MemoryManager.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/MemoryManager.h>
  10. //#define MM_DEBUG
  11. //#define PAGE_FAULT_DEBUG
  12. static MemoryManager* s_the;
  13. unsigned MemoryManager::s_user_physical_pages_in_existence;
  14. unsigned MemoryManager::s_super_physical_pages_in_existence;
  15. MemoryManager& MM
  16. {
  17. return *s_the;
  18. }
  19. MemoryManager::MemoryManager()
  20. {
  21. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
  22. m_page_table_zero = (dword*)0x6000;
  23. m_page_table_one = (dword*)0x7000;
  24. initialize_paging();
  25. kprintf("MM initialized.\n");
  26. }
  27. MemoryManager::~MemoryManager()
  28. {
  29. }
  30. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  31. {
  32. page_directory.m_directory_page = allocate_supervisor_physical_page();
  33. page_directory.entries()[0] = kernel_page_directory().entries()[0];
  34. page_directory.entries()[1] = kernel_page_directory().entries()[1];
  35. // Defer to the kernel page tables for 0xC0000000-0xFFFFFFFF
  36. for (int i = 768; i < 1024; ++i)
  37. page_directory.entries()[i] = kernel_page_directory().entries()[i];
  38. }
  39. void MemoryManager::initialize_paging()
  40. {
  41. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  42. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  43. memset(m_page_table_zero, 0, PAGE_SIZE);
  44. memset(m_page_table_one, 0, PAGE_SIZE);
  45. #ifdef MM_DEBUG
  46. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  47. #endif
  48. #ifdef MM_DEBUG
  49. dbgprintf("MM: Protect against null dereferences\n");
  50. #endif
  51. // Make null dereferences crash.
  52. map_protected(VirtualAddress(0), PAGE_SIZE);
  53. #ifdef MM_DEBUG
  54. dbgprintf("MM: Identity map bottom 5MB\n");
  55. #endif
  56. // The bottom 5 MB (except for the null page) are identity mapped & supervisor only.
  57. // Every process shares these mappings.
  58. create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (5 * MB) - PAGE_SIZE);
  59. // Basic memory map:
  60. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  61. // (last page before 1MB) Used by quickmap_page().
  62. // 1 MB -> 3 MB kmalloc_eternal() space.
  63. // 3 MB -> 4 MB kmalloc() space.
  64. // 4 MB -> 5 MB Supervisor physical pages (available for allocation!)
  65. // 5 MB -> 0xc0000000 Userspace physical pages (available for allocation!)
  66. // 0xc0000000-0xffffffff Kernel-only linear address space
  67. for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  68. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  69. (dword)(mmap->addr >> 32),
  70. (dword)(mmap->addr & 0xffffffff),
  71. (dword)(mmap->len >> 32),
  72. (dword)(mmap->len & 0xffffffff),
  73. (dword)mmap->type);
  74. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  75. continue;
  76. // FIXME: Maybe make use of stuff below the 1MB mark?
  77. if (mmap->addr < (1 * MB))
  78. continue;
  79. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  80. if (page_base < (4 * MB)) {
  81. // Skip over pages managed by kmalloc.
  82. continue;
  83. }
  84. if (page_base < (5 * MB))
  85. m_free_supervisor_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(page_base), true));
  86. else
  87. m_free_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(page_base), false));
  88. }
  89. }
  90. m_quickmap_addr = VirtualAddress((1 * MB) - PAGE_SIZE);
  91. #ifdef MM_DEBUG
  92. dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get());
  93. dbgprintf("MM: Installing page directory\n");
  94. #endif
  95. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  96. asm volatile(
  97. "movl %%cr0, %%eax\n"
  98. "orl $0x80000001, %%eax\n"
  99. "movl %%eax, %%cr0\n" ::
  100. : "%eax", "memory");
  101. #ifdef MM_DEBUG
  102. dbgprintf("MM: Paging initialized.\n");
  103. #endif
  104. }
  105. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  106. {
  107. ASSERT(!page_directory.m_physical_pages.contains(index));
  108. auto physical_page = allocate_supervisor_physical_page();
  109. if (!physical_page)
  110. return nullptr;
  111. page_directory.m_physical_pages.set(index, physical_page.copy_ref());
  112. return physical_page;
  113. }
  114. void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  115. {
  116. InterruptDisabler disabler;
  117. // FIXME: ASSERT(vaddr is 4KB aligned);
  118. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  119. auto pte_address = vaddr.offset(offset);
  120. auto pte = ensure_pte(page_directory, pte_address);
  121. pte.set_physical_page_base(0);
  122. pte.set_user_allowed(false);
  123. pte.set_present(true);
  124. pte.set_writable(true);
  125. flush_tlb(pte_address);
  126. }
  127. }
  128. auto MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr) -> PageTableEntry
  129. {
  130. ASSERT_INTERRUPTS_DISABLED();
  131. dword page_directory_index = (vaddr.get() >> 22) & 0x3ff;
  132. dword page_table_index = (vaddr.get() >> 12) & 0x3ff;
  133. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
  134. if (!pde.is_present()) {
  135. #ifdef MM_DEBUG
  136. dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, vaddr.get());
  137. #endif
  138. if (page_directory_index == 0) {
  139. ASSERT(&page_directory == m_kernel_page_directory);
  140. pde.set_page_table_base((dword)m_page_table_zero);
  141. pde.set_user_allowed(false);
  142. pde.set_present(true);
  143. pde.set_writable(true);
  144. } else if (page_directory_index == 1) {
  145. ASSERT(&page_directory == m_kernel_page_directory);
  146. pde.set_page_table_base((dword)m_page_table_one);
  147. pde.set_user_allowed(false);
  148. pde.set_present(true);
  149. pde.set_writable(true);
  150. } else {
  151. //ASSERT(&page_directory != m_kernel_page_directory.ptr());
  152. auto page_table = allocate_page_table(page_directory, page_directory_index);
  153. #ifdef MM_DEBUG
  154. dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n",
  155. &page_directory,
  156. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  157. page_directory.cr3(),
  158. page_directory_index,
  159. vaddr.get(),
  160. page_table->paddr().get());
  161. #endif
  162. pde.set_page_table_base(page_table->paddr().get());
  163. pde.set_user_allowed(true);
  164. pde.set_present(true);
  165. pde.set_writable(true);
  166. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  167. }
  168. }
  169. return PageTableEntry(&pde.page_table_base()[page_table_index]);
  170. }
  171. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  172. {
  173. InterruptDisabler disabler;
  174. // FIXME: ASSERT(linearAddress is 4KB aligned);
  175. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  176. auto pte_address = vaddr.offset(offset);
  177. auto pte = ensure_pte(kernel_page_directory(), pte_address);
  178. pte.set_physical_page_base(pte_address.get());
  179. pte.set_user_allowed(false);
  180. pte.set_present(false);
  181. pte.set_writable(false);
  182. flush_tlb(pte_address);
  183. }
  184. }
  185. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  186. {
  187. InterruptDisabler disabler;
  188. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  189. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  190. auto pte_address = vaddr.offset(offset);
  191. auto pte = ensure_pte(page_directory, pte_address);
  192. pte.set_physical_page_base(pte_address.get());
  193. pte.set_user_allowed(false);
  194. pte.set_present(true);
  195. pte.set_writable(true);
  196. page_directory.flush(pte_address);
  197. }
  198. }
  199. void MemoryManager::initialize()
  200. {
  201. s_the = new MemoryManager;
  202. }
  203. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  204. {
  205. ASSERT_INTERRUPTS_DISABLED();
  206. if (vaddr.get() >= 0xc0000000) {
  207. for (auto& region : MM.m_kernel_regions) {
  208. if (region->contains(vaddr))
  209. return region;
  210. }
  211. }
  212. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  213. for (auto& region : process.m_regions) {
  214. if (region->contains(vaddr))
  215. return region.ptr();
  216. }
  217. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), vaddr.get(), process.page_directory().cr3());
  218. return nullptr;
  219. }
  220. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  221. {
  222. if (vaddr.get() >= 0xc0000000) {
  223. for (auto& region : MM.m_kernel_regions) {
  224. if (region->contains(vaddr))
  225. return region;
  226. }
  227. }
  228. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  229. for (auto& region : process.m_regions) {
  230. if (region->contains(vaddr))
  231. return region.ptr();
  232. }
  233. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), vaddr.get(), process.page_directory().cr3());
  234. return nullptr;
  235. }
  236. bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
  237. {
  238. ASSERT_INTERRUPTS_DISABLED();
  239. auto& vmo = region.vmo();
  240. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  241. sti();
  242. LOCKER(vmo.m_paging_lock);
  243. cli();
  244. if (!vmo_page.is_null()) {
  245. #ifdef PAGE_FAULT_DEBUG
  246. dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
  247. #endif
  248. remap_region_page(region, page_index_in_region, true);
  249. return true;
  250. }
  251. auto physical_page = allocate_physical_page(ShouldZeroFill::Yes);
  252. #ifdef PAGE_FAULT_DEBUG
  253. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  254. #endif
  255. region.set_should_cow(page_index_in_region, false);
  256. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  257. remap_region_page(region, page_index_in_region, true);
  258. return true;
  259. }
  260. bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
  261. {
  262. ASSERT_INTERRUPTS_DISABLED();
  263. auto& vmo = region.vmo();
  264. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  265. #ifdef PAGE_FAULT_DEBUG
  266. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  267. #endif
  268. region.set_should_cow(page_index_in_region, false);
  269. remap_region_page(region, page_index_in_region, true);
  270. return true;
  271. }
  272. #ifdef PAGE_FAULT_DEBUG
  273. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  274. #endif
  275. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  276. auto physical_page = allocate_physical_page(ShouldZeroFill::No);
  277. byte* dest_ptr = quickmap_page(*physical_page);
  278. const byte* src_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  279. #ifdef PAGE_FAULT_DEBUG
  280. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  281. #endif
  282. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  283. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  284. unquickmap_page();
  285. region.set_should_cow(page_index_in_region, false);
  286. remap_region_page(region, page_index_in_region, true);
  287. return true;
  288. }
  289. bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
  290. {
  291. ASSERT(region.page_directory());
  292. auto& vmo = region.vmo();
  293. ASSERT(!vmo.is_anonymous());
  294. ASSERT(vmo.inode());
  295. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  296. InterruptFlagSaver saver;
  297. sti();
  298. LOCKER(vmo.m_paging_lock);
  299. cli();
  300. if (!vmo_page.is_null()) {
  301. dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
  302. remap_region_page(region, page_index_in_region, true);
  303. return true;
  304. }
  305. #ifdef MM_DEBUG
  306. dbgprintf("MM: page_in_from_inode ready to read from inode\n");
  307. #endif
  308. sti();
  309. byte page_buffer[PAGE_SIZE];
  310. auto& inode = *vmo.inode();
  311. auto nread = inode.read_bytes(vmo.inode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, page_buffer, nullptr);
  312. if (nread < 0) {
  313. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  314. return false;
  315. }
  316. if (nread < PAGE_SIZE) {
  317. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  318. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  319. }
  320. cli();
  321. vmo_page = allocate_physical_page(ShouldZeroFill::No);
  322. if (vmo_page.is_null()) {
  323. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  324. return false;
  325. }
  326. remap_region_page(region, page_index_in_region, true);
  327. byte* dest_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  328. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  329. return true;
  330. }
  331. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  332. {
  333. ASSERT_INTERRUPTS_DISABLED();
  334. ASSERT(current);
  335. #ifdef PAGE_FAULT_DEBUG
  336. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.vaddr().get());
  337. #endif
  338. ASSERT(fault.vaddr() != m_quickmap_addr);
  339. auto* region = region_from_vaddr(current->process(), fault.vaddr());
  340. if (!region) {
  341. kprintf("NP(error) fault at invalid address L%x\n", fault.vaddr().get());
  342. return PageFaultResponse::ShouldCrash;
  343. }
  344. auto page_index_in_region = region->page_index_from_address(fault.vaddr());
  345. if (fault.is_not_present()) {
  346. if (region->vmo().inode()) {
  347. #ifdef PAGE_FAULT_DEBUG
  348. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  349. #endif
  350. page_in_from_inode(*region, page_index_in_region);
  351. return PageFaultResponse::Continue;
  352. } else {
  353. #ifdef PAGE_FAULT_DEBUG
  354. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  355. #endif
  356. zero_page(*region, page_index_in_region);
  357. return PageFaultResponse::Continue;
  358. }
  359. } else if (fault.is_protection_violation()) {
  360. if (region->should_cow(page_index_in_region)) {
  361. #ifdef PAGE_FAULT_DEBUG
  362. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  363. #endif
  364. bool success = copy_on_write(*region, page_index_in_region);
  365. ASSERT(success);
  366. return PageFaultResponse::Continue;
  367. }
  368. kprintf("PV(error) fault in Region{%p}[%u] at L%x\n", region, page_index_in_region, fault.vaddr().get());
  369. } else {
  370. ASSERT_NOT_REACHED();
  371. }
  372. return PageFaultResponse::ShouldCrash;
  373. }
  374. RetainPtr<Region> MemoryManager::allocate_kernel_region(size_t size, String&& name)
  375. {
  376. InterruptDisabler disabler;
  377. ASSERT(!(size % PAGE_SIZE));
  378. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  379. ASSERT(range.is_valid());
  380. auto region = adopt(*new Region(range, move(name), PROT_READ | PROT_WRITE | PROT_EXEC, false));
  381. MM.map_region_at_address(*m_kernel_page_directory, *region, range.base(), false);
  382. // FIXME: It would be cool if these could zero-fill on demand instead.
  383. region->commit();
  384. return region;
  385. }
  386. RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill)
  387. {
  388. InterruptDisabler disabler;
  389. if (1 > m_free_physical_pages.size()) {
  390. kprintf("FUCK! No physical pages available.\n");
  391. ASSERT_NOT_REACHED();
  392. return {};
  393. }
  394. #ifdef MM_DEBUG
  395. dbgprintf("MM: allocate_physical_page vending P%x (%u remaining)\n", m_free_physical_pages.last()->paddr().get(), m_free_physical_pages.size());
  396. #endif
  397. auto physical_page = m_free_physical_pages.take_last();
  398. if (should_zero_fill == ShouldZeroFill::Yes) {
  399. auto* ptr = (dword*)quickmap_page(*physical_page);
  400. fast_dword_fill(ptr, 0, PAGE_SIZE / sizeof(dword));
  401. unquickmap_page();
  402. }
  403. return physical_page;
  404. }
  405. RetainPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  406. {
  407. InterruptDisabler disabler;
  408. if (1 > m_free_supervisor_physical_pages.size()) {
  409. kprintf("FUCK! No physical pages available.\n");
  410. ASSERT_NOT_REACHED();
  411. return {};
  412. }
  413. #ifdef MM_DEBUG
  414. dbgprintf("MM: allocate_supervisor_physical_page vending P%x (%u remaining)\n", m_free_supervisor_physical_pages.last()->paddr().get(), m_free_supervisor_physical_pages.size());
  415. #endif
  416. auto physical_page = m_free_supervisor_physical_pages.take_last();
  417. fast_dword_fill((dword*)physical_page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(dword));
  418. return physical_page;
  419. }
  420. void MemoryManager::enter_process_paging_scope(Process& process)
  421. {
  422. ASSERT(current);
  423. InterruptDisabler disabler;
  424. current->tss().cr3 = process.page_directory().cr3();
  425. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  426. : "memory");
  427. }
  428. void MemoryManager::flush_entire_tlb()
  429. {
  430. asm volatile(
  431. "mov %%cr3, %%eax\n"
  432. "mov %%eax, %%cr3\n" ::
  433. : "%eax", "memory");
  434. }
  435. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  436. {
  437. asm volatile("invlpg %0"
  438. :
  439. : "m"(*(char*)vaddr.get())
  440. : "memory");
  441. }
  442. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr)
  443. {
  444. auto pte = ensure_pte(kernel_page_directory(), vaddr);
  445. pte.set_physical_page_base(paddr.get());
  446. pte.set_present(true);
  447. pte.set_writable(true);
  448. pte.set_user_allowed(false);
  449. flush_tlb(vaddr);
  450. }
  451. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  452. {
  453. ASSERT_INTERRUPTS_DISABLED();
  454. ASSERT(!m_quickmap_in_use);
  455. m_quickmap_in_use = true;
  456. auto page_vaddr = m_quickmap_addr;
  457. auto pte = ensure_pte(kernel_page_directory(), page_vaddr);
  458. pte.set_physical_page_base(physical_page.paddr().get());
  459. pte.set_present(true);
  460. pte.set_writable(true);
  461. pte.set_user_allowed(false);
  462. flush_tlb(page_vaddr);
  463. ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get());
  464. #ifdef MM_DEBUG
  465. dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_vaddr, physical_page.paddr().get(), pte.ptr());
  466. #endif
  467. return page_vaddr.as_ptr();
  468. }
  469. void MemoryManager::unquickmap_page()
  470. {
  471. ASSERT_INTERRUPTS_DISABLED();
  472. ASSERT(m_quickmap_in_use);
  473. auto page_vaddr = m_quickmap_addr;
  474. auto pte = ensure_pte(kernel_page_directory(), page_vaddr);
  475. #ifdef MM_DEBUG
  476. auto old_physical_address = pte.physical_page_base();
  477. #endif
  478. pte.set_physical_page_base(0);
  479. pte.set_present(false);
  480. pte.set_writable(false);
  481. flush_tlb(page_vaddr);
  482. #ifdef MM_DEBUG
  483. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_vaddr, old_physical_address);
  484. #endif
  485. m_quickmap_in_use = false;
  486. }
  487. void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_region, bool user_allowed)
  488. {
  489. ASSERT(region.page_directory());
  490. InterruptDisabler disabler;
  491. auto page_vaddr = region.vaddr().offset(page_index_in_region * PAGE_SIZE);
  492. auto pte = ensure_pte(*region.page_directory(), page_vaddr);
  493. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  494. ASSERT(physical_page);
  495. pte.set_physical_page_base(physical_page->paddr().get());
  496. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  497. if (region.should_cow(page_index_in_region))
  498. pte.set_writable(false);
  499. else
  500. pte.set_writable(region.is_writable());
  501. pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
  502. pte.set_write_through(!region.vmo().m_allow_cpu_caching);
  503. pte.set_user_allowed(user_allowed);
  504. region.page_directory()->flush(page_vaddr);
  505. #ifdef MM_DEBUG
  506. dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_vaddr.get(), physical_page->paddr().get(), physical_page.ptr());
  507. #endif
  508. }
  509. void MemoryManager::remap_region(PageDirectory& page_directory, Region& region)
  510. {
  511. InterruptDisabler disabler;
  512. ASSERT(region.page_directory() == &page_directory);
  513. map_region_at_address(page_directory, region, region.vaddr(), true);
  514. }
  515. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, VirtualAddress vaddr, bool user_allowed)
  516. {
  517. InterruptDisabler disabler;
  518. region.set_page_directory(page_directory);
  519. auto& vmo = region.vmo();
  520. #ifdef MM_DEBUG
  521. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  522. #endif
  523. for (size_t i = 0; i < region.page_count(); ++i) {
  524. auto page_vaddr = vaddr.offset(i * PAGE_SIZE);
  525. auto pte = ensure_pte(page_directory, page_vaddr);
  526. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  527. if (physical_page) {
  528. pte.set_physical_page_base(physical_page->paddr().get());
  529. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  530. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  531. if (region.should_cow(region.first_page_index() + i))
  532. pte.set_writable(false);
  533. else
  534. pte.set_writable(region.is_writable());
  535. pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
  536. pte.set_write_through(!region.vmo().m_allow_cpu_caching);
  537. } else {
  538. pte.set_physical_page_base(0);
  539. pte.set_present(false);
  540. pte.set_writable(region.is_writable());
  541. }
  542. pte.set_user_allowed(user_allowed);
  543. page_directory.flush(page_vaddr);
  544. #ifdef MM_DEBUG
  545. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_vaddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  546. #endif
  547. }
  548. }
  549. bool MemoryManager::unmap_region(Region& region)
  550. {
  551. ASSERT(region.page_directory());
  552. InterruptDisabler disabler;
  553. for (size_t i = 0; i < region.page_count(); ++i) {
  554. auto vaddr = region.vaddr().offset(i * PAGE_SIZE);
  555. auto pte = ensure_pte(*region.page_directory(), vaddr);
  556. pte.set_physical_page_base(0);
  557. pte.set_present(false);
  558. pte.set_writable(false);
  559. pte.set_user_allowed(false);
  560. region.page_directory()->flush(vaddr);
  561. #ifdef MM_DEBUG
  562. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  563. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", vaddr, physical_page ? physical_page->paddr().get() : 0);
  564. #endif
  565. }
  566. region.release_page_directory();
  567. return true;
  568. }
  569. bool MemoryManager::map_region(Process& process, Region& region)
  570. {
  571. map_region_at_address(process.page_directory(), region, region.vaddr(), true);
  572. return true;
  573. }
  574. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
  575. {
  576. auto* region = region_from_vaddr(process, vaddr);
  577. return region && region->is_readable();
  578. }
  579. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
  580. {
  581. auto* region = region_from_vaddr(process, vaddr);
  582. return region && region->is_writable();
  583. }
  584. void MemoryManager::register_vmo(VMObject& vmo)
  585. {
  586. InterruptDisabler disabler;
  587. m_vmos.set(&vmo);
  588. }
  589. void MemoryManager::unregister_vmo(VMObject& vmo)
  590. {
  591. InterruptDisabler disabler;
  592. m_vmos.remove(&vmo);
  593. }
  594. void MemoryManager::register_region(Region& region)
  595. {
  596. InterruptDisabler disabler;
  597. if (region.vaddr().get() >= 0xc0000000)
  598. m_kernel_regions.set(&region);
  599. else
  600. m_user_regions.set(&region);
  601. }
  602. void MemoryManager::unregister_region(Region& region)
  603. {
  604. InterruptDisabler disabler;
  605. if (region.vaddr().get() >= 0xc0000000)
  606. m_kernel_regions.remove(&region);
  607. else
  608. m_user_regions.remove(&region);
  609. }
  610. ProcessPagingScope::ProcessPagingScope(Process& process)
  611. {
  612. ASSERT(current);
  613. MM.enter_process_paging_scope(process);
  614. }
  615. ProcessPagingScope::~ProcessPagingScope()
  616. {
  617. MM.enter_process_paging_scope(current->process());
  618. }