Task.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829
  1. #include "types.h"
  2. #include "Task.h"
  3. #include "kmalloc.h"
  4. #include "VGA.h"
  5. #include "StdLib.h"
  6. #include "i386.h"
  7. #include "system.h"
  8. #include <VirtualFileSystem/FileHandle.h>
  9. #include <VirtualFileSystem/VirtualFileSystem.h>
  10. #include <ELFLoader/ExecSpace.h>
  11. #include "MemoryManager.h"
  12. //#define DEBUG_IO
  13. //#define TASK_DEBUG
  14. static const DWORD defaultStackSize = 16384;
  15. Task* current;
  16. Task* s_kernelTask;
  17. static pid_t next_pid;
  18. static InlineLinkedList<Task>* s_tasks;
  19. static InlineLinkedList<Task>* s_deadTasks;
  20. static bool contextSwitch(Task*);
  21. static void redoKernelTaskTSS()
  22. {
  23. if (!s_kernelTask->selector())
  24. s_kernelTask->setSelector(allocateGDTEntry());
  25. auto& tssDescriptor = getGDTEntry(s_kernelTask->selector());
  26. tssDescriptor.setBase(&s_kernelTask->tss());
  27. tssDescriptor.setLimit(0xffff);
  28. tssDescriptor.dpl = 0;
  29. tssDescriptor.segment_present = 1;
  30. tssDescriptor.granularity = 1;
  31. tssDescriptor.zero = 0;
  32. tssDescriptor.operation_size = 1;
  33. tssDescriptor.descriptor_type = 0;
  34. tssDescriptor.type = 9;
  35. flushGDT();
  36. }
  37. void Task::prepForIRETToNewTask()
  38. {
  39. redoKernelTaskTSS();
  40. s_kernelTask->tss().backlink = current->selector();
  41. loadTaskRegister(s_kernelTask->selector());
  42. }
  43. void Task::initialize()
  44. {
  45. current = nullptr;
  46. next_pid = 0;
  47. s_tasks = new InlineLinkedList<Task>;
  48. s_deadTasks = new InlineLinkedList<Task>;
  49. s_kernelTask = new Task(0, "colonel", IPC::Handle::Any, Task::Ring0);
  50. redoKernelTaskTSS();
  51. loadTaskRegister(s_kernelTask->selector());
  52. }
  53. #ifdef TASK_SANITY_CHECKS
  54. void Task::checkSanity(const char* msg)
  55. {
  56. char ch = current->name()[0];
  57. kprintf("<%p> %s{%u}%b [%d] :%b: sanity check <%s>\n",
  58. current->name().characters(),
  59. current->name().characters(),
  60. current->name().length(),
  61. current->name()[current->name().length() - 1],
  62. current->pid(), ch, msg ? msg : "");
  63. ASSERT((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z'));
  64. }
  65. #endif
  66. void Task::allocateLDT()
  67. {
  68. ASSERT(!m_tss.ldt);
  69. static const WORD numLDTEntries = 4;
  70. WORD newLDTSelector = allocateGDTEntry();
  71. m_ldtEntries = new Descriptor[numLDTEntries];
  72. #if 0
  73. kprintf("new ldt selector = %x\n", newLDTSelector);
  74. kprintf("new ldt table at = %p\n", m_ldtEntries);
  75. kprintf("new ldt table size = %u\n", (numLDTEntries * 8) - 1);
  76. #endif
  77. Descriptor& ldt = getGDTEntry(newLDTSelector);
  78. ldt.setBase(m_ldtEntries);
  79. ldt.setLimit(numLDTEntries * 8 - 1);
  80. ldt.dpl = 0;
  81. ldt.segment_present = 1;
  82. ldt.granularity = 0;
  83. ldt.zero = 0;
  84. ldt.operation_size = 1;
  85. ldt.descriptor_type = 0;
  86. ldt.type = Descriptor::LDT;
  87. m_tss.ldt = newLDTSelector;
  88. }
  89. Vector<Task*> Task::allTasks()
  90. {
  91. Vector<Task*> tasks;
  92. tasks.ensureCapacity(s_tasks->sizeSlow());
  93. for (auto* task = s_tasks->head(); task; task = task->next())
  94. tasks.append(task);
  95. return tasks;
  96. }
  97. Task::Region* Task::allocateRegion(size_t size, String&& name)
  98. {
  99. // FIXME: This needs sanity checks. What if this overlaps existing regions?
  100. auto zone = MemoryManager::the().createZone(size);
  101. ASSERT(zone);
  102. m_regions.append(make<Region>(m_nextRegion, size, move(zone), move(name)));
  103. m_nextRegion = m_nextRegion.offset(size).offset(16384);
  104. return m_regions.last().ptr();
  105. }
  106. bool Task::deallocateRegion(Region& region)
  107. {
  108. for (size_t i = 0; i < m_regions.size(); ++i) {
  109. if (m_regions[i].ptr() == &region) {
  110. // FIXME: This seems racy.
  111. MemoryManager::the().unmapRegion(*this, region);
  112. m_regions.remove(i);
  113. return true;
  114. }
  115. }
  116. return false;
  117. }
  118. Task::Region* Task::regionFromRange(LinearAddress laddr, size_t size)
  119. {
  120. for (auto& region : m_regions) {
  121. if (region->linearAddress == laddr && region->size == size)
  122. return region.ptr();
  123. }
  124. return nullptr;
  125. }
  126. void* Task::sys$mmap(void* addr, size_t size)
  127. {
  128. // FIXME: Implement mapping at a client-preferred address.
  129. ASSERT(addr == nullptr);
  130. auto* region = allocateRegion(size, "mmap");
  131. if (!region)
  132. return (void*)-1;
  133. MemoryManager::the().mapRegion(*this, *region);
  134. return (void*)region->linearAddress.get();
  135. }
  136. int Task::sys$munmap(void* addr, size_t size)
  137. {
  138. auto* region = regionFromRange(LinearAddress((dword)addr), size);
  139. if (!region)
  140. return -1;
  141. if (!deallocateRegion(*region))
  142. return -1;
  143. return 0;
  144. }
  145. int Task::sys$spawn(const char* path)
  146. {
  147. auto* child = Task::create(path, m_uid, m_gid);
  148. if (child)
  149. return child->pid();
  150. return -1;
  151. }
  152. Task* Task::create(const String& path, uid_t uid, gid_t gid)
  153. {
  154. auto parts = path.split('/');
  155. if (parts.isEmpty())
  156. return nullptr;
  157. auto handle = VirtualFileSystem::the().open(path);
  158. if (!handle)
  159. return nullptr;
  160. auto elfData = handle->readEntireFile();
  161. if (!elfData)
  162. return nullptr;
  163. cli();
  164. Task* t = new Task(parts.takeLast(), uid, gid);
  165. ExecSpace space;
  166. space.hookableAlloc = [&] (const String& name, size_t size) {
  167. if (!size)
  168. return (void*)nullptr;
  169. size = ((size / 4096) + 1) * 4096;
  170. Region* region = t->allocateRegion(size, String(name));
  171. ASSERT(region);
  172. MemoryManager::the().mapRegion(*t, *region);
  173. return (void*)region->linearAddress.asPtr();
  174. };
  175. bool success = space.loadELF(move(elfData));
  176. if (!success) {
  177. delete t;
  178. return nullptr;
  179. }
  180. t->m_tss.eip = (dword)space.symbolPtr("_start");
  181. if (!t->m_tss.eip) {
  182. delete t;
  183. return nullptr;
  184. }
  185. MemoryManager::the().unmapRegionsForTask(*t);
  186. MemoryManager::the().mapRegionsForTask(*current);
  187. s_tasks->prepend(t);
  188. system.nprocess++;
  189. #ifdef TASK_DEBUG
  190. kprintf("Task %u (%s) spawned @ %p\n", t->pid(), t->name().characters(), t->m_tss.eip);
  191. #endif
  192. sti();
  193. return t;
  194. }
  195. Task::Task(String&& name, uid_t uid, gid_t gid)
  196. : m_name(move(name))
  197. , m_pid(next_pid++)
  198. , m_uid(uid)
  199. , m_gid(gid)
  200. , m_state(Runnable)
  201. , m_ring(Ring3)
  202. {
  203. m_nextRegion = LinearAddress(0x600000);
  204. memset(&m_tss, 0, sizeof(m_tss));
  205. memset(&m_ldtEntries, 0, sizeof(m_ldtEntries));
  206. allocateLDT();
  207. // Only IF is set when a task boots.
  208. m_tss.eflags = 0x0202;
  209. WORD codeSegment = 0x1b;
  210. WORD dataSegment = 0x23;
  211. WORD stackSegment = dataSegment;
  212. m_tss.ds = dataSegment;
  213. m_tss.es = dataSegment;
  214. m_tss.fs = dataSegment;
  215. m_tss.gs = dataSegment;
  216. m_tss.ss = stackSegment;
  217. m_tss.cs = codeSegment;
  218. m_tss.cr3 = MemoryManager::the().pageDirectoryBase().get();
  219. auto* region = allocateRegion(defaultStackSize, "stack");
  220. ASSERT(region);
  221. m_stackTop = region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8;
  222. m_tss.esp = m_stackTop;
  223. // Set up a separate stack for Ring0.
  224. m_kernelStack = kmalloc(defaultStackSize);
  225. DWORD ring0StackTop = ((DWORD)m_kernelStack + defaultStackSize) & 0xffffff8;
  226. m_tss.ss0 = 0x10;
  227. m_tss.esp0 = ring0StackTop;
  228. // HACK: Ring2 SS in the TSS is the current PID.
  229. m_tss.ss2 = m_pid;
  230. m_farPtr.offset = 0x98765432;
  231. ASSERT(m_pid);
  232. }
  233. Task::Task(void (*e)(), const char* n, IPC::Handle h, RingLevel ring)
  234. : m_name(n)
  235. , m_entry(e)
  236. , m_pid(next_pid++)
  237. , m_handle(h)
  238. , m_state(Runnable)
  239. , m_ring(ring)
  240. {
  241. m_nextRegion = LinearAddress(0x600000);
  242. Region* codeRegion = nullptr;
  243. if (!isRing0()) {
  244. codeRegion = allocateRegion(4096, "code");
  245. ASSERT(codeRegion);
  246. bool success = copyToZone(*codeRegion->zone, (void*)e, PAGE_SIZE);
  247. ASSERT(success);
  248. }
  249. memset(&m_tss, 0, sizeof(m_tss));
  250. memset(&m_ldtEntries, 0, sizeof(m_ldtEntries));
  251. if (ring == Ring3) {
  252. allocateLDT();
  253. }
  254. // Only IF is set when a task boots.
  255. m_tss.eflags = 0x0202;
  256. WORD dataSegment;
  257. WORD stackSegment;
  258. WORD codeSegment;
  259. if (ring == Ring0) {
  260. codeSegment = 0x08;
  261. dataSegment = 0x10;
  262. stackSegment = dataSegment;
  263. } else {
  264. codeSegment = 0x1b;
  265. dataSegment = 0x23;
  266. stackSegment = dataSegment;
  267. }
  268. m_tss.ds = dataSegment;
  269. m_tss.es = dataSegment;
  270. m_tss.fs = dataSegment;
  271. m_tss.gs = dataSegment;
  272. m_tss.ss = stackSegment;
  273. m_tss.cs = codeSegment;
  274. ASSERT((codeSegment & 3) == (stackSegment & 3));
  275. m_tss.cr3 = MemoryManager::the().pageDirectoryBase().get();
  276. if (isRing0()) {
  277. m_tss.eip = (DWORD)m_entry;
  278. } else {
  279. m_tss.eip = codeRegion->linearAddress.get();
  280. }
  281. if (isRing0()) {
  282. // FIXME: This memory is leaked.
  283. // But uh, there's also no kernel task termination, so I guess it's not technically leaked...
  284. dword stackBottom = (dword)kmalloc(defaultStackSize);
  285. m_stackTop = (stackBottom + defaultStackSize) & 0xffffff8;
  286. m_tss.esp = m_stackTop;
  287. } else {
  288. auto* region = allocateRegion(defaultStackSize, "stack");
  289. ASSERT(region);
  290. m_stackTop = region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8;
  291. m_tss.esp = m_stackTop;
  292. }
  293. if (ring == Ring3) {
  294. // Set up a separate stack for Ring0.
  295. // FIXME: Don't leak this stack either.
  296. m_kernelStack = kmalloc(defaultStackSize);
  297. DWORD ring0StackTop = ((DWORD)m_kernelStack + defaultStackSize) & 0xffffff8;
  298. m_tss.ss0 = 0x10;
  299. m_tss.esp0 = ring0StackTop;
  300. }
  301. // HACK: Ring2 SS in the TSS is the current PID.
  302. m_tss.ss2 = m_pid;
  303. m_farPtr.offset = 0x12345678;
  304. // Don't add task 0 (kernel dummy task) to task list.
  305. // FIXME: This doesn't belong in the constructor.
  306. if (m_pid == 0)
  307. return;
  308. // Add it to head of task list (meaning it's next to run too, ATM.)
  309. s_tasks->prepend(this);
  310. system.nprocess++;
  311. #ifdef TASK_DEBUG
  312. kprintf("Task %u (%s) spawned @ %p\n", m_pid, m_name.characters(), m_tss.eip);
  313. #endif
  314. }
  315. Task::~Task()
  316. {
  317. system.nprocess--;
  318. delete [] m_ldtEntries;
  319. m_ldtEntries = nullptr;
  320. if (m_kernelStack) {
  321. kfree(m_kernelStack);
  322. m_kernelStack = nullptr;
  323. }
  324. }
  325. void Task::dumpRegions()
  326. {
  327. kprintf("Task %s(%u) regions:\n", name().characters(), pid());
  328. kprintf("BEGIN END SIZE NAME\n");
  329. for (auto& region : m_regions) {
  330. kprintf("%x -- %x %x %s\n",
  331. region->linearAddress.get(),
  332. region->linearAddress.offset(region->size - 1).get(),
  333. region->size,
  334. region->name.characters());
  335. }
  336. }
  337. void Task::sys$exit(int status)
  338. {
  339. cli();
  340. #ifdef TASK_DEBUG
  341. kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status);
  342. #endif
  343. setState(Exiting);
  344. MemoryManager::the().unmapRegionsForTask(*this);
  345. s_tasks->remove(this);
  346. if (!scheduleNewTask()) {
  347. kprintf("Task::taskDidCrash: Failed to schedule a new task :(\n");
  348. HANG;
  349. }
  350. s_deadTasks->append(this);
  351. switchNow();
  352. }
  353. void Task::taskDidCrash(Task* crashedTask)
  354. {
  355. // NOTE: This is called from an excepton handler, so interrupts are disabled.
  356. crashedTask->setState(Crashing);
  357. crashedTask->dumpRegions();
  358. s_tasks->remove(crashedTask);
  359. MemoryManager::the().unmapRegionsForTask(*crashedTask);
  360. if (!scheduleNewTask()) {
  361. kprintf("Task::taskDidCrash: Failed to schedule a new task :(\n");
  362. HANG;
  363. }
  364. s_deadTasks->append(crashedTask);
  365. switchNow();
  366. }
  367. void Task::doHouseKeeping()
  368. {
  369. Task* next = nullptr;
  370. for (auto* deadTask = s_deadTasks->head(); deadTask; deadTask = next) {
  371. next = deadTask->next();
  372. delete deadTask;
  373. }
  374. s_deadTasks->clear();
  375. }
  376. void yield()
  377. {
  378. if (!current) {
  379. kprintf( "PANIC: yield() with !current" );
  380. HANG;
  381. }
  382. //kprintf("%s<%u> yield()\n", current->name().characters(), current->pid());
  383. cli();
  384. if (!scheduleNewTask()) {
  385. sti();
  386. return;
  387. }
  388. //kprintf("yield() jumping to new task: %x (%s)\n", current->farPtr().selector, current->name().characters());
  389. switchNow();
  390. }
  391. void switchNow()
  392. {
  393. Descriptor& descriptor = getGDTEntry(current->selector());
  394. descriptor.type = 9;
  395. flushGDT();
  396. asm("sti\n"
  397. "ljmp *(%%eax)\n"
  398. ::"a"(&current->farPtr())
  399. );
  400. }
  401. bool scheduleNewTask()
  402. {
  403. if (!current) {
  404. // XXX: The first ever context_switch() goes to the idle task.
  405. // This to setup a reliable place we can return to.
  406. return contextSwitch(Task::kernelTask());
  407. }
  408. #if 0
  409. kprintf("Scheduler choices:\n");
  410. for (auto* task = s_tasks->head(); task; task = task->next()) {
  411. kprintf("%p %u %s\n", task, task->pid(), task->name().characters());
  412. }
  413. #endif
  414. // Check and unblock tasks whose wait conditions have been met.
  415. for (auto* task = s_tasks->head(); task; task = task->next()) {
  416. if (task->state() == Task::BlockedReceive && (task->ipc.msg.isValid() || task->ipc.notifies)) {
  417. task->unblock();
  418. continue;
  419. }
  420. if (task->state() == Task::BlockedSend) {
  421. Task* peer = Task::fromIPCHandle(task->ipc.dst);
  422. if (peer && peer->state() == Task::BlockedReceive && peer->acceptsMessageFrom(*task)) {
  423. task->unblock();
  424. continue;
  425. }
  426. }
  427. if (task->state() == Task::BlockedSleep) {
  428. if (task->wakeupTime() <= system.uptime) {
  429. task->unblock();
  430. continue;
  431. }
  432. }
  433. if (task->state() == Task::BlockedWait) {
  434. if (!Task::fromPID(task->waitee())) {
  435. task->unblock();
  436. continue;
  437. }
  438. }
  439. }
  440. auto* prevHead = s_tasks->head();
  441. for (;;) {
  442. // Move head to tail.
  443. s_tasks->append(s_tasks->removeHead());
  444. auto* task = s_tasks->head();
  445. if (task->state() == Task::Runnable || task->state() == Task::Running) {
  446. //kprintf("switch to %s (%p vs %p)\n", task->name().characters(), task, current);
  447. return contextSwitch(task);
  448. }
  449. if (task == prevHead) {
  450. // Back at task_head, nothing wants to run.
  451. kprintf("Nothing wants to run!\n");
  452. kprintf("PID OWNER STATE NSCHED NAME\n");
  453. for (auto* task = s_tasks->head(); task; task = task->next()) {
  454. kprintf("%w %w:%w %b %w %s\n",
  455. task->pid(),
  456. task->uid(),
  457. task->gid(),
  458. task->state(),
  459. task->timesScheduled(),
  460. task->name().characters());
  461. }
  462. kprintf("Switch to kernel task\n");
  463. return contextSwitch(Task::kernelTask());
  464. }
  465. }
  466. }
  467. static bool contextSwitch(Task* t)
  468. {
  469. //kprintf("c_s to %s (same:%u)\n", t->name().characters(), current == t);
  470. t->setTicksLeft(5);
  471. if (current == t)
  472. return false;
  473. // Some sanity checking to force a crash earlier.
  474. auto csRPL = t->tss().cs & 3;
  475. auto ssRPL = t->tss().ss & 3;
  476. if (csRPL != ssRPL) {
  477. kprintf("Fuckup! Switching from %s(%u) to %s(%u) has RPL mismatch\n",
  478. current->name().characters(), current->pid(),
  479. t->name().characters(), t->pid()
  480. );
  481. kprintf("code: %w:%x\n", t->tss().cs, t->tss().eip);
  482. kprintf(" stk: %w:%x\n", t->tss().ss, t->tss().esp);
  483. ASSERT(csRPL == ssRPL);
  484. }
  485. if (current) {
  486. // If the last task hasn't blocked (still marked as running),
  487. // mark it as runnable for the next round.
  488. if (current->state() == Task::Running)
  489. current->setState(Task::Runnable);
  490. bool success = MemoryManager::the().unmapRegionsForTask(*current);
  491. ASSERT(success);
  492. }
  493. bool success = MemoryManager::the().mapRegionsForTask(*t);
  494. ASSERT(success);
  495. current = t;
  496. t->setState(Task::Running);
  497. if (!t->selector())
  498. t->setSelector(allocateGDTEntry());
  499. auto& tssDescriptor = getGDTEntry(t->selector());
  500. tssDescriptor.limit_hi = 0;
  501. tssDescriptor.limit_lo = 0xFFFF;
  502. tssDescriptor.base_lo = (DWORD)(&t->tss()) & 0xFFFF;
  503. tssDescriptor.base_hi = ((DWORD)(&t->tss()) >> 16) & 0xFF;
  504. tssDescriptor.base_hi2 = ((DWORD)(&t->tss()) >> 24) & 0xFF;
  505. tssDescriptor.dpl = 0;
  506. tssDescriptor.segment_present = 1;
  507. tssDescriptor.granularity = 1;
  508. tssDescriptor.zero = 0;
  509. tssDescriptor.operation_size = 1;
  510. tssDescriptor.descriptor_type = 0;
  511. tssDescriptor.type = 11; // Busy TSS
  512. flushGDT();
  513. t->didSchedule();
  514. return true;
  515. }
  516. Task* Task::fromPID(pid_t pid)
  517. {
  518. for (auto* task = s_tasks->head(); task; task = task->next()) {
  519. if (task->pid() == pid)
  520. return task;
  521. }
  522. return nullptr;
  523. }
  524. Task* Task::fromIPCHandle(IPC::Handle handle)
  525. {
  526. for (auto* task = s_tasks->head(); task; task = task->next()) {
  527. if (task->handle() == handle)
  528. return task;
  529. }
  530. return nullptr;
  531. }
  532. FileHandle* Task::fileHandleIfExists(int fd)
  533. {
  534. if (fd < 0)
  535. return nullptr;
  536. if ((unsigned)fd < m_fileHandles.size())
  537. return m_fileHandles[fd].ptr();
  538. return nullptr;
  539. }
  540. int Task::sys$seek(int fd, int offset)
  541. {
  542. auto* handle = fileHandleIfExists(fd);
  543. if (!handle)
  544. return -1;
  545. return handle->seek(offset, SEEK_SET);
  546. }
  547. ssize_t Task::sys$read(int fd, void* outbuf, size_t nread)
  548. {
  549. Task::checkSanity("Task::sys$read");
  550. #ifdef DEBUG_IO
  551. kprintf("Task::sys$read: called(%d, %p, %u)\n", fd, outbuf, nread);
  552. #endif
  553. auto* handle = fileHandleIfExists(fd);
  554. #ifdef DEBUG_IO
  555. kprintf("Task::sys$read: handle=%p\n", handle);
  556. #endif
  557. if (!handle) {
  558. kprintf("Task::sys$read: handle not found :(\n");
  559. return -1;
  560. }
  561. #ifdef DEBUG_IO
  562. kprintf("call read on handle=%p\n", handle);
  563. #endif
  564. nread = handle->read((byte*)outbuf, nread);
  565. #ifdef DEBUG_IO
  566. kprintf("Task::sys$read: nread=%u\n", nread);
  567. #endif
  568. return nread;
  569. }
  570. int Task::sys$close(int fd)
  571. {
  572. auto* handle = fileHandleIfExists(fd);
  573. if (!handle)
  574. return -1;
  575. // FIXME: Implement.
  576. return 0;
  577. }
  578. int Task::sys$open(const char* path, size_t pathLength)
  579. {
  580. Task::checkSanity("sys$open");
  581. #ifdef DEBUG_IO
  582. kprintf("Task::sys$open(): PID=%u, path=%s {%u}\n", m_pid, path, pathLength);
  583. #endif
  584. auto* handle = current->openFile(String(path, pathLength));
  585. if (handle)
  586. return handle->fd();
  587. return -1;
  588. }
  589. FileHandle* Task::openFile(String&& path)
  590. {
  591. auto handle = VirtualFileSystem::the().open(move(path));
  592. if (!handle) {
  593. #ifdef DEBUG_IO
  594. kprintf("vfs::open() failed\n");
  595. #endif
  596. return nullptr;
  597. }
  598. handle->setFD(m_fileHandles.size());
  599. #ifdef DEBUG_IO
  600. kprintf("vfs::open() worked! handle=%p, fd=%d\n", handle.ptr(), handle->fd());
  601. #endif
  602. m_fileHandles.append(move(handle)); // FIXME: allow non-move Vector::append
  603. return m_fileHandles.last().ptr();
  604. }
  605. int Task::sys$kill(pid_t pid, int sig)
  606. {
  607. (void) sig;
  608. if (pid == 0) {
  609. // FIXME: Send to same-group processes.
  610. ASSERT(pid != 0);
  611. }
  612. if (pid == -1) {
  613. // FIXME: Send to all processes.
  614. ASSERT(pid != -1);
  615. }
  616. ASSERT_NOT_REACHED();
  617. Task* peer = Task::fromPID(pid);
  618. if (!peer) {
  619. // errno = ESRCH;
  620. return -1;
  621. }
  622. #if 0
  623. send(peer->handle(), IPC::Message(SYS_KILL, DataBuffer::copy((BYTE*)&sig, sizeof(sig))));
  624. IPC::Message response = receive(peer->handle());
  625. return *(int*)response.data();
  626. #endif
  627. return -1;
  628. }
  629. uid_t Task::sys$getuid()
  630. {
  631. return m_uid;
  632. }
  633. gid_t Task::sys$getgid()
  634. {
  635. return m_gid;
  636. }
  637. pid_t Task::sys$getpid()
  638. {
  639. return m_pid;
  640. }
  641. pid_t Task::sys$waitpid(pid_t waitee)
  642. {
  643. if (!Task::fromPID(waitee))
  644. return -1;
  645. m_waitee = waitee;
  646. block(BlockedWait);
  647. yield();
  648. return m_waitee;
  649. }
  650. bool Task::acceptsMessageFrom(Task& peer)
  651. {
  652. return !ipc.msg.isValid() && (ipc.src == IPC::Handle::Any || ipc.src == peer.handle());
  653. }
  654. void Task::unblock()
  655. {
  656. ASSERT(m_state != Task::Runnable && m_state != Task::Running);
  657. system.nblocked--;
  658. m_state = Task::Runnable;
  659. }
  660. void Task::block(Task::State state)
  661. {
  662. ASSERT(current->state() == Task::Running);
  663. system.nblocked++;
  664. current->setState(state);
  665. }
  666. void block(Task::State state)
  667. {
  668. current->block(state);
  669. yield();
  670. }
  671. void sleep(DWORD ticks)
  672. {
  673. ASSERT(current->state() == Task::Running);
  674. current->setWakeupTime(system.uptime + ticks);
  675. current->block(Task::BlockedSleep);
  676. yield();
  677. }
  678. void Task::sys$sleep(DWORD ticks)
  679. {
  680. ASSERT(this == current);
  681. sleep(ticks);
  682. }
  683. Task* Task::kernelTask()
  684. {
  685. ASSERT(s_kernelTask);
  686. return s_kernelTask;
  687. }
  688. void Task::setError(int error)
  689. {
  690. m_error = error;
  691. }
  692. Task::Region::Region(LinearAddress a, size_t s, RetainPtr<Zone>&& z, String&& n)
  693. : linearAddress(a)
  694. , size(s)
  695. , zone(move(z))
  696. , name(move(n))
  697. {
  698. }
  699. Task::Region::~Region()
  700. {
  701. }