Thread.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584
  1. #include <Kernel/FileSystem/FileDescription.h>
  2. #include <Kernel/Process.h>
  3. #include <Kernel/Scheduler.h>
  4. #include <Kernel/Thread.h>
  5. #include <Kernel/VM/MemoryManager.h>
  6. #include <LibC/signal_numbers.h>
  7. //#define SIGNAL_DEBUG
  8. HashTable<Thread*>& thread_table()
  9. {
  10. ASSERT_INTERRUPTS_DISABLED();
  11. static HashTable<Thread*>* table;
  12. if (!table)
  13. table = new HashTable<Thread*>;
  14. return *table;
  15. }
  16. InlineLinkedList<Thread>* g_runnable_threads;
  17. InlineLinkedList<Thread>* g_nonrunnable_threads;
  18. static const u32 default_kernel_stack_size = 65536;
  19. static const u32 default_userspace_stack_size = 65536;
  20. Thread::Thread(Process& process)
  21. : m_process(process)
  22. , m_tid(process.m_next_tid++)
  23. {
  24. dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid());
  25. set_default_signal_dispositions();
  26. m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  27. memset(&m_tss, 0, sizeof(m_tss));
  28. // Only IF is set when a process boots.
  29. m_tss.eflags = 0x0202;
  30. u16 cs, ds, ss;
  31. if (m_process.is_ring0()) {
  32. cs = 0x08;
  33. ds = 0x10;
  34. ss = 0x10;
  35. } else {
  36. cs = 0x1b;
  37. ds = 0x23;
  38. ss = 0x23;
  39. }
  40. m_tss.ds = ds;
  41. m_tss.es = ds;
  42. m_tss.fs = ds;
  43. m_tss.gs = ds;
  44. m_tss.ss = ss;
  45. m_tss.cs = cs;
  46. m_tss.cr3 = m_process.page_directory().cr3();
  47. if (m_process.is_ring0()) {
  48. // FIXME: This memory is leaked.
  49. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  50. m_kernel_stack_base = (u32)kmalloc_eternal(default_kernel_stack_size);
  51. m_tss.esp = (m_kernel_stack_base + default_kernel_stack_size) & 0xfffffff8u;
  52. } else {
  53. // Ring3 processes need a separate stack for Ring0.
  54. m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid));
  55. m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
  56. m_tss.ss0 = 0x10;
  57. m_tss.esp0 = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
  58. }
  59. // HACK: Ring2 SS in the TSS is the current PID.
  60. m_tss.ss2 = m_process.pid();
  61. m_far_ptr.offset = 0x98765432;
  62. if (m_process.pid() != 0) {
  63. InterruptDisabler disabler;
  64. thread_table().set(this);
  65. set_thread_list(g_nonrunnable_threads);
  66. }
  67. }
  68. Thread::~Thread()
  69. {
  70. dbgprintf("~Thread{%p}\n", this);
  71. kfree_aligned(m_fpu_state);
  72. {
  73. InterruptDisabler disabler;
  74. if (m_thread_list)
  75. m_thread_list->remove(this);
  76. thread_table().remove(this);
  77. }
  78. if (g_last_fpu_thread == this)
  79. g_last_fpu_thread = nullptr;
  80. if (selector())
  81. gdt_free_entry(selector());
  82. }
  83. void Thread::unblock()
  84. {
  85. m_blocker = nullptr;
  86. if (current == this) {
  87. set_state(Thread::Running);
  88. return;
  89. }
  90. ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
  91. set_state(Thread::Runnable);
  92. }
  93. void Thread::block_until(const char* state_string, Function<bool()>&& condition)
  94. {
  95. m_blocker = make<ConditionBlocker>(state_string, condition);
  96. block_helper();
  97. Scheduler::yield();
  98. }
  99. void Thread::block_helper()
  100. {
  101. bool did_unlock = process().big_lock().unlock_if_locked();
  102. ASSERT(state() == Thread::Running);
  103. m_was_interrupted_while_blocked = false;
  104. set_state(Thread::Blocked);
  105. Scheduler::yield();
  106. if (did_unlock)
  107. process().big_lock().lock();
  108. }
  109. void Thread::block(Blocker& blocker)
  110. {
  111. m_blocker = &blocker;
  112. block_helper();
  113. }
  114. u64 Thread::sleep(u32 ticks)
  115. {
  116. ASSERT(state() == Thread::Running);
  117. u64 wakeup_time = g_uptime + ticks;
  118. current->block(*new Thread::SleepBlocker(wakeup_time));
  119. return wakeup_time;
  120. }
  121. const char* Thread::state_string() const
  122. {
  123. switch (state()) {
  124. case Thread::Invalid:
  125. return "Invalid";
  126. case Thread::Runnable:
  127. return "Runnable";
  128. case Thread::Running:
  129. return "Running";
  130. case Thread::Dying:
  131. return "Dying";
  132. case Thread::Dead:
  133. return "Dead";
  134. case Thread::Stopped:
  135. return "Stopped";
  136. case Thread::Skip1SchedulerPass:
  137. return "Skip1";
  138. case Thread::Skip0SchedulerPasses:
  139. return "Skip0";
  140. case Thread::Blocked:
  141. ASSERT(m_blocker);
  142. return m_blocker->state_string();
  143. }
  144. kprintf("to_string(Thread::State): Invalid state: %u\n", state());
  145. ASSERT_NOT_REACHED();
  146. return nullptr;
  147. }
  148. void Thread::finalize()
  149. {
  150. dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
  151. set_state(Thread::State::Dead);
  152. m_blocker = nullptr;
  153. if (this == &m_process.main_thread())
  154. m_process.finalize();
  155. }
  156. void Thread::finalize_dying_threads()
  157. {
  158. Vector<Thread*, 32> dying_threads;
  159. {
  160. InterruptDisabler disabler;
  161. for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
  162. dying_threads.append(&thread);
  163. });
  164. }
  165. for (auto* thread : dying_threads)
  166. thread->finalize();
  167. }
  168. bool Thread::tick()
  169. {
  170. ++m_ticks;
  171. if (tss().cs & 3)
  172. ++m_process.m_ticks_in_user;
  173. else
  174. ++m_process.m_ticks_in_kernel;
  175. return --m_ticks_left;
  176. }
  177. void Thread::send_signal(u8 signal, Process* sender)
  178. {
  179. ASSERT(signal < 32);
  180. InterruptDisabler disabler;
  181. // FIXME: Figure out what to do for masked signals. Should we also ignore them here?
  182. if (should_ignore_signal(signal)) {
  183. dbg() << "signal " << signal << " was ignored by " << process();
  184. return;
  185. }
  186. if (sender)
  187. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
  188. else
  189. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
  190. m_pending_signals |= 1 << signal;
  191. }
  192. bool Thread::has_unmasked_pending_signals() const
  193. {
  194. return m_pending_signals & ~m_signal_mask;
  195. }
  196. ShouldUnblockThread Thread::dispatch_one_pending_signal()
  197. {
  198. ASSERT_INTERRUPTS_DISABLED();
  199. u32 signal_candidates = m_pending_signals & ~m_signal_mask;
  200. ASSERT(signal_candidates);
  201. u8 signal = 0;
  202. for (; signal < 32; ++signal) {
  203. if (signal_candidates & (1 << signal)) {
  204. break;
  205. }
  206. }
  207. return dispatch_signal(signal);
  208. }
  209. enum class DefaultSignalAction {
  210. Terminate,
  211. Ignore,
  212. DumpCore,
  213. Stop,
  214. Continue,
  215. };
  216. DefaultSignalAction default_signal_action(u8 signal)
  217. {
  218. ASSERT(signal && signal < NSIG);
  219. switch (signal) {
  220. case SIGHUP:
  221. case SIGINT:
  222. case SIGKILL:
  223. case SIGPIPE:
  224. case SIGALRM:
  225. case SIGUSR1:
  226. case SIGUSR2:
  227. case SIGVTALRM:
  228. case SIGSTKFLT:
  229. case SIGIO:
  230. case SIGPROF:
  231. case SIGTERM:
  232. case SIGPWR:
  233. return DefaultSignalAction::Terminate;
  234. case SIGCHLD:
  235. case SIGURG:
  236. case SIGWINCH:
  237. return DefaultSignalAction::Ignore;
  238. case SIGQUIT:
  239. case SIGILL:
  240. case SIGTRAP:
  241. case SIGABRT:
  242. case SIGBUS:
  243. case SIGFPE:
  244. case SIGSEGV:
  245. case SIGXCPU:
  246. case SIGXFSZ:
  247. case SIGSYS:
  248. return DefaultSignalAction::DumpCore;
  249. case SIGCONT:
  250. return DefaultSignalAction::Continue;
  251. case SIGSTOP:
  252. case SIGTSTP:
  253. case SIGTTIN:
  254. case SIGTTOU:
  255. return DefaultSignalAction::Stop;
  256. }
  257. ASSERT_NOT_REACHED();
  258. }
  259. bool Thread::should_ignore_signal(u8 signal) const
  260. {
  261. ASSERT(signal < 32);
  262. auto& action = m_signal_action_data[signal];
  263. if (action.handler_or_sigaction.is_null())
  264. return default_signal_action(signal) == DefaultSignalAction::Ignore;
  265. if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
  266. return true;
  267. return false;
  268. }
  269. ShouldUnblockThread Thread::dispatch_signal(u8 signal)
  270. {
  271. ASSERT_INTERRUPTS_DISABLED();
  272. ASSERT(signal < 32);
  273. #ifdef SIGNAL_DEBUG
  274. kprintf("dispatch_signal %s(%u) <- %u\n", process().name().characters(), pid(), signal);
  275. #endif
  276. auto& action = m_signal_action_data[signal];
  277. // FIXME: Implement SA_SIGINFO signal handlers.
  278. ASSERT(!(action.flags & SA_SIGINFO));
  279. // Mark this signal as handled.
  280. m_pending_signals &= ~(1 << signal);
  281. if (signal == SIGSTOP) {
  282. set_state(Stopped);
  283. return ShouldUnblockThread::No;
  284. }
  285. if (signal == SIGCONT && state() == Stopped)
  286. set_state(Runnable);
  287. auto handler_vaddr = action.handler_or_sigaction;
  288. if (handler_vaddr.is_null()) {
  289. switch (default_signal_action(signal)) {
  290. case DefaultSignalAction::Stop:
  291. set_state(Stopped);
  292. return ShouldUnblockThread::No;
  293. case DefaultSignalAction::DumpCore:
  294. case DefaultSignalAction::Terminate:
  295. m_process.terminate_due_to_signal(signal);
  296. return ShouldUnblockThread::No;
  297. case DefaultSignalAction::Ignore:
  298. ASSERT_NOT_REACHED();
  299. case DefaultSignalAction::Continue:
  300. return ShouldUnblockThread::Yes;
  301. }
  302. ASSERT_NOT_REACHED();
  303. }
  304. if (handler_vaddr.as_ptr() == SIG_IGN) {
  305. #ifdef SIGNAL_DEBUG
  306. kprintf("%s(%u) ignored signal %u\n", process().name().characters(), pid(), signal);
  307. #endif
  308. return ShouldUnblockThread::Yes;
  309. }
  310. u32 old_signal_mask = m_signal_mask;
  311. u32 new_signal_mask = action.mask;
  312. if (action.flags & SA_NODEFER)
  313. new_signal_mask &= ~(1 << signal);
  314. else
  315. new_signal_mask |= 1 << signal;
  316. m_signal_mask |= new_signal_mask;
  317. Scheduler::prepare_to_modify_tss(*this);
  318. u16 ret_cs = m_tss.cs;
  319. u32 ret_eip = m_tss.eip;
  320. u32 ret_eflags = m_tss.eflags;
  321. bool interrupting_in_kernel = (ret_cs & 3) == 0;
  322. ProcessPagingScope paging_scope(m_process);
  323. m_process.create_signal_trampolines_if_needed();
  324. if (interrupting_in_kernel) {
  325. #ifdef SIGNAL_DEBUG
  326. kprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", process().name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
  327. #endif
  328. ASSERT(is_blocked());
  329. m_tss_to_resume_kernel = make<TSS32>(m_tss);
  330. #ifdef SIGNAL_DEBUG
  331. kprintf("resume tss pc: %w:%x stack: %w:%x flags: %x cr3: %x\n", m_tss_to_resume_kernel->cs, m_tss_to_resume_kernel->eip, m_tss_to_resume_kernel->ss, m_tss_to_resume_kernel->esp, m_tss_to_resume_kernel->eflags, m_tss_to_resume_kernel->cr3);
  332. #endif
  333. if (!m_signal_stack_user_region) {
  334. m_signal_stack_user_region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("User Signal Stack (Thread %d)", m_tid));
  335. ASSERT(m_signal_stack_user_region);
  336. }
  337. if (!m_kernel_stack_for_signal_handler_region)
  338. m_kernel_stack_for_signal_handler_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Signal Stack (Thread %d)", m_tid));
  339. m_tss.ss = 0x23;
  340. m_tss.esp = m_signal_stack_user_region->vaddr().offset(default_userspace_stack_size).get();
  341. m_tss.ss0 = 0x10;
  342. m_tss.esp0 = m_kernel_stack_for_signal_handler_region->vaddr().offset(default_kernel_stack_size).get();
  343. push_value_on_stack(0);
  344. } else {
  345. push_value_on_stack(ret_eip);
  346. push_value_on_stack(ret_eflags);
  347. // PUSHA
  348. u32 old_esp = m_tss.esp;
  349. push_value_on_stack(m_tss.eax);
  350. push_value_on_stack(m_tss.ecx);
  351. push_value_on_stack(m_tss.edx);
  352. push_value_on_stack(m_tss.ebx);
  353. push_value_on_stack(old_esp);
  354. push_value_on_stack(m_tss.ebp);
  355. push_value_on_stack(m_tss.esi);
  356. push_value_on_stack(m_tss.edi);
  357. // Align the stack.
  358. m_tss.esp -= 12;
  359. }
  360. // PUSH old_signal_mask
  361. push_value_on_stack(old_signal_mask);
  362. m_tss.cs = 0x1b;
  363. m_tss.ds = 0x23;
  364. m_tss.es = 0x23;
  365. m_tss.fs = 0x23;
  366. m_tss.gs = 0x23;
  367. m_tss.eip = handler_vaddr.get();
  368. // FIXME: Should we worry about the stack being 16 byte aligned when entering a signal handler?
  369. push_value_on_stack(signal);
  370. if (interrupting_in_kernel)
  371. push_value_on_stack(m_process.m_return_to_ring0_from_signal_trampoline.get());
  372. else
  373. push_value_on_stack(m_process.m_return_to_ring3_from_signal_trampoline.get());
  374. ASSERT((m_tss.esp % 16) == 0);
  375. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  376. set_state(Skip1SchedulerPass);
  377. #ifdef SIGNAL_DEBUG
  378. kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", process().name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
  379. #endif
  380. return ShouldUnblockThread::Yes;
  381. }
  382. void Thread::set_default_signal_dispositions()
  383. {
  384. // FIXME: Set up all the right default actions. See signal(7).
  385. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  386. m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  387. m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  388. }
  389. void Thread::push_value_on_stack(u32 value)
  390. {
  391. m_tss.esp -= 4;
  392. u32* stack_ptr = (u32*)m_tss.esp;
  393. *stack_ptr = value;
  394. }
  395. void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
  396. {
  397. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)");
  398. ASSERT(region);
  399. m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
  400. char* stack_base = (char*)region->vaddr().get();
  401. int argc = arguments.size();
  402. char** argv = (char**)stack_base;
  403. char** env = argv + arguments.size() + 1;
  404. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  405. size_t total_blob_size = 0;
  406. for (auto& a : arguments)
  407. total_blob_size += a.length() + 1;
  408. for (auto& e : environment)
  409. total_blob_size += e.length() + 1;
  410. size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
  411. // FIXME: It would be better if this didn't make us panic.
  412. ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
  413. for (int i = 0; i < arguments.size(); ++i) {
  414. argv[i] = bufptr;
  415. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  416. bufptr += arguments[i].length();
  417. *(bufptr++) = '\0';
  418. }
  419. argv[arguments.size()] = nullptr;
  420. for (int i = 0; i < environment.size(); ++i) {
  421. env[i] = bufptr;
  422. memcpy(bufptr, environment[i].characters(), environment[i].length());
  423. bufptr += environment[i].length();
  424. *(bufptr++) = '\0';
  425. }
  426. env[environment.size()] = nullptr;
  427. // NOTE: The stack needs to be 16-byte aligned.
  428. push_value_on_stack((u32)env);
  429. push_value_on_stack((u32)argv);
  430. push_value_on_stack((u32)argc);
  431. push_value_on_stack(0);
  432. }
  433. void Thread::make_userspace_stack_for_secondary_thread(void* argument)
  434. {
  435. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("Stack (Thread %d)", tid()));
  436. ASSERT(region);
  437. m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
  438. // NOTE: The stack needs to be 16-byte aligned.
  439. push_value_on_stack((u32)argument);
  440. push_value_on_stack(0);
  441. }
  442. Thread* Thread::clone(Process& process)
  443. {
  444. auto* clone = new Thread(process);
  445. memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  446. clone->m_signal_mask = m_signal_mask;
  447. clone->m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  448. memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
  449. clone->m_has_used_fpu = m_has_used_fpu;
  450. return clone;
  451. }
  452. KResult Thread::wait_for_connect(FileDescription& description)
  453. {
  454. ASSERT(description.is_socket());
  455. auto& socket = *description.socket();
  456. if (socket.is_connected())
  457. return KSuccess;
  458. block(*new Thread::ConnectBlocker(description));
  459. Scheduler::yield();
  460. if (!socket.is_connected())
  461. return KResult(-ECONNREFUSED);
  462. return KSuccess;
  463. }
  464. void Thread::initialize()
  465. {
  466. g_runnable_threads = new InlineLinkedList<Thread>;
  467. g_nonrunnable_threads = new InlineLinkedList<Thread>;
  468. Scheduler::initialize();
  469. }
  470. Vector<Thread*> Thread::all_threads()
  471. {
  472. Vector<Thread*> threads;
  473. InterruptDisabler disabler;
  474. threads.ensure_capacity(thread_table().size());
  475. for (auto* thread : thread_table())
  476. threads.unchecked_append(thread);
  477. return threads;
  478. }
  479. bool Thread::is_thread(void* ptr)
  480. {
  481. ASSERT_INTERRUPTS_DISABLED();
  482. return thread_table().contains((Thread*)ptr);
  483. }
  484. void Thread::set_thread_list(InlineLinkedList<Thread>* thread_list)
  485. {
  486. ASSERT_INTERRUPTS_DISABLED();
  487. ASSERT(pid() != 0);
  488. if (m_thread_list == thread_list)
  489. return;
  490. if (m_thread_list)
  491. m_thread_list->remove(this);
  492. if (thread_list)
  493. thread_list->append(this);
  494. m_thread_list = thread_list;
  495. }
  496. void Thread::set_state(State new_state)
  497. {
  498. InterruptDisabler disabler;
  499. m_state = new_state;
  500. if (m_process.pid() != 0)
  501. set_thread_list(thread_list_for_state(new_state));
  502. }