MemoryManager.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Assertions.h>
  27. #include <AK/Memory.h>
  28. #include <AK/StringView.h>
  29. #include <Kernel/Arch/i386/CPU.h>
  30. #include <Kernel/CMOS.h>
  31. #include <Kernel/FileSystem/Inode.h>
  32. #include <Kernel/Multiboot.h>
  33. #include <Kernel/Process.h>
  34. #include <Kernel/VM/AnonymousVMObject.h>
  35. #include <Kernel/VM/ContiguousVMObject.h>
  36. #include <Kernel/VM/MemoryManager.h>
  37. #include <Kernel/VM/PageDirectory.h>
  38. #include <Kernel/VM/PhysicalRegion.h>
  39. #include <Kernel/VM/PurgeableVMObject.h>
  40. #include <Kernel/VM/SharedInodeVMObject.h>
  41. #include <Kernel/StdLib.h>
  42. //#define MM_DEBUG
  43. //#define PAGE_FAULT_DEBUG
  44. extern FlatPtr start_of_kernel_text;
  45. extern FlatPtr start_of_kernel_data;
  46. extern FlatPtr end_of_kernel_bss;
  47. namespace Kernel {
  48. static MemoryManager* s_the;
  49. RecursiveSpinLock MemoryManager::s_lock;
  50. MemoryManager& MM
  51. {
  52. return *s_the;
  53. }
  54. MemoryManager::MemoryManager()
  55. {
  56. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  57. parse_memory_map();
  58. write_cr3(kernel_page_directory().cr3());
  59. protect_kernel_image();
  60. m_shared_zero_page = allocate_user_physical_page();
  61. }
  62. MemoryManager::~MemoryManager()
  63. {
  64. }
  65. void MemoryManager::protect_kernel_image()
  66. {
  67. // Disable writing to the kernel text and rodata segments.
  68. for (size_t i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
  69. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  70. pte.set_writable(false);
  71. }
  72. if (Processor::current().has_feature(CPUFeature::NX)) {
  73. // Disable execution of the kernel data and bss segments.
  74. for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_bss; i += PAGE_SIZE) {
  75. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  76. pte.set_execute_disabled(true);
  77. }
  78. }
  79. }
  80. void MemoryManager::parse_memory_map()
  81. {
  82. RefPtr<PhysicalRegion> region;
  83. bool region_is_super = false;
  84. auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  85. for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  86. klog() << "MM: Multiboot mmap: base_addr = " << String::format("0x%08x", mmap->addr) << ", length = " << String::format("0x%08x", mmap->len) << ", type = 0x" << String::format("%x", mmap->type);
  87. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  88. continue;
  89. // FIXME: Maybe make use of stuff below the 1MB mark?
  90. if (mmap->addr < (1 * MB))
  91. continue;
  92. if ((mmap->addr + mmap->len) > 0xffffffff)
  93. continue;
  94. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  95. if (diff != 0) {
  96. klog() << "MM: got an unaligned region base from the bootloader; correcting " << String::format("%p", mmap->addr) << " by " << diff << " bytes";
  97. diff = PAGE_SIZE - diff;
  98. mmap->addr += diff;
  99. mmap->len -= diff;
  100. }
  101. if ((mmap->len % PAGE_SIZE) != 0) {
  102. klog() << "MM: got an unaligned region length from the bootloader; correcting " << mmap->len << " by " << (mmap->len % PAGE_SIZE) << " bytes";
  103. mmap->len -= mmap->len % PAGE_SIZE;
  104. }
  105. if (mmap->len < PAGE_SIZE) {
  106. klog() << "MM: memory region from bootloader is too small; we want >= " << PAGE_SIZE << " bytes, but got " << mmap->len << " bytes";
  107. continue;
  108. }
  109. #ifdef MM_DEBUG
  110. klog() << "MM: considering memory at " << String::format("%p", (FlatPtr)mmap->addr) << " - " << String::format("%p", (FlatPtr)(mmap->addr + mmap->len));
  111. #endif
  112. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  113. auto addr = PhysicalAddress(page_base);
  114. if (page_base < 7 * MB) {
  115. // nothing
  116. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  117. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  118. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  119. region = m_super_physical_regions.last();
  120. region_is_super = true;
  121. } else {
  122. region->expand(region->lower(), addr);
  123. }
  124. } else {
  125. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  126. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  127. region = m_user_physical_regions.last();
  128. region_is_super = false;
  129. } else {
  130. region->expand(region->lower(), addr);
  131. }
  132. }
  133. }
  134. }
  135. for (auto& region : m_super_physical_regions)
  136. m_super_physical_pages += region.finalize_capacity();
  137. for (auto& region : m_user_physical_regions)
  138. m_user_physical_pages += region.finalize_capacity();
  139. ASSERT(m_super_physical_pages > 0);
  140. ASSERT(m_user_physical_pages > 0);
  141. }
  142. const PageTableEntry* MemoryManager::pte(const PageDirectory& page_directory, VirtualAddress vaddr)
  143. {
  144. ASSERT_INTERRUPTS_DISABLED();
  145. ScopedSpinLock lock(s_lock);
  146. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  147. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  148. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  149. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  150. const PageDirectoryEntry& pde = pd[page_directory_index];
  151. if (!pde.is_present())
  152. return nullptr;
  153. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  154. }
  155. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  156. {
  157. ASSERT_INTERRUPTS_DISABLED();
  158. ScopedSpinLock lock(s_lock);
  159. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  160. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  161. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  162. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  163. PageDirectoryEntry& pde = pd[page_directory_index];
  164. if (!pde.is_present()) {
  165. #ifdef MM_DEBUG
  166. dbg() << "MM: PDE " << page_directory_index << " not present (requested for " << vaddr << "), allocating";
  167. #endif
  168. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  169. #ifdef MM_DEBUG
  170. dbg() << "MM: PD K" << &page_directory << " (" << (&page_directory == m_kernel_page_directory ? "Kernel" : "User") << ") at " << PhysicalAddress(page_directory.cr3()) << " allocated page table #" << page_directory_index << " (for " << vaddr << ") at " << page_table->paddr();
  171. #endif
  172. pde.set_page_table_base(page_table->paddr().get());
  173. pde.set_user_allowed(true);
  174. pde.set_present(true);
  175. pde.set_writable(true);
  176. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  177. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  178. }
  179. return quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  180. }
  181. void MemoryManager::initialize(u32 cpu)
  182. {
  183. auto mm_data = new MemoryManagerData;
  184. #ifdef MM_DEBUG
  185. dbg() << "MM: Processor #" << cpu << " specific data at " << VirtualAddress(mm_data);
  186. #endif
  187. Processor::current().set_mm_data(*mm_data);
  188. if (cpu == 0)
  189. s_the = new MemoryManager;
  190. }
  191. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  192. {
  193. ScopedSpinLock lock(s_lock);
  194. for (auto& region : MM.m_kernel_regions) {
  195. if (region.contains(vaddr))
  196. return &region;
  197. }
  198. return nullptr;
  199. }
  200. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  201. {
  202. ScopedSpinLock lock(s_lock);
  203. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  204. for (auto& region : process.m_regions) {
  205. if (region.contains(vaddr))
  206. return &region;
  207. }
  208. #ifdef MM_DEBUG
  209. dbg() << process << " Couldn't find user region for " << vaddr;
  210. #endif
  211. return nullptr;
  212. }
  213. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  214. {
  215. ScopedSpinLock lock(s_lock);
  216. if (auto* region = user_region_from_vaddr(process, vaddr))
  217. return region;
  218. return kernel_region_from_vaddr(vaddr);
  219. }
  220. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  221. {
  222. ScopedSpinLock lock(s_lock);
  223. if (auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr))
  224. return region;
  225. return kernel_region_from_vaddr(vaddr);
  226. }
  227. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  228. {
  229. ScopedSpinLock lock(s_lock);
  230. if (auto* region = kernel_region_from_vaddr(vaddr))
  231. return region;
  232. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  233. if (!page_directory)
  234. return nullptr;
  235. ASSERT(page_directory->process());
  236. return user_region_from_vaddr(*page_directory->process(), vaddr);
  237. }
  238. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  239. {
  240. ASSERT_INTERRUPTS_DISABLED();
  241. ASSERT(Thread::current() != nullptr);
  242. ScopedSpinLock lock(s_lock);
  243. if (Processor::current().in_irq()) {
  244. dbg() << "CPU[" << Processor::current().id() << "] BUG! Page fault while handling IRQ! code=" << fault.code() << ", vaddr=" << fault.vaddr() << ", irq level: " << Processor::current().in_irq();
  245. dump_kernel_regions();
  246. return PageFaultResponse::ShouldCrash;
  247. }
  248. #ifdef PAGE_FAULT_DEBUG
  249. dbg() << "MM: CPU[" << Processor::current().id() << "] handle_page_fault(" << String::format("%w", fault.code()) << ") at " << fault.vaddr();
  250. #endif
  251. auto* region = region_from_vaddr(fault.vaddr());
  252. if (!region) {
  253. klog() << "CPU[" << Processor::current().id() << "] NP(error) fault at invalid address " << fault.vaddr();
  254. return PageFaultResponse::ShouldCrash;
  255. }
  256. return region->handle_fault(fault);
  257. }
  258. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  259. {
  260. ASSERT(!(size % PAGE_SIZE));
  261. ScopedSpinLock lock(s_lock);
  262. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  263. if (!range.is_valid())
  264. return nullptr;
  265. auto vmobject = ContiguousVMObject::create_with_size(size);
  266. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  267. if (!region)
  268. return nullptr;
  269. return region;
  270. }
  271. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  272. {
  273. ASSERT(!(size % PAGE_SIZE));
  274. ScopedSpinLock lock(s_lock);
  275. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  276. if (!range.is_valid())
  277. return nullptr;
  278. auto vmobject = AnonymousVMObject::create_with_size(size);
  279. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  280. if (!region)
  281. return nullptr;
  282. if (should_commit && !region->commit())
  283. return nullptr;
  284. return region;
  285. }
  286. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  287. {
  288. ASSERT(!(size % PAGE_SIZE));
  289. ScopedSpinLock lock(s_lock);
  290. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  291. if (!range.is_valid())
  292. return nullptr;
  293. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  294. if (!vmobject)
  295. return nullptr;
  296. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  297. }
  298. OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  299. {
  300. ASSERT(!(size % PAGE_SIZE));
  301. ScopedSpinLock lock(s_lock);
  302. auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
  303. if (!range.is_valid())
  304. return nullptr;
  305. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  306. if (!vmobject)
  307. return nullptr;
  308. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  309. }
  310. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  311. {
  312. return allocate_kernel_region(size, name, access, true, true, cacheable);
  313. }
  314. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  315. {
  316. ScopedSpinLock lock(s_lock);
  317. OwnPtr<Region> region;
  318. if (user_accessible)
  319. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  320. else
  321. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  322. if (region)
  323. region->map(kernel_page_directory());
  324. return region;
  325. }
  326. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  327. {
  328. ASSERT(!(size % PAGE_SIZE));
  329. ScopedSpinLock lock(s_lock);
  330. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  331. if (!range.is_valid())
  332. return nullptr;
  333. return allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  334. }
  335. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  336. {
  337. ScopedSpinLock lock(s_lock);
  338. for (auto& region : m_user_physical_regions) {
  339. if (!region.contains(page)) {
  340. klog() << "MM: deallocate_user_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  341. continue;
  342. }
  343. region.return_page(move(page));
  344. --m_user_physical_pages_used;
  345. return;
  346. }
  347. klog() << "MM: deallocate_user_physical_page couldn't figure out region for user page @ " << page.paddr();
  348. ASSERT_NOT_REACHED();
  349. }
  350. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  351. {
  352. ASSERT(s_lock.is_locked());
  353. RefPtr<PhysicalPage> page;
  354. for (auto& region : m_user_physical_regions) {
  355. page = region.take_free_page(false);
  356. if (!page.is_null())
  357. break;
  358. }
  359. return page;
  360. }
  361. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  362. {
  363. ScopedSpinLock lock(s_lock);
  364. auto page = find_free_user_physical_page();
  365. if (!page) {
  366. // We didn't have a single free physical page. Let's try to free something up!
  367. // First, we look for a purgeable VMObject in the volatile state.
  368. for_each_vmobject_of_type<PurgeableVMObject>([&](auto& vmobject) {
  369. int purged_page_count = vmobject.purge_with_interrupts_disabled({});
  370. if (purged_page_count) {
  371. klog() << "MM: Purge saved the day! Purged " << purged_page_count << " pages from PurgeableVMObject{" << &vmobject << "}";
  372. page = find_free_user_physical_page();
  373. ASSERT(page);
  374. return IterationDecision::Break;
  375. }
  376. return IterationDecision::Continue;
  377. });
  378. if (!page) {
  379. klog() << "MM: no user physical pages available";
  380. return {};
  381. }
  382. }
  383. #ifdef MM_DEBUG
  384. dbg() << "MM: allocate_user_physical_page vending " << page->paddr();
  385. #endif
  386. if (should_zero_fill == ShouldZeroFill::Yes) {
  387. auto* ptr = quickmap_page(*page);
  388. memset(ptr, 0, PAGE_SIZE);
  389. unquickmap_page();
  390. }
  391. ++m_user_physical_pages_used;
  392. return page;
  393. }
  394. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  395. {
  396. ASSERT(s_lock.is_locked());
  397. for (auto& region : m_super_physical_regions) {
  398. if (!region.contains(page)) {
  399. klog() << "MM: deallocate_supervisor_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  400. continue;
  401. }
  402. region.return_page(move(page));
  403. --m_super_physical_pages_used;
  404. return;
  405. }
  406. klog() << "MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ " << page.paddr();
  407. ASSERT_NOT_REACHED();
  408. }
  409. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  410. {
  411. ASSERT(!(size % PAGE_SIZE));
  412. ScopedSpinLock lock(s_lock);
  413. size_t count = ceil_div(size, PAGE_SIZE);
  414. NonnullRefPtrVector<PhysicalPage> physical_pages;
  415. for (auto& region : m_super_physical_regions) {
  416. physical_pages = region.take_contiguous_free_pages((count), true);
  417. if (physical_pages.is_empty())
  418. continue;
  419. }
  420. if (physical_pages.is_empty()) {
  421. if (m_super_physical_regions.is_empty()) {
  422. klog() << "MM: no super physical regions available (?)";
  423. }
  424. klog() << "MM: no super physical pages available";
  425. ASSERT_NOT_REACHED();
  426. return {};
  427. }
  428. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  429. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  430. m_super_physical_pages_used += count;
  431. return physical_pages;
  432. }
  433. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  434. {
  435. ScopedSpinLock lock(s_lock);
  436. RefPtr<PhysicalPage> page;
  437. for (auto& region : m_super_physical_regions) {
  438. page = region.take_free_page(true);
  439. if (page.is_null())
  440. continue;
  441. }
  442. if (!page) {
  443. if (m_super_physical_regions.is_empty()) {
  444. klog() << "MM: no super physical regions available (?)";
  445. }
  446. klog() << "MM: no super physical pages available";
  447. ASSERT_NOT_REACHED();
  448. return {};
  449. }
  450. #ifdef MM_DEBUG
  451. dbg() << "MM: allocate_supervisor_physical_page vending " << page->paddr();
  452. #endif
  453. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  454. ++m_super_physical_pages_used;
  455. return page;
  456. }
  457. void MemoryManager::enter_process_paging_scope(Process& process)
  458. {
  459. auto current_thread = Thread::current();
  460. ASSERT(current_thread != nullptr);
  461. ScopedSpinLock lock(s_lock);
  462. current_thread->tss().cr3 = process.page_directory().cr3();
  463. write_cr3(process.page_directory().cr3());
  464. }
  465. void MemoryManager::flush_entire_tlb()
  466. {
  467. write_cr3(read_cr3());
  468. }
  469. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  470. {
  471. #ifdef MM_DEBUG
  472. dbg() << "MM: Flush page " << vaddr;
  473. #endif
  474. asm volatile("invlpg %0"
  475. :
  476. : "m"(*(char*)vaddr.get())
  477. : "memory");
  478. }
  479. extern "C" PageTableEntry boot_pd3_pt1023[1024];
  480. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  481. {
  482. ScopedSpinLock lock(s_lock);
  483. auto& pte = boot_pd3_pt1023[4];
  484. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  485. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  486. #ifdef MM_DEBUG
  487. dbg() << "quickmap_pd: Mapping P" << (void*)directory.m_directory_pages[pdpt_index]->paddr().as_ptr() << " at 0xffe04000 in pte @ " << &pte;
  488. #endif
  489. pte.set_physical_page_base(pd_paddr.get());
  490. pte.set_present(true);
  491. pte.set_writable(true);
  492. pte.set_user_allowed(false);
  493. flush_tlb(VirtualAddress(0xffe04000));
  494. }
  495. return (PageDirectoryEntry*)0xffe04000;
  496. }
  497. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  498. {
  499. ScopedSpinLock lock(s_lock);
  500. auto& pte = boot_pd3_pt1023[0];
  501. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  502. #ifdef MM_DEBUG
  503. dbg() << "quickmap_pt: Mapping P" << (void*)pt_paddr.as_ptr() << " at 0xffe00000 in pte @ " << &pte;
  504. #endif
  505. pte.set_physical_page_base(pt_paddr.get());
  506. pte.set_present(true);
  507. pte.set_writable(true);
  508. pte.set_user_allowed(false);
  509. flush_tlb(VirtualAddress(0xffe00000));
  510. }
  511. return (PageTableEntry*)0xffe00000;
  512. }
  513. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  514. {
  515. ASSERT_INTERRUPTS_DISABLED();
  516. auto& mm_data = get_data();
  517. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  518. ScopedSpinLock lock(s_lock);
  519. u32 pte_idx = 8 + Processor::current().id();
  520. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  521. auto& pte = boot_pd3_pt1023[pte_idx];
  522. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  523. #ifdef MM_DEBUG
  524. dbg() << "quickmap_page: Mapping P" << (void*)physical_page.paddr().as_ptr() << " at 0xffe08000 in pte @ " << &pte;
  525. #endif
  526. pte.set_physical_page_base(physical_page.paddr().get());
  527. pte.set_present(true);
  528. pte.set_writable(true);
  529. pte.set_user_allowed(false);
  530. flush_tlb(vaddr);
  531. }
  532. return vaddr.as_ptr();
  533. }
  534. void MemoryManager::unquickmap_page()
  535. {
  536. ASSERT_INTERRUPTS_DISABLED();
  537. ScopedSpinLock lock(s_lock);
  538. auto& mm_data = get_data();
  539. ASSERT(mm_data.m_quickmap_in_use.is_locked());
  540. u32 pte_idx = 8 + Processor::current().id();
  541. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  542. auto& pte = boot_pd3_pt1023[pte_idx];
  543. pte.clear();
  544. flush_tlb(vaddr);
  545. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  546. }
  547. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  548. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  549. {
  550. ASSERT(s_lock.is_locked());
  551. ASSERT(size);
  552. if (base_vaddr > base_vaddr.offset(size)) {
  553. dbg() << "Shenanigans! Asked to validate wrappy " << base_vaddr << " size=" << size;
  554. return false;
  555. }
  556. VirtualAddress vaddr = base_vaddr.page_base();
  557. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  558. if (end_vaddr < vaddr) {
  559. dbg() << "Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  560. return false;
  561. }
  562. const Region* region = nullptr;
  563. while (vaddr <= end_vaddr) {
  564. if (!region || !region->contains(vaddr)) {
  565. if (space == AccessSpace::Kernel)
  566. region = kernel_region_from_vaddr(vaddr);
  567. if (!region || !region->contains(vaddr))
  568. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  569. if (!region
  570. || (space == AccessSpace::User && !region->is_user_accessible())
  571. || (access_type == AccessType::Read && !region->is_readable())
  572. || (access_type == AccessType::Write && !region->is_writable())) {
  573. return false;
  574. }
  575. }
  576. vaddr = region->range().end();
  577. }
  578. return true;
  579. }
  580. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  581. {
  582. if (!is_user_address(vaddr))
  583. return false;
  584. ScopedSpinLock lock(s_lock);
  585. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  586. return region && region->is_user_accessible() && region->is_stack();
  587. }
  588. bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
  589. {
  590. ScopedSpinLock lock(s_lock);
  591. return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
  592. }
  593. bool MemoryManager::can_read_without_faulting(const Process& process, VirtualAddress vaddr, size_t size) const
  594. {
  595. // FIXME: Use the size argument!
  596. UNUSED_PARAM(size);
  597. ScopedSpinLock lock(s_lock);
  598. auto* pte = const_cast<MemoryManager*>(this)->pte(process.page_directory(), vaddr);
  599. if (!pte)
  600. return false;
  601. return pte->is_present();
  602. }
  603. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
  604. {
  605. if (!is_user_address(vaddr))
  606. return false;
  607. ScopedSpinLock lock(s_lock);
  608. return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
  609. }
  610. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
  611. {
  612. if (!is_user_address(vaddr))
  613. return false;
  614. ScopedSpinLock lock(s_lock);
  615. return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
  616. }
  617. void MemoryManager::register_vmobject(VMObject& vmobject)
  618. {
  619. ScopedSpinLock lock(s_lock);
  620. m_vmobjects.append(&vmobject);
  621. }
  622. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  623. {
  624. ScopedSpinLock lock(s_lock);
  625. m_vmobjects.remove(&vmobject);
  626. }
  627. void MemoryManager::register_region(Region& region)
  628. {
  629. ScopedSpinLock lock(s_lock);
  630. if (region.is_kernel())
  631. m_kernel_regions.append(&region);
  632. else
  633. m_user_regions.append(&region);
  634. }
  635. void MemoryManager::unregister_region(Region& region)
  636. {
  637. ScopedSpinLock lock(s_lock);
  638. if (region.is_kernel())
  639. m_kernel_regions.remove(&region);
  640. else
  641. m_user_regions.remove(&region);
  642. }
  643. void MemoryManager::dump_kernel_regions()
  644. {
  645. klog() << "Kernel regions:";
  646. klog() << "BEGIN END SIZE ACCESS NAME";
  647. ScopedSpinLock lock(s_lock);
  648. for (auto& region : MM.m_kernel_regions) {
  649. klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_purgeable() ? 'P' : ' ') << " " << region.name().characters();
  650. }
  651. }
  652. }