t Region::cow_pages() const
  99. {
  100. if (!vmobject().is_anonymous())
  101. return 0;
  102. return static_cast<AnonymousVMObject const&>(vmobject()).cow_pages();
  103. }
  104. size_t Region::amount_dirty() const
  105. {
  106. if (!vmobject().is_inode())
  107. return amount_resident();
  108. return static_cast<InodeVMObject const&>(vmobject()).amount_dirty();
  109. }
  110. size_t Region::amount_resident() const
  111. {
  112. size_t bytes = 0;
  113. for (size_t i = 0; i < page_count(); ++i) {
  114. auto const* page = physical_page(i);
  115. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  116. bytes += PAGE_SIZE;
  117. }
  118. return bytes;
  119. }
  120. size_t Region::amount_shared() const
  121. {
  122. size_t bytes = 0;
  123. for (size_t i = 0; i < page_count(); ++i) {
  124. auto const* page = physical_page(i);
  125. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  126. bytes += PAGE_SIZE;
  127. }
  128. return bytes;
  129. }
  130. ErrorOr<NonnullOwnPtr<Region>> Region::try_create_user_accessible(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  131. {
  132. return adopt_nonnull_own_or_enomem(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  133. }
  134. ErrorOr<NonnullOwnPtr<Region>> Region::try_create_kernel_only(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable)
  135. {
  136. return adopt_nonnull_own_or_enomem(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, false));
  137. }
  138. bool Region::should_cow(size_t page_index) const
  139. {
  140. if (!vmobject().is_anonymous())
  141. return false;
  142. return static_cast<AnonymousVMObject const&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  143. }
  144. void Region::set_should_cow(size_t page_index, bool cow)
  145. {
  146. VERIFY(!m_shared);
  147. if (vmobject().is_anonymous())
  148. static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow);
  149. }
  150. bool Region::map_individual_page_impl(size_t page_index)
  151. {
  152. VERIFY(m_page_directory->get_lock().is_locked_by_current_processor());
  153. VERIFY(s_mm_lock.is_locked_by_current_processor());
  154. auto page_vaddr = vaddr_from_page_index(page_index);
  155. bool user_allowed = page_vaddr.get() >= USER_RANGE_BASE && is_user_address(page_vaddr);
  156. if (is_mmap() && !user_allowed) {
  157. PANIC("About to map mmap'ed page at a kernel address");
  158. }
  159. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  160. if (!pte)
  161. return false;
  162. auto* page = physical_page(page_index);
  163. if (!page || (!is_readable() && !is_writable())) {
  164. pte->clear();
  165. } else {
  166. pte->set_cache_disabled(!m_cacheable);
  167. pte->set_physical_page_base(page->paddr().get());
  168. pte->set_present(true);
  169. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  170. pte->set_writable(false);
  171. else
  172. pte->set_writable(is_writable());
  173. if (Processor::current().has_feature(CPUFeature::NX))
  174. pte->set_execute_disabled(!is_executable());
  175. pte->set_user_allowed(user_allowed);
  176. }
  177. return true;
  178. }
  179. bool Region::do_remap_vmobject_page(size_t page_index, bool with_flush)
  180. {
  181. if (!m_page_directory)
  182. return true; // not an error, region may have not yet mapped it
  183. if (!translate_vmobject_page(page_index))
  184. return true; // not an error, region doesn't map this page
  185. SpinlockLocker page_lock(m_page_directory->get_lock());
  186. SpinlockLocker lock(s_mm_lock);
  187. VERIFY(physical_page(page_index));
  188. bool success = map_individual_page_impl(page_index);
  189. if (with_flush)
  190. MemoryManager::flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  191. return success;
  192. }
  193. bool Region::remap_vmobject_page(size_t page_index, bool with_flush)
  194. {
  195. auto& vmobject = this->vmobject();
  196. bool success = true;
  197. SpinlockLocker lock(vmobject.m_lock);
  198. vmobject.for_each_region([&](auto& region) {
  199. if (!region.do_remap_vmobject_page(page_index, with_flush))
  200. success = false;
  201. });
  202. return success;
  203. }
  204. void Region::unmap(ShouldDeallocateVirtualRange should_deallocate_range, ShouldFlushTLB should_flush_tlb)
  205. {
  206. if (!m_page_directory)
  207. return;
  208. SpinlockLocker pd_locker(m_page_directory->get_lock());
  209. SpinlockLocker mm_locker(s_mm_lock);
  210. unmap_with_locks_held(should_deallocate_range, should_flush_tlb, pd_locker, mm_locker);
  211. }
  212. void Region::unmap_with_locks_held(ShouldDeallocateVirtualRange deallocate_range, ShouldFlushTLB should_flush_tlb, SpinlockLocker<RecursiveSpinlock>&, SpinlockLocker<RecursiveSpinlock>&)
  213. {
  214. if (!m_page_directory)
  215. return;
  216. size_t count = page_count();
  217. for (size_t i = 0; i < count; ++i) {
  218. auto vaddr = vaddr_from_page_index(i);
  219. MM.release_pte(*m_page_directory, vaddr, i == count - 1 ? MemoryManager::IsLastPTERelease::Yes : MemoryManager::IsLastPTERelease::No);
  220. }
  221. if (should_flush_tlb == ShouldFlushTLB::Yes)
  222. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_count());
  223. if (deallocate_range == ShouldDeallocateVirtualRange::Yes) {
  224. m_page_directory->range_allocator().deallocate(range());
  225. }
  226. m_page_directory = nullptr;
  227. }
  228. void Region::set_page_directory(PageDirectory& page_directory)
  229. {
  230. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  231. VERIFY(s_mm_lock.is_locked_by_current_processor());
  232. m_page_directory = page_directory;
  233. }
  234. ErrorOr<void> Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  235. {
  236. SpinlockLocker page_lock(page_directory.get_lock());
  237. SpinlockLocker lock(s_mm_lock);
  238. // FIXME: Find a better place for this sanity check(?)
  239. if (is_user() && !is_shared()) {
  240. VERIFY(!vmobject().is_shared_inode());
  241. }
  242. set_page_directory(page_directory);
  243. size_t page_index = 0;
  244. while (page_index < page_count()) {
  245. if (!map_individual_page_impl(page_index))
  246. break;
  247. ++page_index;
  248. }
  249. if (page_index > 0) {
  250. if (should_flush_tlb == ShouldFlushTLB::Yes)
  251. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_index);
  252. if (page_index == page_count())
  253. return {};
  254. }
  255. return ENOMEM;
  256. }
  257. void Region::remap()
  258. {
  259. VERIFY(m_page_directory);
  260. auto result = map(*m_page_directory);
  261. if (result.is_error())
  262. TODO();
  263. }
  264. void Region::clear_to_zero()
  265. {
  266. VERIFY(vmobject().is_anonymous());
  267. SpinlockLocker locker(vmobject().m_lock);
  268. for (auto i = 0u; i < page_count(); ++i) {
  269. auto& page = physical_page_slot(i);
  270. VERIFY(page);
  271. if (page->is_shared_zero_page())
  272. continue;
  273. page = MM.shared_zero_page();
  274. }
  275. }
  276. PageFaultResponse Region::handle_fault(PageFault const& fault)
  277. {
  278. auto page_index_in_region = page_index_from_address(fault.vaddr());
  279. if (fault.type() == PageFault::Type::PageNotPresent) {
  280. if (fault.is_read() && !is_readable()) {
  281. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  282. return PageFaultResponse::ShouldCrash;
  283. }
  284. if (fault.is_write() && !is_writable()) {
  285. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  286. return PageFaultResponse::ShouldCrash;
  287. }
  288. if (vmobject().is_inode()) {
  289. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  290. return handle_inode_fault(page_index_in_region);
  291. }
  292. auto& page_slot = physical_page_slot(page_index_in_region);
  293. if (page_slot->is_lazy_committed_page()) {
  294. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  295. VERIFY(m_vmobject->is_anonymous());
  296. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  297. if (!remap_vmobject_page(page_index_in_vmobject))
  298. return PageFaultResponse::OutOfMemory;
  299. return PageFaultResponse::Continue;
  300. }
  301. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  302. return PageFaultResponse::ShouldCrash;
  303. }
  304. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  305. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  306. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  307. auto* phys_page = physical_page(page_index_in_region);
  308. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  309. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  310. return handle_zero_fault(page_index_in_region);
  311. }
  312. return handle_cow_fault(page_index_in_region);
  313. }
  314. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  315. return PageFaultResponse::ShouldCrash;
  316. }
  317. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  318. {
  319. VERIFY_INTERRUPTS_DISABLED();
  320. VERIFY(vmobject().is_anonymous());
  321. auto& page_slot = physical_page_slot(page_index_in_region);
  322. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  323. SpinlockLocker locker(vmobject().m_lock);
  324. if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
  325. dbgln_if(PAGE_FAULT_DEBUG, "MM: zero_page() but page already present. Fine with me!");
  326. if (!remap_vmobject_page(page_index_in_vmobject))
  327. return PageFaultResponse::OutOfMemory;
  328. return PageFaultResponse::Continue;
  329. }
  330. auto current_thread = Thread::current();
  331. if (current_thread != nullptr)
  332. current_thread->did_zero_fault();
  333. if (page_slot->is_lazy_committed_page()) {
  334. VERIFY(m_vmobject->is_anonymous());
  335. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  336. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
  337. } else {
  338. page_slot = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  339. if (page_slot.is_null()) {
  340. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  341. return PageFaultResponse::OutOfMemory;
  342. }
  343. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
  344. }
  345. if (!remap_vmobject_page(page_index_in_vmobject)) {
  346. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
  347. return PageFaultResponse::OutOfMemory;
  348. }
  349. return PageFaultResponse::Continue;
  350. }
  351. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  352. {
  353. VERIFY_INTERRUPTS_DISABLED();
  354. auto current_thread = Thread::current();
  355. if (current_thread)
  356. current_thread->did_cow_fault();
  357. if (!vmobject().is_anonymous())
  358. return PageFaultResponse::ShouldCrash;
  359. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  360. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  361. if (!remap_vmobject_page(page_index_in_vmobject))
  362. return PageFaultResponse::OutOfMemory;
  363. return response;
  364. }
  365. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  366. {
  367. VERIFY_INTERRUPTS_DISABLED();
  368. VERIFY(vmobject().is_inode());
  369. VERIFY(!s_mm_lock.is_locked_by_current_processor());
  370. VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
  371. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  372. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  373. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[page_index_in_vmobject];
  374. {
  375. SpinlockLocker locker(inode_vmobject.m_lock);
  376. if (!vmobject_physical_page_entry.is_null()) {
  377. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else before reading, remapping.");
  378. if (!remap_vmobject_page(page_index_in_vmobject))
  379. return PageFaultResponse::OutOfMemory;
  380. return PageFaultResponse::Continue;
  381. }
  382. }
  383. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  384. auto current_thread = Thread::current();
  385. if (current_thread)
  386. current_thread->did_inode_fault();
  387. u8 page_buffer[PAGE_SIZE];
  388. auto& inode = inode_vmobject.inode();
  389. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  390. auto result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  391. if (result.is_error()) {
  392. dmesgln("handle_inode_fault: Error ({}) while reading from inode", result.error());
  393. return PageFaultResponse::ShouldCrash;
  394. }
  395. auto nread = result.value();
  396. if (nread < PAGE_SIZE) {
  397. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  398. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  399. }
  400. SpinlockLocker locker(inode_vmobject.m_lock);
  401. if (!vmobject_physical_page_entry.is_null()) {
  402. // Someone else faulted in this page while we were reading from the inode.
  403. // No harm done (other than some duplicate work), remap the page here and return.
  404. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else, remapping.");
  405. if (!remap_vmobject_page(page_index_in_vmobject))
  406. return PageFaultResponse::OutOfMemory;
  407. return PageFaultResponse::Continue;
  408. }
  409. vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  410. if (vmobject_physical_page_entry.is_null()) {
  411. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  412. return PageFaultResponse::OutOfMemory;
  413. }
  414. {
  415. SpinlockLocker mm_locker(s_mm_lock);
  416. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  417. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  418. MM.unquickmap_page();
  419. }
  420. if (!remap_vmobject_page(page_index_in_vmobject))
  421. return PageFaultResponse::OutOfMemory;
  422. return PageFaultResponse::Continue;
  423. }
  424. }