MathObject.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/Function.h>
  8. #include <AK/Random.h>
  9. #include <LibJS/Runtime/GlobalObject.h>
  10. #include <LibJS/Runtime/MathObject.h>
  11. #include <math.h>
  12. namespace JS {
  13. MathObject::MathObject(GlobalObject& global_object)
  14. : Object(*global_object.object_prototype())
  15. {
  16. }
  17. void MathObject::initialize(GlobalObject& global_object)
  18. {
  19. auto& vm = this->vm();
  20. Object::initialize(global_object);
  21. u8 attr = Attribute::Writable | Attribute::Configurable;
  22. define_native_function(vm.names.abs, abs, 1, attr);
  23. define_native_function(vm.names.random, random, 0, attr);
  24. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  25. define_native_function(vm.names.floor, floor, 1, attr);
  26. define_native_function(vm.names.ceil, ceil, 1, attr);
  27. define_native_function(vm.names.round, round, 1, attr);
  28. define_native_function(vm.names.max, max, 2, attr);
  29. define_native_function(vm.names.min, min, 2, attr);
  30. define_native_function(vm.names.trunc, trunc, 1, attr);
  31. define_native_function(vm.names.sin, sin, 1, attr);
  32. define_native_function(vm.names.cos, cos, 1, attr);
  33. define_native_function(vm.names.tan, tan, 1, attr);
  34. define_native_function(vm.names.pow, pow, 2, attr);
  35. define_native_function(vm.names.exp, exp, 1, attr);
  36. define_native_function(vm.names.expm1, expm1, 1, attr);
  37. define_native_function(vm.names.sign, sign, 1, attr);
  38. define_native_function(vm.names.clz32, clz32, 1, attr);
  39. define_native_function(vm.names.acos, acos, 1, attr);
  40. define_native_function(vm.names.acosh, acosh, 1, attr);
  41. define_native_function(vm.names.asin, asin, 1, attr);
  42. define_native_function(vm.names.asinh, asinh, 1, attr);
  43. define_native_function(vm.names.atan, atan, 1, attr);
  44. define_native_function(vm.names.atanh, atanh, 1, attr);
  45. define_native_function(vm.names.log1p, log1p, 1, attr);
  46. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  47. define_native_function(vm.names.atan2, atan2, 2, attr);
  48. define_native_function(vm.names.fround, fround, 1, attr);
  49. define_native_function(vm.names.hypot, hypot, 2, attr);
  50. define_native_function(vm.names.imul, imul, 2, attr);
  51. define_native_function(vm.names.log, log, 1, attr);
  52. define_native_function(vm.names.log2, log2, 1, attr);
  53. define_native_function(vm.names.log10, log10, 1, attr);
  54. define_native_function(vm.names.sinh, sinh, 1, attr);
  55. define_native_function(vm.names.cosh, cosh, 1, attr);
  56. define_native_function(vm.names.tanh, tanh, 1, attr);
  57. define_property(vm.names.E, Value(M_E), 0);
  58. define_property(vm.names.LN2, Value(M_LN2), 0);
  59. define_property(vm.names.LN10, Value(M_LN10), 0);
  60. define_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  61. define_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  62. define_property(vm.names.PI, Value(M_PI), 0);
  63. define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  64. define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  65. define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), "Math"), Attribute::Configurable);
  66. }
  67. MathObject::~MathObject()
  68. {
  69. }
  70. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  71. {
  72. auto number = vm.argument(0).to_number(global_object);
  73. if (vm.exception())
  74. return {};
  75. if (number.is_nan())
  76. return js_nan();
  77. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  78. }
  79. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  80. {
  81. #ifdef __serenity__
  82. double r = (double)get_random<u32>() / (double)UINT32_MAX;
  83. #else
  84. double r = (double)rand() / (double)RAND_MAX;
  85. #endif
  86. return Value(r);
  87. }
  88. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  89. {
  90. auto number = vm.argument(0).to_number(global_object);
  91. if (vm.exception())
  92. return {};
  93. if (number.is_nan())
  94. return js_nan();
  95. return Value(::sqrt(number.as_double()));
  96. }
  97. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  98. {
  99. auto number = vm.argument(0).to_number(global_object);
  100. if (vm.exception())
  101. return {};
  102. if (number.is_nan())
  103. return js_nan();
  104. return Value(::floor(number.as_double()));
  105. }
  106. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  107. {
  108. auto number = vm.argument(0).to_number(global_object);
  109. if (vm.exception())
  110. return {};
  111. if (number.is_nan())
  112. return js_nan();
  113. auto number_double = number.as_double();
  114. if (number_double < 0 && number_double > -1)
  115. return Value(-0.f);
  116. return Value(::ceil(number.as_double()));
  117. }
  118. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  119. {
  120. auto number = vm.argument(0).to_number(global_object);
  121. if (vm.exception())
  122. return {};
  123. if (number.is_nan())
  124. return js_nan();
  125. double intpart = 0;
  126. double frac = modf(number.as_double(), &intpart);
  127. if (intpart >= 0) {
  128. if (frac >= 0.5)
  129. intpart += 1.0;
  130. } else {
  131. if (frac < -0.5)
  132. intpart -= 1.0;
  133. }
  134. return Value(intpart);
  135. }
  136. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  137. {
  138. if (!vm.argument_count())
  139. return js_negative_infinity();
  140. auto max = vm.argument(0).to_number(global_object);
  141. if (vm.exception())
  142. return {};
  143. for (size_t i = 1; i < vm.argument_count(); ++i) {
  144. auto cur = vm.argument(i).to_number(global_object);
  145. if (vm.exception())
  146. return {};
  147. if ((max.is_negative_zero() && cur.is_positive_zero()) || cur.as_double() > max.as_double())
  148. max = cur;
  149. }
  150. return max;
  151. }
  152. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  153. {
  154. if (!vm.argument_count())
  155. return js_infinity();
  156. auto min = vm.argument(0).to_number(global_object);
  157. if (vm.exception())
  158. return {};
  159. for (size_t i = 1; i < vm.argument_count(); ++i) {
  160. auto cur = vm.argument(i).to_number(global_object);
  161. if (vm.exception())
  162. return {};
  163. if ((min.is_positive_zero() && cur.is_negative_zero()) || cur.as_double() < min.as_double())
  164. min = cur;
  165. }
  166. return min;
  167. }
  168. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  169. {
  170. auto number = vm.argument(0).to_number(global_object);
  171. if (vm.exception())
  172. return {};
  173. if (number.is_nan())
  174. return js_nan();
  175. if (number.as_double() < 0)
  176. return MathObject::ceil(vm, global_object);
  177. return MathObject::floor(vm, global_object);
  178. }
  179. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  180. {
  181. auto number = vm.argument(0).to_number(global_object);
  182. if (vm.exception())
  183. return {};
  184. if (number.is_nan())
  185. return js_nan();
  186. return Value(::sin(number.as_double()));
  187. }
  188. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  189. {
  190. auto number = vm.argument(0).to_number(global_object);
  191. if (vm.exception())
  192. return {};
  193. if (number.is_nan())
  194. return js_nan();
  195. return Value(::cos(number.as_double()));
  196. }
  197. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  198. {
  199. auto number = vm.argument(0).to_number(global_object);
  200. if (vm.exception())
  201. return {};
  202. if (number.is_nan())
  203. return js_nan();
  204. return Value(::tan(number.as_double()));
  205. }
  206. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  207. {
  208. return JS::exp(global_object, vm.argument(0), vm.argument(1));
  209. }
  210. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  211. {
  212. auto number = vm.argument(0).to_number(global_object);
  213. if (vm.exception())
  214. return {};
  215. if (number.is_nan())
  216. return js_nan();
  217. return Value(::exp(number.as_double()));
  218. }
  219. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  220. {
  221. auto number = vm.argument(0).to_number(global_object);
  222. if (vm.exception())
  223. return {};
  224. if (number.is_nan())
  225. return js_nan();
  226. return Value(::expm1(number.as_double()));
  227. }
  228. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  229. {
  230. auto number = vm.argument(0).to_number(global_object);
  231. if (vm.exception())
  232. return {};
  233. if (number.is_positive_zero())
  234. return Value(0);
  235. if (number.is_negative_zero())
  236. return Value(-0.0);
  237. if (number.as_double() > 0)
  238. return Value(1);
  239. if (number.as_double() < 0)
  240. return Value(-1);
  241. return js_nan();
  242. }
  243. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  244. {
  245. auto number = vm.argument(0).to_number(global_object);
  246. if (vm.exception())
  247. return {};
  248. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  249. return Value(32);
  250. return Value(__builtin_clz((unsigned)number.as_double()));
  251. }
  252. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  253. {
  254. auto number = vm.argument(0).to_number(global_object);
  255. if (vm.exception())
  256. return {};
  257. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  258. return js_nan();
  259. if (number.as_double() == 1)
  260. return Value(0);
  261. return Value(::acos(number.as_double()));
  262. }
  263. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  264. {
  265. auto number = vm.argument(0).to_number(global_object);
  266. if (vm.exception())
  267. return {};
  268. if (number.as_double() < 1)
  269. return js_nan();
  270. return Value(::acosh(number.as_double()));
  271. }
  272. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  273. {
  274. auto number = vm.argument(0).to_number(global_object);
  275. if (vm.exception())
  276. return {};
  277. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  278. return number;
  279. return Value(::asin(number.as_double()));
  280. }
  281. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  282. {
  283. auto number = vm.argument(0).to_number(global_object);
  284. if (vm.exception())
  285. return {};
  286. return Value(::asinh(number.as_double()));
  287. }
  288. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  289. {
  290. auto number = vm.argument(0).to_number(global_object);
  291. if (vm.exception())
  292. return {};
  293. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  294. return number;
  295. if (number.is_positive_infinity())
  296. return Value(M_PI_2);
  297. if (number.is_negative_infinity())
  298. return Value(-M_PI_2);
  299. return Value(::atan(number.as_double()));
  300. }
  301. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  302. {
  303. auto number = vm.argument(0).to_number(global_object);
  304. if (vm.exception())
  305. return {};
  306. if (number.as_double() > 1 || number.as_double() < -1)
  307. return js_nan();
  308. return Value(::atanh(number.as_double()));
  309. }
  310. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  311. {
  312. auto number = vm.argument(0).to_number(global_object);
  313. if (vm.exception())
  314. return {};
  315. if (number.as_double() < -1)
  316. return js_nan();
  317. return Value(::log1p(number.as_double()));
  318. }
  319. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  320. {
  321. auto number = vm.argument(0).to_number(global_object);
  322. if (vm.exception())
  323. return {};
  324. return Value(::cbrt(number.as_double()));
  325. }
  326. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
  327. {
  328. auto y = vm.argument(0).to_number(global_object), x = vm.argument(1).to_number(global_object);
  329. auto pi_4 = M_PI_2 / 2;
  330. auto three_pi_4 = pi_4 + M_PI_2;
  331. if (vm.exception())
  332. return {};
  333. if (x.is_positive_zero()) {
  334. if (y.is_positive_zero() || y.is_negative_zero())
  335. return y;
  336. else
  337. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  338. }
  339. if (x.is_negative_zero()) {
  340. if (y.is_positive_zero())
  341. return Value(M_PI);
  342. else if (y.is_negative_zero())
  343. return Value(-M_PI);
  344. else
  345. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  346. }
  347. if (x.is_positive_infinity()) {
  348. if (y.is_infinity())
  349. return (y.is_positive_infinity()) ? Value(pi_4) : Value(-pi_4);
  350. else
  351. return (y.as_double() > 0) ? Value(+0.0) : Value(-0.0);
  352. }
  353. if (x.is_negative_infinity()) {
  354. if (y.is_infinity())
  355. return (y.is_positive_infinity()) ? Value(three_pi_4) : Value(-three_pi_4);
  356. else
  357. return (y.as_double() > 0) ? Value(M_PI) : Value(-M_PI);
  358. }
  359. if (y.is_infinity())
  360. return (y.is_positive_infinity()) ? Value(M_PI_2) : Value(-M_PI_2);
  361. if (y.is_positive_zero())
  362. return (x.as_double() > 0) ? Value(+0.0) : Value(M_PI);
  363. if (y.is_negative_zero())
  364. return (x.as_double() > 0) ? Value(-0.0) : Value(-M_PI);
  365. return Value(::atan2(y.as_double(), x.as_double()));
  366. }
  367. JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
  368. {
  369. auto number = vm.argument(0).to_number(global_object);
  370. if (vm.exception())
  371. return {};
  372. if (number.is_nan())
  373. return js_nan();
  374. return Value((float)number.as_double());
  375. }
  376. JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
  377. {
  378. if (!vm.argument_count())
  379. return Value(0);
  380. auto hypot = vm.argument(0).to_number(global_object);
  381. if (vm.exception())
  382. return {};
  383. hypot = Value(hypot.as_double() * hypot.as_double());
  384. for (size_t i = 1; i < vm.argument_count(); ++i) {
  385. auto cur = vm.argument(i).to_number(global_object);
  386. if (vm.exception())
  387. return {};
  388. hypot = Value(hypot.as_double() + cur.as_double() * cur.as_double());
  389. }
  390. return Value(::sqrt(hypot.as_double()));
  391. }
  392. JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
  393. {
  394. auto a = vm.argument(0).to_u32(global_object);
  395. if (vm.exception())
  396. return {};
  397. auto b = vm.argument(1).to_u32(global_object);
  398. if (vm.exception())
  399. return {};
  400. return Value(static_cast<i32>(a * b));
  401. }
  402. JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
  403. {
  404. auto number = vm.argument(0).to_number(global_object);
  405. if (vm.exception())
  406. return {};
  407. if (number.as_double() < 0)
  408. return js_nan();
  409. return Value(::log(number.as_double()));
  410. }
  411. JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
  412. {
  413. auto number = vm.argument(0).to_number(global_object);
  414. if (vm.exception())
  415. return {};
  416. if (number.as_double() < 0)
  417. return js_nan();
  418. return Value(::log2(number.as_double()));
  419. }
  420. JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
  421. {
  422. auto number = vm.argument(0).to_number(global_object);
  423. if (vm.exception())
  424. return {};
  425. if (number.as_double() < 0)
  426. return js_nan();
  427. return Value(::log10(number.as_double()));
  428. }
  429. JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
  430. {
  431. auto number = vm.argument(0).to_number(global_object);
  432. if (vm.exception())
  433. return {};
  434. if (number.is_nan())
  435. return js_nan();
  436. return Value(::sinh(number.as_double()));
  437. }
  438. JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
  439. {
  440. auto number = vm.argument(0).to_number(global_object);
  441. if (vm.exception())
  442. return {};
  443. if (number.is_nan())
  444. return js_nan();
  445. return Value(::cosh(number.as_double()));
  446. }
  447. JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
  448. {
  449. auto number = vm.argument(0).to_number(global_object);
  450. if (vm.exception())
  451. return {};
  452. if (number.is_nan())
  453. return js_nan();
  454. if (number.is_positive_infinity())
  455. return Value(1);
  456. if (number.is_negative_infinity())
  457. return Value(-1);
  458. return Value(::tanh(number.as_double()));
  459. }
  460. }