Thread.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651
  1. #include <AK/ELF/ELFLoader.h>
  2. #include <AK/StringBuilder.h>
  3. #include <Kernel/FileSystem/FileDescription.h>
  4. #include <Kernel/Process.h>
  5. #include <Kernel/Scheduler.h>
  6. #include <Kernel/Thread.h>
  7. #include <Kernel/VM/MemoryManager.h>
  8. #include <LibC/signal_numbers.h>
  9. //#define SIGNAL_DEBUG
  10. u16 thread_specific_selector()
  11. {
  12. static u16 selector;
  13. if (!selector) {
  14. selector = gdt_alloc_entry();
  15. auto& descriptor = get_gdt_entry(selector);
  16. descriptor.dpl = 3;
  17. descriptor.segment_present = 1;
  18. descriptor.granularity = 0;
  19. descriptor.zero = 0;
  20. descriptor.operation_size = 1;
  21. descriptor.descriptor_type = 1;
  22. descriptor.type = 2;
  23. }
  24. return selector;
  25. }
  26. Descriptor& thread_specific_descriptor()
  27. {
  28. return get_gdt_entry(thread_specific_selector());
  29. }
  30. HashTable<Thread*>& thread_table()
  31. {
  32. ASSERT_INTERRUPTS_DISABLED();
  33. static HashTable<Thread*>* table;
  34. if (!table)
  35. table = new HashTable<Thread*>;
  36. return *table;
  37. }
  38. Thread::Thread(Process& process)
  39. : m_process(process)
  40. , m_tid(process.m_next_tid++)
  41. {
  42. dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid());
  43. set_default_signal_dispositions();
  44. m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
  45. memset(m_fpu_state, 0, sizeof(FPUState));
  46. memset(&m_tss, 0, sizeof(m_tss));
  47. // Only IF is set when a process boots.
  48. m_tss.eflags = 0x0202;
  49. u16 cs, ds, ss, gs;
  50. if (m_process.is_ring0()) {
  51. cs = 0x08;
  52. ds = 0x10;
  53. ss = 0x10;
  54. gs = 0;
  55. } else {
  56. cs = 0x1b;
  57. ds = 0x23;
  58. ss = 0x23;
  59. gs = thread_specific_selector() | 3;
  60. }
  61. m_tss.ds = ds;
  62. m_tss.es = ds;
  63. m_tss.fs = ds;
  64. m_tss.gs = gs;
  65. m_tss.ss = ss;
  66. m_tss.cs = cs;
  67. m_tss.cr3 = m_process.page_directory().cr3();
  68. if (m_process.is_ring0()) {
  69. // FIXME: This memory is leaked.
  70. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  71. m_kernel_stack_base = (u32)kmalloc_eternal(default_kernel_stack_size);
  72. m_kernel_stack_top = (m_kernel_stack_base + default_kernel_stack_size) & 0xfffffff8u;
  73. m_tss.esp = m_kernel_stack_top;
  74. } else {
  75. // Ring3 processes need a separate stack for Ring0.
  76. m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid));
  77. m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
  78. m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
  79. m_tss.ss0 = 0x10;
  80. m_tss.esp0 = m_kernel_stack_top;
  81. }
  82. // HACK: Ring2 SS in the TSS is the current PID.
  83. m_tss.ss2 = m_process.pid();
  84. m_far_ptr.offset = 0x98765432;
  85. if (m_process.pid() != 0) {
  86. InterruptDisabler disabler;
  87. thread_table().set(this);
  88. Scheduler::init_thread(*this);
  89. }
  90. }
  91. Thread::~Thread()
  92. {
  93. dbgprintf("~Thread{%p}\n", this);
  94. kfree_aligned(m_fpu_state);
  95. {
  96. InterruptDisabler disabler;
  97. thread_table().remove(this);
  98. }
  99. if (g_last_fpu_thread == this)
  100. g_last_fpu_thread = nullptr;
  101. if (selector())
  102. gdt_free_entry(selector());
  103. if (m_userspace_stack_region)
  104. m_process.deallocate_region(*m_userspace_stack_region);
  105. }
  106. void Thread::unblock()
  107. {
  108. if (current == this) {
  109. set_state(Thread::Running);
  110. return;
  111. }
  112. ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
  113. set_state(Thread::Runnable);
  114. }
  115. void Thread::block_helper()
  116. {
  117. // This function mostly exists to avoid circular header dependencies. If
  118. // anything needs adding, think carefully about whether it belongs in
  119. // block() instead. Remember that we're unlocking here, so be very careful
  120. // about altering any state once we're unlocked!
  121. bool did_unlock = process().big_lock().unlock_if_locked();
  122. Scheduler::yield();
  123. if (did_unlock)
  124. process().big_lock().lock();
  125. }
  126. u64 Thread::sleep(u32 ticks)
  127. {
  128. ASSERT(state() == Thread::Running);
  129. u64 wakeup_time = g_uptime + ticks;
  130. auto ret = current->block<Thread::SleepBlocker>(wakeup_time);
  131. if (wakeup_time > g_uptime) {
  132. ASSERT(ret == Thread::BlockResult::InterruptedBySignal);
  133. }
  134. return wakeup_time;
  135. }
  136. const char* Thread::state_string() const
  137. {
  138. switch (state()) {
  139. case Thread::Invalid:
  140. return "Invalid";
  141. case Thread::Runnable:
  142. return "Runnable";
  143. case Thread::Running:
  144. return "Running";
  145. case Thread::Dying:
  146. return "Dying";
  147. case Thread::Dead:
  148. return "Dead";
  149. case Thread::Stopped:
  150. return "Stopped";
  151. case Thread::Skip1SchedulerPass:
  152. return "Skip1";
  153. case Thread::Skip0SchedulerPasses:
  154. return "Skip0";
  155. case Thread::Blocked:
  156. ASSERT(m_blocker != nullptr);
  157. return m_blocker->state_string();
  158. }
  159. kprintf("Thread::state_string(): Invalid state: %u\n", state());
  160. ASSERT_NOT_REACHED();
  161. return nullptr;
  162. }
  163. void Thread::finalize()
  164. {
  165. ASSERT(current == g_finalizer);
  166. dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
  167. set_state(Thread::State::Dead);
  168. if (m_dump_backtrace_on_finalization)
  169. dbg() << backtrace_impl();
  170. if (this == &m_process.main_thread()) {
  171. m_process.finalize();
  172. return;
  173. }
  174. delete this;
  175. }
  176. void Thread::finalize_dying_threads()
  177. {
  178. ASSERT(current == g_finalizer);
  179. Vector<Thread*, 32> dying_threads;
  180. {
  181. InterruptDisabler disabler;
  182. for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
  183. dying_threads.append(&thread);
  184. return IterationDecision::Continue;
  185. });
  186. }
  187. for (auto* thread : dying_threads)
  188. thread->finalize();
  189. }
  190. bool Thread::tick()
  191. {
  192. ++m_ticks;
  193. if (tss().cs & 3)
  194. ++m_process.m_ticks_in_user;
  195. else
  196. ++m_process.m_ticks_in_kernel;
  197. return --m_ticks_left;
  198. }
  199. void Thread::send_signal(u8 signal, Process* sender)
  200. {
  201. ASSERT(signal < 32);
  202. InterruptDisabler disabler;
  203. // FIXME: Figure out what to do for masked signals. Should we also ignore them here?
  204. if (should_ignore_signal(signal)) {
  205. dbg() << "signal " << signal << " was ignored by " << process();
  206. return;
  207. }
  208. if (sender)
  209. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
  210. else
  211. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
  212. m_pending_signals |= 1 << (signal - 1);
  213. }
  214. // Certain exceptions, such as SIGSEGV and SIGILL, put a
  215. // thread into a state where the signal handler must be
  216. // invoked immediately, otherwise it will continue to fault.
  217. // This function should be used in an exception handler to
  218. // ensure that when the thread resumes, it's executing in
  219. // the appropriate signal handler.
  220. void Thread::send_urgent_signal_to_self(u8 signal)
  221. {
  222. // FIXME: because of a bug in dispatch_signal we can't
  223. // setup a signal while we are the current thread. Because of
  224. // this we use a work-around where we send the signal and then
  225. // block, allowing the scheduler to properly dispatch the signal
  226. // before the thread is next run.
  227. send_signal(signal, &process());
  228. (void)block<SemiPermanentBlocker>(SemiPermanentBlocker::Reason::Signal);
  229. }
  230. bool Thread::has_unmasked_pending_signals() const
  231. {
  232. return m_pending_signals & ~m_signal_mask;
  233. }
  234. ShouldUnblockThread Thread::dispatch_one_pending_signal()
  235. {
  236. ASSERT_INTERRUPTS_DISABLED();
  237. u32 signal_candidates = m_pending_signals & ~m_signal_mask;
  238. ASSERT(signal_candidates);
  239. u8 signal = 1;
  240. for (; signal < 32; ++signal) {
  241. if (signal_candidates & (1 << (signal - 1))) {
  242. break;
  243. }
  244. }
  245. return dispatch_signal(signal);
  246. }
  247. enum class DefaultSignalAction {
  248. Terminate,
  249. Ignore,
  250. DumpCore,
  251. Stop,
  252. Continue,
  253. };
  254. DefaultSignalAction default_signal_action(u8 signal)
  255. {
  256. ASSERT(signal && signal < NSIG);
  257. switch (signal) {
  258. case SIGHUP:
  259. case SIGINT:
  260. case SIGKILL:
  261. case SIGPIPE:
  262. case SIGALRM:
  263. case SIGUSR1:
  264. case SIGUSR2:
  265. case SIGVTALRM:
  266. case SIGSTKFLT:
  267. case SIGIO:
  268. case SIGPROF:
  269. case SIGTERM:
  270. case SIGPWR:
  271. return DefaultSignalAction::Terminate;
  272. case SIGCHLD:
  273. case SIGURG:
  274. case SIGWINCH:
  275. return DefaultSignalAction::Ignore;
  276. case SIGQUIT:
  277. case SIGILL:
  278. case SIGTRAP:
  279. case SIGABRT:
  280. case SIGBUS:
  281. case SIGFPE:
  282. case SIGSEGV:
  283. case SIGXCPU:
  284. case SIGXFSZ:
  285. case SIGSYS:
  286. return DefaultSignalAction::DumpCore;
  287. case SIGCONT:
  288. return DefaultSignalAction::Continue;
  289. case SIGSTOP:
  290. case SIGTSTP:
  291. case SIGTTIN:
  292. case SIGTTOU:
  293. return DefaultSignalAction::Stop;
  294. }
  295. ASSERT_NOT_REACHED();
  296. }
  297. bool Thread::should_ignore_signal(u8 signal) const
  298. {
  299. ASSERT(signal < 32);
  300. auto& action = m_signal_action_data[signal];
  301. if (action.handler_or_sigaction.is_null())
  302. return default_signal_action(signal) == DefaultSignalAction::Ignore;
  303. if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
  304. return true;
  305. return false;
  306. }
  307. bool Thread::has_signal_handler(u8 signal) const
  308. {
  309. ASSERT(signal < 32);
  310. auto& action = m_signal_action_data[signal];
  311. return !action.handler_or_sigaction.is_null();
  312. }
  313. ShouldUnblockThread Thread::dispatch_signal(u8 signal)
  314. {
  315. ASSERT_INTERRUPTS_DISABLED();
  316. ASSERT(signal > 0 && signal <= 32);
  317. ASSERT(!process().is_ring0());
  318. #ifdef SIGNAL_DEBUG
  319. kprintf("dispatch_signal %s(%u) <- %u\n", process().name().characters(), pid(), signal);
  320. #endif
  321. auto& action = m_signal_action_data[signal];
  322. // FIXME: Implement SA_SIGINFO signal handlers.
  323. ASSERT(!(action.flags & SA_SIGINFO));
  324. // Mark this signal as handled.
  325. m_pending_signals &= ~(1 << (signal - 1));
  326. if (signal == SIGSTOP) {
  327. set_state(Stopped);
  328. return ShouldUnblockThread::No;
  329. }
  330. if (signal == SIGCONT && state() == Stopped)
  331. set_state(Runnable);
  332. auto handler_vaddr = action.handler_or_sigaction;
  333. if (handler_vaddr.is_null()) {
  334. switch (default_signal_action(signal)) {
  335. case DefaultSignalAction::Stop:
  336. set_state(Stopped);
  337. return ShouldUnblockThread::No;
  338. case DefaultSignalAction::DumpCore:
  339. process().for_each_thread([](auto& thread) {
  340. thread.set_dump_backtrace_on_finalization();
  341. return IterationDecision::Continue;
  342. });
  343. [[fallthrough]];
  344. case DefaultSignalAction::Terminate:
  345. m_process.terminate_due_to_signal(signal);
  346. return ShouldUnblockThread::No;
  347. case DefaultSignalAction::Ignore:
  348. ASSERT_NOT_REACHED();
  349. case DefaultSignalAction::Continue:
  350. return ShouldUnblockThread::Yes;
  351. }
  352. ASSERT_NOT_REACHED();
  353. }
  354. if (handler_vaddr.as_ptr() == SIG_IGN) {
  355. #ifdef SIGNAL_DEBUG
  356. kprintf("%s(%u) ignored signal %u\n", process().name().characters(), pid(), signal);
  357. #endif
  358. return ShouldUnblockThread::Yes;
  359. }
  360. ProcessPagingScope paging_scope(m_process);
  361. // The userspace registers should be stored at the top of the stack
  362. // We have to subtract 2 because the processor decrements the kernel
  363. // stack before pushing the args.
  364. auto& regs = *(RegisterDump*)(kernel_stack_top() - sizeof(RegisterDump) - 2);
  365. u32 old_signal_mask = m_signal_mask;
  366. u32 new_signal_mask = action.mask;
  367. if (action.flags & SA_NODEFER)
  368. new_signal_mask &= ~(1 << (signal - 1));
  369. else
  370. new_signal_mask |= 1 << (signal - 1);
  371. m_signal_mask |= new_signal_mask;
  372. u32 old_esp = regs.esp_if_crossRing;
  373. u32 ret_eip = regs.eip;
  374. u32 ret_eflags = regs.eflags;
  375. // Align the stack to 16 bytes.
  376. // Note that we push 56 bytes (4 * 14) on to the stack,
  377. // so we need to account for this here.
  378. u32 stack_alignment = (regs.esp_if_crossRing - 56) % 16;
  379. regs.esp_if_crossRing -= stack_alignment;
  380. push_value_on_user_stack(regs, ret_eflags);
  381. push_value_on_user_stack(regs, ret_eip);
  382. push_value_on_user_stack(regs, regs.eax);
  383. push_value_on_user_stack(regs, regs.ecx);
  384. push_value_on_user_stack(regs, regs.edx);
  385. push_value_on_user_stack(regs, regs.ebx);
  386. push_value_on_user_stack(regs, old_esp);
  387. push_value_on_user_stack(regs, regs.ebp);
  388. push_value_on_user_stack(regs, regs.esi);
  389. push_value_on_user_stack(regs, regs.edi);
  390. // PUSH old_signal_mask
  391. push_value_on_user_stack(regs, old_signal_mask);
  392. push_value_on_user_stack(regs, signal);
  393. push_value_on_user_stack(regs, handler_vaddr.get());
  394. push_value_on_user_stack(regs, 0); //push fake return address
  395. regs.eip = g_return_to_ring3_from_signal_trampoline.get();
  396. ASSERT((regs.esp_if_crossRing % 16) == 0);
  397. // If we're not blocking we need to update the tss so
  398. // that the far jump in Scheduler goes to the proper location.
  399. // When we are blocking we don't update the TSS as we want to
  400. // resume at the blocker and descend the stack, cleaning up nicely.
  401. if (!in_kernel()) {
  402. Scheduler::prepare_to_modify_tss(*this);
  403. m_tss.cs = 0x1b;
  404. m_tss.ds = 0x23;
  405. m_tss.es = 0x23;
  406. m_tss.fs = 0x23;
  407. m_tss.gs = thread_specific_selector() | 3;
  408. m_tss.eip = regs.eip;
  409. m_tss.esp = regs.esp_if_crossRing;
  410. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  411. set_state(Skip1SchedulerPass);
  412. }
  413. #ifdef SIGNAL_DEBUG
  414. kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", process().name().characters(), pid(), state_string(), m_tss.cs, m_tss.eip);
  415. #endif
  416. return ShouldUnblockThread::Yes;
  417. }
  418. void Thread::set_default_signal_dispositions()
  419. {
  420. // FIXME: Set up all the right default actions. See signal(7).
  421. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  422. m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  423. m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
  424. }
  425. void Thread::push_value_on_user_stack(RegisterDump& registers, u32 value)
  426. {
  427. registers.esp_if_crossRing -= 4;
  428. u32* stack_ptr = (u32*)registers.esp_if_crossRing;
  429. *stack_ptr = value;
  430. }
  431. void Thread::push_value_on_stack(u32 value)
  432. {
  433. m_tss.esp -= 4;
  434. u32* stack_ptr = (u32*)m_tss.esp;
  435. *stack_ptr = value;
  436. }
  437. void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
  438. {
  439. auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)");
  440. ASSERT(region);
  441. m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
  442. char* stack_base = (char*)region->vaddr().get();
  443. int argc = arguments.size();
  444. char** argv = (char**)stack_base;
  445. char** env = argv + arguments.size() + 1;
  446. char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
  447. for (int i = 0; i < arguments.size(); ++i) {
  448. argv[i] = bufptr;
  449. memcpy(bufptr, arguments[i].characters(), arguments[i].length());
  450. bufptr += arguments[i].length();
  451. *(bufptr++) = '\0';
  452. }
  453. argv[arguments.size()] = nullptr;
  454. for (int i = 0; i < environment.size(); ++i) {
  455. env[i] = bufptr;
  456. memcpy(bufptr, environment[i].characters(), environment[i].length());
  457. bufptr += environment[i].length();
  458. *(bufptr++) = '\0';
  459. }
  460. env[environment.size()] = nullptr;
  461. // NOTE: The stack needs to be 16-byte aligned.
  462. push_value_on_stack((u32)env);
  463. push_value_on_stack((u32)argv);
  464. push_value_on_stack((u32)argc);
  465. push_value_on_stack(0);
  466. }
  467. void Thread::make_userspace_stack_for_secondary_thread(void* argument)
  468. {
  469. m_userspace_stack_region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("Stack (Thread %d)", tid()));
  470. ASSERT(m_userspace_stack_region);
  471. m_tss.esp = m_userspace_stack_region->vaddr().offset(default_userspace_stack_size).get();
  472. // NOTE: The stack needs to be 16-byte aligned.
  473. push_value_on_stack((u32)argument);
  474. push_value_on_stack(0);
  475. }
  476. Thread* Thread::clone(Process& process)
  477. {
  478. auto* clone = new Thread(process);
  479. memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  480. clone->m_signal_mask = m_signal_mask;
  481. memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
  482. clone->m_has_used_fpu = m_has_used_fpu;
  483. clone->m_thread_specific_data = m_thread_specific_data;
  484. return clone;
  485. }
  486. void Thread::initialize()
  487. {
  488. Scheduler::initialize();
  489. }
  490. Vector<Thread*> Thread::all_threads()
  491. {
  492. Vector<Thread*> threads;
  493. InterruptDisabler disabler;
  494. threads.ensure_capacity(thread_table().size());
  495. for (auto* thread : thread_table())
  496. threads.unchecked_append(thread);
  497. return threads;
  498. }
  499. bool Thread::is_thread(void* ptr)
  500. {
  501. ASSERT_INTERRUPTS_DISABLED();
  502. return thread_table().contains((Thread*)ptr);
  503. }
  504. void Thread::set_state(State new_state)
  505. {
  506. InterruptDisabler disabler;
  507. if (new_state == Blocked) {
  508. // we should always have a Blocker while blocked
  509. ASSERT(m_blocker != nullptr);
  510. }
  511. m_state = new_state;
  512. if (m_process.pid() != 0) {
  513. Scheduler::update_state_for_thread(*this);
  514. }
  515. }
  516. String Thread::backtrace(ProcessInspectionHandle&) const
  517. {
  518. return backtrace_impl();
  519. }
  520. String Thread::backtrace_impl() const
  521. {
  522. auto& process = const_cast<Process&>(this->process());
  523. ProcessPagingScope paging_scope(process);
  524. struct RecognizedSymbol {
  525. u32 address;
  526. const KSym* ksym;
  527. };
  528. StringBuilder builder;
  529. Vector<RecognizedSymbol, 64> recognized_symbols;
  530. recognized_symbols.append({ tss().eip, ksymbolicate(tss().eip) });
  531. for (u32* stack_ptr = (u32*)frame_ptr(); process.validate_read_from_kernel(VirtualAddress((u32)stack_ptr)); stack_ptr = (u32*)*stack_ptr) {
  532. u32 retaddr = stack_ptr[1];
  533. recognized_symbols.append({ retaddr, ksymbolicate(retaddr) });
  534. }
  535. for (auto& symbol : recognized_symbols) {
  536. if (!symbol.address)
  537. break;
  538. if (!symbol.ksym) {
  539. if (!Scheduler::is_active() && process.elf_loader() && process.elf_loader()->has_symbols())
  540. builder.appendf("%p %s\n", symbol.address, process.elf_loader()->symbolicate(symbol.address).characters());
  541. else
  542. builder.appendf("%p\n", symbol.address);
  543. continue;
  544. }
  545. unsigned offset = symbol.address - symbol.ksym->address;
  546. if (symbol.ksym->address == ksym_highest_address && offset > 4096)
  547. builder.appendf("%p\n", symbol.address);
  548. else
  549. builder.appendf("%p %s +%u\n", symbol.address, symbol.ksym->name, offset);
  550. }
  551. return builder.to_string();
  552. }
  553. void Thread::make_thread_specific_region(Badge<Process>)
  554. {
  555. size_t thread_specific_region_alignment = max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
  556. size_t thread_specific_region_size = align_up_to(process().m_master_tls_size, thread_specific_region_alignment) + sizeof(ThreadSpecificData);
  557. auto* region = process().allocate_region({}, thread_specific_region_size, "Thread-specific", PROT_READ | PROT_WRITE, true);
  558. auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment)).as_ptr();
  559. auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
  560. m_thread_specific_data = VirtualAddress((u32)thread_specific_data);
  561. thread_specific_data->self = thread_specific_data;
  562. if (process().m_master_tls_size)
  563. memcpy(thread_local_storage, process().m_master_tls_region->vaddr().as_ptr(), process().m_master_tls_size);
  564. }
  565. const LogStream& operator<<(const LogStream& stream, const Thread& value)
  566. {
  567. return stream << value.process().name() << "(" << value.pid() << ":" << value.tid() << ")";
  568. }