Process.cpp 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617
  1. #include "types.h"
  2. #include "Process.h"
  3. #include "kmalloc.h"
  4. #include "VGA.h"
  5. #include "StdLib.h"
  6. #include "i386.h"
  7. #include "system.h"
  8. #include <VirtualFileSystem/FileDescriptor.h>
  9. #include <VirtualFileSystem/VirtualFileSystem.h>
  10. #include <ELFLoader/ELFLoader.h>
  11. #include "MemoryManager.h"
  12. #include "errno.h"
  13. #include "i8253.h"
  14. #include "RTC.h"
  15. #include "ProcFileSystem.h"
  16. #include <AK/StdLib.h>
  17. #include <LibC/signal_numbers.h>
  18. //#define DEBUG_IO
  19. //#define TASK_DEBUG
  20. //#define FORK_DEBUG
  21. //#define SCHEDULER_DEBUG
  22. #define COOL_GLOBALS
  23. #define MAX_PROCESS_GIDS 32
  24. #ifdef COOL_GLOBALS
  25. struct CoolGlobals {
  26. dword current_pid;
  27. };
  28. CoolGlobals* g_cool_globals;
  29. #endif
  30. // FIXME: Only do a single validation for accesses that don't span multiple pages.
  31. // FIXME: Some places pass strlen(arg1) as arg2. This doesn't seem entirely perfect..
  32. #define VALIDATE_USER_READ(b, s) \
  33. do { \
  34. LinearAddress laddr((dword)(b)); \
  35. if (!validate_user_read(laddr) || !validate_user_read(laddr.offset((s) - 1))) \
  36. return -EFAULT; \
  37. } while(0)
  38. #define VALIDATE_USER_WRITE(b, s) \
  39. do { \
  40. LinearAddress laddr((dword)(b)); \
  41. if (!validate_user_write(laddr) || !validate_user_write(laddr.offset((s) - 1))) \
  42. return -EFAULT; \
  43. } while(0)
  44. static const DWORD defaultStackSize = 16384;
  45. Process* current;
  46. Process* s_kernelProcess;
  47. static pid_t next_pid;
  48. static InlineLinkedList<Process>* s_processes;
  49. static InlineLinkedList<Process>* s_deadProcesses;
  50. static String* s_hostname;
  51. static String& hostnameStorage(InterruptDisabler&)
  52. {
  53. ASSERT(s_hostname);
  54. return *s_hostname;
  55. }
  56. static String getHostname()
  57. {
  58. InterruptDisabler disabler;
  59. return hostnameStorage(disabler).isolatedCopy();
  60. }
  61. static bool contextSwitch(Process*);
  62. static void redoKernelProcessTSS()
  63. {
  64. if (!s_kernelProcess->selector())
  65. s_kernelProcess->setSelector(gdt_alloc_entry());
  66. auto& tssDescriptor = getGDTEntry(s_kernelProcess->selector());
  67. tssDescriptor.setBase(&s_kernelProcess->tss());
  68. tssDescriptor.setLimit(0xffff);
  69. tssDescriptor.dpl = 0;
  70. tssDescriptor.segment_present = 1;
  71. tssDescriptor.granularity = 1;
  72. tssDescriptor.zero = 0;
  73. tssDescriptor.operation_size = 1;
  74. tssDescriptor.descriptor_type = 0;
  75. tssDescriptor.type = 9;
  76. flushGDT();
  77. }
  78. void Process::prepForIRETToNewProcess()
  79. {
  80. redoKernelProcessTSS();
  81. s_kernelProcess->tss().backlink = current->selector();
  82. loadTaskRegister(s_kernelProcess->selector());
  83. }
  84. static void hlt_loop()
  85. {
  86. for (;;) {
  87. asm volatile("hlt");
  88. }
  89. }
  90. void Process::initialize()
  91. {
  92. #ifdef COOL_GLOBALS
  93. g_cool_globals = (CoolGlobals*)0x1000;
  94. #endif
  95. current = nullptr;
  96. next_pid = 0;
  97. s_processes = new InlineLinkedList<Process>;
  98. s_deadProcesses = new InlineLinkedList<Process>;
  99. s_kernelProcess = Process::createKernelProcess(hlt_loop, "colonel");
  100. s_hostname = new String("birx");
  101. redoKernelProcessTSS();
  102. loadTaskRegister(s_kernelProcess->selector());
  103. }
  104. template<typename Callback>
  105. static void forEachProcess(Callback callback)
  106. {
  107. ASSERT_INTERRUPTS_DISABLED();
  108. for (auto* process = s_processes->head(); process; process = process->next()) {
  109. if (!callback(*process))
  110. break;
  111. }
  112. }
  113. void Process::for_each_in_pgrp(pid_t pgid, Function<void(Process&)> callback)
  114. {
  115. ASSERT_INTERRUPTS_DISABLED();
  116. for (auto* process = s_processes->head(); process; process = process->next()) {
  117. if (process->pgid() == pgid)
  118. callback(*process);
  119. }
  120. }
  121. Vector<Process*> Process::allProcesses()
  122. {
  123. InterruptDisabler disabler;
  124. Vector<Process*> processes;
  125. processes.ensureCapacity(s_processes->sizeSlow());
  126. for (auto* process = s_processes->head(); process; process = process->next())
  127. processes.append(process);
  128. return processes;
  129. }
  130. Region* Process::allocate_region(LinearAddress laddr, size_t size, String&& name, bool is_readable, bool is_writable)
  131. {
  132. // FIXME: This needs sanity checks. What if this overlaps existing regions?
  133. if (laddr.is_null()) {
  134. laddr = m_nextRegion;
  135. m_nextRegion = m_nextRegion.offset(size).offset(PAGE_SIZE);
  136. }
  137. laddr.mask(0xfffff000);
  138. unsigned page_count = ceilDiv(size, PAGE_SIZE);
  139. auto physical_pages = MM.allocate_physical_pages(page_count);
  140. ASSERT(physical_pages.size() == page_count);
  141. m_regions.append(adopt(*new Region(laddr, size, move(physical_pages), move(name), is_readable, is_writable)));
  142. MM.mapRegion(*this, *m_regions.last());
  143. return m_regions.last().ptr();
  144. }
  145. bool Process::deallocate_region(Region& region)
  146. {
  147. InterruptDisabler disabler;
  148. for (size_t i = 0; i < m_regions.size(); ++i) {
  149. if (m_regions[i].ptr() == &region) {
  150. MM.unmapRegion(*this, region);
  151. m_regions.remove(i);
  152. return true;
  153. }
  154. }
  155. return false;
  156. }
  157. Region* Process::regionFromRange(LinearAddress laddr, size_t size)
  158. {
  159. for (auto& region : m_regions) {
  160. if (region->linearAddress == laddr && region->size == size)
  161. return region.ptr();
  162. }
  163. return nullptr;
  164. }
  165. int Process::sys$set_mmap_name(void* addr, size_t size, const char* name)
  166. {
  167. VALIDATE_USER_READ(name, strlen(name));
  168. auto* region = regionFromRange(LinearAddress((dword)addr), size);
  169. if (!region)
  170. return -EINVAL;
  171. region->name = name;
  172. return 0;
  173. }
  174. void* Process::sys$mmap(void* addr, size_t size)
  175. {
  176. InterruptDisabler disabler;
  177. // FIXME: Implement mapping at a client-preferred address.
  178. ASSERT(addr == nullptr);
  179. auto* region = allocate_region(LinearAddress(), size, "mmap");
  180. if (!region)
  181. return (void*)-1;
  182. MM.mapRegion(*this, *region);
  183. return (void*)region->linearAddress.get();
  184. }
  185. int Process::sys$munmap(void* addr, size_t size)
  186. {
  187. InterruptDisabler disabler;
  188. auto* region = regionFromRange(LinearAddress((dword)addr), size);
  189. if (!region)
  190. return -1;
  191. if (!deallocate_region(*region))
  192. return -1;
  193. return 0;
  194. }
  195. int Process::sys$gethostname(char* buffer, size_t size)
  196. {
  197. VALIDATE_USER_WRITE(buffer, size);
  198. auto hostname = getHostname();
  199. if (size < (hostname.length() + 1))
  200. return -ENAMETOOLONG;
  201. memcpy(buffer, hostname.characters(), size);
  202. return 0;
  203. }
  204. Process* Process::fork(RegisterDump& regs)
  205. {
  206. auto* child = new Process(String(m_name), m_uid, m_gid, m_pid, m_ring, m_cwd.copyRef(), m_executable.copyRef(), m_tty, this);
  207. #ifdef FORK_DEBUG
  208. dbgprintf("fork: child=%p\n", child);
  209. #endif
  210. #if 0
  211. // FIXME: An honest fork() would copy these. Needs a Vector copy ctor.
  212. child->m_arguments = m_arguments;
  213. child->m_initialEnvironment = m_initialEnvironment;
  214. #endif
  215. for (auto& region : m_regions) {
  216. #ifdef FORK_DEBUG
  217. dbgprintf("fork: cloning Region{%p}\n", region.ptr());
  218. #endif
  219. auto cloned_region = region->clone();
  220. child->m_regions.append(move(cloned_region));
  221. MM.mapRegion(*child, *child->m_regions.last());
  222. }
  223. child->m_tss.eax = 0; // fork() returns 0 in the child :^)
  224. child->m_tss.ebx = regs.ebx;
  225. child->m_tss.ecx = regs.ecx;
  226. child->m_tss.edx = regs.edx;
  227. child->m_tss.ebp = regs.ebp;
  228. child->m_tss.esp = regs.esp_if_crossRing;
  229. child->m_tss.esi = regs.esi;
  230. child->m_tss.edi = regs.edi;
  231. child->m_tss.eflags = regs.eflags;
  232. child->m_tss.eip = regs.eip;
  233. child->m_tss.cs = regs.cs;
  234. child->m_tss.ds = regs.ds;
  235. child->m_tss.es = regs.es;
  236. child->m_tss.fs = regs.fs;
  237. child->m_tss.gs = regs.gs;
  238. child->m_tss.ss = regs.ss_if_crossRing;
  239. #ifdef FORK_DEBUG
  240. dbgprintf("fork: child will begin executing at %w:%x with stack %w:%x\n", child->m_tss.cs, child->m_tss.eip, child->m_tss.ss, child->m_tss.esp);
  241. #endif
  242. ProcFileSystem::the().addProcess(*child);
  243. s_processes->prepend(child);
  244. system.nprocess++;
  245. #ifdef TASK_DEBUG
  246. kprintf("Process %u (%s) forked from %u @ %p\n", child->pid(), child->name().characters(), m_pid, child->m_tss.eip);
  247. #endif
  248. return child;
  249. }
  250. pid_t Process::sys$fork(RegisterDump& regs)
  251. {
  252. auto* child = fork(regs);
  253. ASSERT(child);
  254. return child->pid();
  255. }
  256. int Process::exec(const String& path, Vector<String>&& arguments, Vector<String>&& environment)
  257. {
  258. auto parts = path.split('/');
  259. if (parts.isEmpty())
  260. return -ENOENT;
  261. int error;
  262. auto descriptor = VirtualFileSystem::the().open(path, error, 0, m_cwd ? m_cwd->inode : InodeIdentifier());
  263. if (!descriptor) {
  264. ASSERT(error != 0);
  265. return error;
  266. }
  267. if (!descriptor->metadata().mayExecute(m_euid, m_gids))
  268. return -EACCES;
  269. auto elfData = descriptor->readEntireFile();
  270. if (!elfData)
  271. return -EIO; // FIXME: Get a more detailed error from VFS.
  272. dword entry_eip = 0;
  273. PageDirectory* old_page_directory;
  274. PageDirectory* new_page_directory;
  275. {
  276. InterruptDisabler disabler;
  277. // Okay, here comes the sleight of hand, pay close attention..
  278. auto old_regions = move(m_regions);
  279. old_page_directory = m_page_directory;
  280. new_page_directory = reinterpret_cast<PageDirectory*>(kmalloc_page_aligned(sizeof(PageDirectory)));
  281. MM.populate_page_directory(*new_page_directory);
  282. m_page_directory = new_page_directory;
  283. MM.enter_process_paging_scope(*this);
  284. ELFLoader loader(move(elfData));
  285. loader.alloc_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) {
  286. ASSERT(size);
  287. size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div?
  288. (void) allocate_region(laddr, size, String(name), is_readable, is_writable);
  289. return laddr.asPtr();
  290. };
  291. bool success = loader.load();
  292. if (!success) {
  293. m_page_directory = old_page_directory;
  294. MM.enter_process_paging_scope(*this);
  295. MM.release_page_directory(*new_page_directory);
  296. m_regions = move(old_regions);
  297. kprintf("sys$execve: Failure loading %s\n", path.characters());
  298. return -ENOEXEC;
  299. }
  300. entry_eip = (dword)loader.symbol_ptr("_start");
  301. if (!entry_eip) {
  302. m_page_directory = old_page_directory;
  303. MM.enter_process_paging_scope(*this);
  304. MM.release_page_directory(*new_page_directory);
  305. m_regions = move(old_regions);
  306. return -ENOEXEC;
  307. }
  308. }
  309. InterruptDisabler disabler;
  310. if (current == this)
  311. loadTaskRegister(s_kernelProcess->selector());
  312. m_name = parts.takeLast();
  313. dword old_esp0 = m_tss.esp0;
  314. memset(&m_tss, 0, sizeof(m_tss));
  315. m_tss.eflags = 0x0202;
  316. m_tss.eip = entry_eip;
  317. m_tss.cs = 0x1b;
  318. m_tss.ds = 0x23;
  319. m_tss.es = 0x23;
  320. m_tss.fs = 0x23;
  321. m_tss.gs = 0x23;
  322. m_tss.ss = 0x23;
  323. m_tss.cr3 = (dword)m_page_directory;
  324. auto* stack_region = allocate_region(LinearAddress(), defaultStackSize, "stack");
  325. ASSERT(stack_region);
  326. m_stackTop3 = stack_region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8;
  327. m_tss.esp = m_stackTop3;
  328. m_tss.ss0 = 0x10;
  329. m_tss.esp0 = old_esp0;
  330. m_tss.ss2 = m_pid;
  331. MM.release_page_directory(*old_page_directory);
  332. m_executable = descriptor->vnode();
  333. m_arguments = move(arguments);
  334. m_initialEnvironment = move(environment);
  335. #ifdef TASK_DEBUG
  336. kprintf("Process %u (%s) exec'd %s @ %p\n", pid(), name().characters(), filename, m_tss.eip);
  337. #endif
  338. if (current == this)
  339. sched_yield();
  340. return 0;
  341. }
  342. int Process::sys$execve(const char* filename, const char** argv, const char** envp)
  343. {
  344. VALIDATE_USER_READ(filename, strlen(filename));
  345. if (argv) {
  346. for (size_t i = 0; argv[i]; ++i) {
  347. VALIDATE_USER_READ(argv[i], strlen(argv[i]));
  348. }
  349. }
  350. if (envp) {
  351. for (size_t i = 0; envp[i]; ++i) {
  352. VALIDATE_USER_READ(envp[i], strlen(envp[i]));
  353. }
  354. }
  355. String path(filename);
  356. auto parts = path.split('/');
  357. Vector<String> arguments;
  358. if (argv) {
  359. for (size_t i = 0; argv[i]; ++i) {
  360. arguments.append(argv[i]);
  361. }
  362. } else {
  363. arguments.append(parts.last());
  364. }
  365. Vector<String> environment;
  366. if (envp) {
  367. for (size_t i = 0; envp[i]; ++i) {
  368. environment.append(envp[i]);
  369. }
  370. }
  371. int rc = exec(path, move(arguments), move(environment));
  372. ASSERT(rc < 0);
  373. return rc;
  374. }
  375. pid_t Process::sys$spawn(const char* filename, const char** argv, const char** envp)
  376. {
  377. VALIDATE_USER_READ(filename, strlen(filename));
  378. if (argv) {
  379. for (size_t i = 0; argv[i]; ++i) {
  380. VALIDATE_USER_READ(argv[i], strlen(argv[i]));
  381. }
  382. }
  383. if (envp) {
  384. for (size_t i = 0; envp[i]; ++i) {
  385. VALIDATE_USER_READ(envp[i], strlen(envp[i]));
  386. }
  387. }
  388. String path(filename);
  389. auto parts = path.split('/');
  390. Vector<String> arguments;
  391. if (argv) {
  392. for (size_t i = 0; argv[i]; ++i) {
  393. arguments.append(argv[i]);
  394. }
  395. } else {
  396. arguments.append(parts.last());
  397. }
  398. Vector<String> environment;
  399. if (envp) {
  400. for (size_t i = 0; envp[i]; ++i) {
  401. environment.append(envp[i]);
  402. }
  403. }
  404. int error;
  405. auto* child = create_user_process(path, m_uid, m_gid, m_pid, error, move(arguments), move(environment), m_tty);
  406. if (child)
  407. return child->pid();
  408. return error;
  409. }
  410. Process* Process::create_user_process(const String& path, uid_t uid, gid_t gid, pid_t parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
  411. {
  412. // FIXME: Don't split() the path twice (sys$spawn also does it...)
  413. auto parts = path.split('/');
  414. if (arguments.isEmpty()) {
  415. arguments.append(parts.last());
  416. }
  417. RetainPtr<VirtualFileSystem::Node> cwd;
  418. {
  419. InterruptDisabler disabler;
  420. if (auto* parent = Process::fromPID(parent_pid))
  421. cwd = parent->m_cwd.copyRef();
  422. }
  423. if (!cwd)
  424. cwd = VirtualFileSystem::the().root();
  425. auto* process = new Process(parts.takeLast(), uid, gid, parent_pid, Ring3, move(cwd), nullptr, tty);
  426. error = process->exec(path, move(arguments), move(environment));
  427. if (error != 0)
  428. return nullptr;
  429. ProcFileSystem::the().addProcess(*process);
  430. s_processes->prepend(process);
  431. system.nprocess++;
  432. #ifdef TASK_DEBUG
  433. kprintf("Process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip);
  434. #endif
  435. error = 0;
  436. return process;
  437. }
  438. int Process::sys$get_environment(char*** environ)
  439. {
  440. auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "environ");
  441. if (!region)
  442. return -ENOMEM;
  443. MM.mapRegion(*this, *region);
  444. char* envpage = (char*)region->linearAddress.get();
  445. *environ = (char**)envpage;
  446. char* bufptr = envpage + (sizeof(char*) * (m_initialEnvironment.size() + 1));
  447. for (size_t i = 0; i < m_initialEnvironment.size(); ++i) {
  448. (*environ)[i] = bufptr;
  449. memcpy(bufptr, m_initialEnvironment[i].characters(), m_initialEnvironment[i].length());
  450. bufptr += m_initialEnvironment[i].length();
  451. *(bufptr++) = '\0';
  452. }
  453. (*environ)[m_initialEnvironment.size()] = nullptr;
  454. return 0;
  455. }
  456. int Process::sys$get_arguments(int* argc, char*** argv)
  457. {
  458. auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "argv");
  459. if (!region)
  460. return -ENOMEM;
  461. MM.mapRegion(*this, *region);
  462. char* argpage = (char*)region->linearAddress.get();
  463. *argc = m_arguments.size();
  464. *argv = (char**)argpage;
  465. char* bufptr = argpage + (sizeof(char*) * m_arguments.size());
  466. for (size_t i = 0; i < m_arguments.size(); ++i) {
  467. (*argv)[i] = bufptr;
  468. memcpy(bufptr, m_arguments[i].characters(), m_arguments[i].length());
  469. bufptr += m_arguments[i].length();
  470. *(bufptr++) = '\0';
  471. }
  472. return 0;
  473. }
  474. Process* Process::createKernelProcess(void (*e)(), String&& name)
  475. {
  476. auto* process = new Process(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0);
  477. process->m_tss.eip = (dword)e;
  478. if (process->pid() != 0) {
  479. InterruptDisabler disabler;
  480. s_processes->prepend(process);
  481. system.nprocess++;
  482. ProcFileSystem::the().addProcess(*process);
  483. #ifdef TASK_DEBUG
  484. kprintf("Kernel process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip);
  485. #endif
  486. }
  487. return process;
  488. }
  489. Process::Process(String&& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring, RetainPtr<VirtualFileSystem::Node>&& cwd, RetainPtr<VirtualFileSystem::Node>&& executable, TTY* tty, Process* fork_parent)
  490. : m_name(move(name))
  491. , m_pid(next_pid++) // FIXME: RACE: This variable looks racy!
  492. , m_uid(uid)
  493. , m_gid(gid)
  494. , m_euid(uid)
  495. , m_egid(gid)
  496. , m_state(Runnable)
  497. , m_ring(ring)
  498. , m_cwd(move(cwd))
  499. , m_executable(move(executable))
  500. , m_tty(tty)
  501. , m_ppid(ppid)
  502. {
  503. m_gids.set(m_gid);
  504. if (fork_parent) {
  505. m_sid = fork_parent->m_sid;
  506. m_pgid = fork_parent->m_pgid;
  507. } else {
  508. // FIXME: Use a ProcessHandle? Presumably we're executing *IN* the parent right now though..
  509. InterruptDisabler disabler;
  510. if (auto* parent = Process::fromPID(m_ppid)) {
  511. m_sid = parent->m_sid;
  512. m_pgid = parent->m_pgid;
  513. }
  514. }
  515. m_page_directory = (PageDirectory*)kmalloc_page_aligned(sizeof(PageDirectory));
  516. MM.populate_page_directory(*m_page_directory);
  517. if (fork_parent) {
  518. m_file_descriptors.resize(fork_parent->m_file_descriptors.size());
  519. for (size_t i = 0; i < fork_parent->m_file_descriptors.size(); ++i) {
  520. if (!fork_parent->m_file_descriptors[i])
  521. continue;
  522. #ifdef FORK_DEBUG
  523. dbgprintf("fork: cloning fd %u... (%p) istty? %um\n", i, fork_parent->m_file_descriptors[i].ptr(), fork_parent->m_file_descriptors[i]->isTTY());
  524. #endif
  525. m_file_descriptors[i] = fork_parent->m_file_descriptors[i]->clone();
  526. }
  527. } else {
  528. m_file_descriptors.resize(m_max_open_file_descriptors);
  529. if (tty) {
  530. m_file_descriptors[0] = tty->open(O_RDONLY);
  531. m_file_descriptors[1] = tty->open(O_WRONLY);
  532. m_file_descriptors[2] = tty->open(O_WRONLY);
  533. }
  534. }
  535. if (fork_parent)
  536. m_nextRegion = fork_parent->m_nextRegion;
  537. else
  538. m_nextRegion = LinearAddress(0x10000000);
  539. if (fork_parent) {
  540. memcpy(&m_tss, &fork_parent->m_tss, sizeof(m_tss));
  541. } else {
  542. memset(&m_tss, 0, sizeof(m_tss));
  543. // Only IF is set when a process boots.
  544. m_tss.eflags = 0x0202;
  545. word cs, ds, ss;
  546. if (isRing0()) {
  547. cs = 0x08;
  548. ds = 0x10;
  549. ss = 0x10;
  550. } else {
  551. cs = 0x1b;
  552. ds = 0x23;
  553. ss = 0x23;
  554. }
  555. m_tss.ds = ds;
  556. m_tss.es = ds;
  557. m_tss.fs = ds;
  558. m_tss.gs = ds;
  559. m_tss.ss = ss;
  560. m_tss.cs = cs;
  561. }
  562. m_tss.cr3 = (dword)m_page_directory;
  563. if (isRing0()) {
  564. // FIXME: This memory is leaked.
  565. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  566. dword stackBottom = (dword)kmalloc_eternal(defaultStackSize);
  567. m_stackTop0 = (stackBottom + defaultStackSize) & 0xffffff8;
  568. m_tss.esp = m_stackTop0;
  569. } else {
  570. if (fork_parent) {
  571. m_stackTop3 = fork_parent->m_stackTop3;
  572. } else {
  573. auto* region = allocate_region(LinearAddress(), defaultStackSize, "stack");
  574. ASSERT(region);
  575. m_stackTop3 = region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8;
  576. m_tss.esp = m_stackTop3;
  577. }
  578. }
  579. if (isRing3()) {
  580. // Ring3 processes need a separate stack for Ring0.
  581. m_kernelStack = kmalloc(defaultStackSize);
  582. m_stackTop0 = ((DWORD)m_kernelStack + defaultStackSize) & 0xffffff8;
  583. m_tss.ss0 = 0x10;
  584. m_tss.esp0 = m_stackTop0;
  585. }
  586. // HACK: Ring2 SS in the TSS is the current PID.
  587. m_tss.ss2 = m_pid;
  588. m_farPtr.offset = 0x98765432;
  589. }
  590. Process::~Process()
  591. {
  592. InterruptDisabler disabler;
  593. ProcFileSystem::the().removeProcess(*this);
  594. system.nprocess--;
  595. gdt_free_entry(selector());
  596. if (m_kernelStack) {
  597. kfree(m_kernelStack);
  598. m_kernelStack = nullptr;
  599. }
  600. MM.release_page_directory(*m_page_directory);
  601. }
  602. void Process::dumpRegions()
  603. {
  604. kprintf("Process %s(%u) regions:\n", name().characters(), pid());
  605. kprintf("BEGIN END SIZE NAME\n");
  606. for (auto& region : m_regions) {
  607. kprintf("%x -- %x %x %s\n",
  608. region->linearAddress.get(),
  609. region->linearAddress.offset(region->size - 1).get(),
  610. region->size,
  611. region->name.characters());
  612. }
  613. }
  614. void Process::notify_waiters(pid_t waitee, int exit_status, int signal)
  615. {
  616. ASSERT_INTERRUPTS_DISABLED();
  617. for (auto* process = s_processes->head(); process; process = process->next()) {
  618. if (process->waitee() == waitee)
  619. process->m_waiteeStatus = (exit_status << 8) | (signal);
  620. }
  621. }
  622. void Process::sys$exit(int status)
  623. {
  624. cli();
  625. #ifdef TASK_DEBUG
  626. kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status);
  627. #endif
  628. set_state(Exiting);
  629. s_processes->remove(this);
  630. notify_waiters(m_pid, status, 0);
  631. if (!scheduleNewProcess()) {
  632. kprintf("Process::sys$exit: Failed to schedule a new process :(\n");
  633. HANG;
  634. }
  635. s_deadProcesses->append(this);
  636. switchNow();
  637. }
  638. void Process::terminate_due_to_signal(int signal, Process* sender)
  639. {
  640. ASSERT_INTERRUPTS_DISABLED();
  641. bool wasCurrent = this == current;
  642. set_state(Exiting);
  643. s_processes->remove(this);
  644. notify_waiters(m_pid, 0, signal);
  645. if (wasCurrent) {
  646. kprintf("Current process (%u) committing suicide!\n", pid());
  647. if (!scheduleNewProcess()) {
  648. kprintf("Process::send_signal: Failed to schedule a new process :(\n");
  649. HANG;
  650. }
  651. }
  652. s_deadProcesses->append(this);
  653. if (wasCurrent)
  654. switchNow();
  655. }
  656. void Process::send_signal(int signal, Process* sender)
  657. {
  658. ASSERT_INTERRUPTS_DISABLED();
  659. ASSERT(signal < 32);
  660. // FIXME: Handle send_signal to self.
  661. ASSERT(this != current);
  662. auto& action = m_signal_action_data[signal];
  663. // FIXME: Implement SA_SIGINFO signal handlers.
  664. ASSERT(!(action.flags & SA_SIGINFO));
  665. auto handler_laddr = action.handler_or_sigaction;
  666. if (handler_laddr.is_null())
  667. return terminate_due_to_signal(signal, sender);
  668. word ret_cs = m_tss.cs;
  669. dword ret_eip = m_tss.eip;
  670. dword ret_eflags = m_tss.eflags;
  671. if ((ret_cs & 3) == 0) {
  672. // FIXME: Handle send_signal to process currently in kernel code.
  673. ASSERT_NOT_REACHED();
  674. }
  675. ProcessPagingScope pagingScope(*this);
  676. dword old_esp = m_tss.esp;
  677. push_value_on_stack(ret_eip);
  678. push_value_on_stack(ret_eflags);
  679. push_value_on_stack(m_tss.eax);
  680. push_value_on_stack(m_tss.ecx);
  681. push_value_on_stack(m_tss.edx);
  682. push_value_on_stack(m_tss.ebx);
  683. push_value_on_stack(old_esp);
  684. push_value_on_stack(m_tss.ebp);
  685. push_value_on_stack(m_tss.esi);
  686. push_value_on_stack(m_tss.edi);
  687. m_tss.eax = (dword)signal;
  688. m_tss.cs = 0x1b;
  689. m_tss.eip = handler_laddr.get();
  690. if (m_return_from_signal_trampoline.is_null()) {
  691. auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "signal_trampoline", true, true); // FIXME: Remap as read-only after setup.
  692. m_return_from_signal_trampoline = region->linearAddress;
  693. byte* code_ptr = m_return_from_signal_trampoline.asPtr();
  694. *code_ptr++ = 0x61; // popa
  695. *code_ptr++ = 0x9d; // popf
  696. *code_ptr++ = 0xc3; // ret
  697. *code_ptr++ = 0x0f; // ud2
  698. *code_ptr++ = 0x0b;
  699. }
  700. push_value_on_stack(m_return_from_signal_trampoline.get());
  701. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, name().characters(), pid());
  702. if (sender == this) {
  703. sched_yield();
  704. ASSERT_NOT_REACHED();
  705. }
  706. }
  707. void Process::push_value_on_stack(dword value)
  708. {
  709. m_tss.esp -= 4;
  710. dword* stack_ptr = (dword*)m_tss.esp;
  711. *stack_ptr = value;
  712. }
  713. void Process::processDidCrash(Process* crashedProcess)
  714. {
  715. ASSERT_INTERRUPTS_DISABLED();
  716. if (crashedProcess->state() == Crashing) {
  717. kprintf("Double crash :(\n");
  718. HANG;
  719. }
  720. crashedProcess->set_state(Crashing);
  721. crashedProcess->dumpRegions();
  722. s_processes->remove(crashedProcess);
  723. notify_waiters(crashedProcess->m_pid, 0, SIGSEGV);
  724. if (!scheduleNewProcess()) {
  725. kprintf("Process::processDidCrash: Failed to schedule a new process :(\n");
  726. HANG;
  727. }
  728. s_deadProcesses->append(crashedProcess);
  729. switchNow();
  730. }
  731. void Process::doHouseKeeping()
  732. {
  733. if (s_deadProcesses->isEmpty())
  734. return;
  735. InterruptDisabler disabler;
  736. Process* next = nullptr;
  737. for (auto* deadProcess = s_deadProcesses->head(); deadProcess; deadProcess = next) {
  738. next = deadProcess->next();
  739. delete deadProcess;
  740. }
  741. s_deadProcesses->clear();
  742. }
  743. int sched_yield()
  744. {
  745. if (!current) {
  746. kprintf( "PANIC: yield() with !current" );
  747. HANG;
  748. }
  749. //kprintf("%s<%u> yield()\n", current->name().characters(), current->pid());
  750. InterruptDisabler disabler;
  751. if (!scheduleNewProcess())
  752. return 1;
  753. //kprintf("yield() jumping to new process: %x (%s)\n", current->farPtr().selector, current->name().characters());
  754. switchNow();
  755. return 0;
  756. }
  757. void switchNow()
  758. {
  759. Descriptor& descriptor = getGDTEntry(current->selector());
  760. descriptor.type = 9;
  761. flushGDT();
  762. asm("sti\n"
  763. "ljmp *(%%eax)\n"
  764. ::"a"(&current->farPtr())
  765. );
  766. }
  767. bool scheduleNewProcess()
  768. {
  769. ASSERT_INTERRUPTS_DISABLED();
  770. if (!current) {
  771. // XXX: The first ever context_switch() goes to the idle process.
  772. // This to setup a reliable place we can return to.
  773. return contextSwitch(Process::kernelProcess());
  774. }
  775. // Check and unblock processes whose wait conditions have been met.
  776. for (auto* process = s_processes->head(); process; process = process->next()) {
  777. if (process->state() == Process::BlockedSleep) {
  778. if (process->wakeupTime() <= system.uptime) {
  779. process->unblock();
  780. continue;
  781. }
  782. }
  783. if (process->state() == Process::BlockedWait) {
  784. if (!Process::fromPID(process->waitee())) {
  785. process->unblock();
  786. continue;
  787. }
  788. }
  789. if (process->state() == Process::BlockedRead) {
  790. ASSERT(process->m_fdBlockedOnRead != -1);
  791. if (process->m_file_descriptors[process->m_fdBlockedOnRead]->hasDataAvailableForRead()) {
  792. process->unblock();
  793. continue;
  794. }
  795. }
  796. }
  797. #ifdef SCHEDULER_DEBUG
  798. dbgprintf("Scheduler choices:\n");
  799. for (auto* process = s_processes->head(); process; process = process->next()) {
  800. //if (process->state() == Process::BlockedWait || process->state() == Process::BlockedSleep)
  801. // continue;
  802. dbgprintf("% 12s %s(%u) @ %w:%x\n", toString(process->state()), process->name().characters(), process->pid(), process->tss().cs, process->tss().eip);
  803. }
  804. #endif
  805. auto* prevHead = s_processes->head();
  806. for (;;) {
  807. // Move head to tail.
  808. s_processes->append(s_processes->removeHead());
  809. auto* process = s_processes->head();
  810. if (process->state() == Process::Runnable || process->state() == Process::Running) {
  811. #ifdef SCHEDULER_DEBUG
  812. dbgprintf("switch to %s(%u) (%p vs %p)\n", process->name().characters(), process->pid(), process, current);
  813. #endif
  814. return contextSwitch(process);
  815. }
  816. if (process == prevHead) {
  817. // Back at process_head, nothing wants to run.
  818. kprintf("Nothing wants to run!\n");
  819. kprintf("PID OWNER STATE NSCHED NAME\n");
  820. for (auto* process = s_processes->head(); process; process = process->next()) {
  821. kprintf("%w %w:%w %b %w %s\n",
  822. process->pid(),
  823. process->uid(),
  824. process->gid(),
  825. process->state(),
  826. process->timesScheduled(),
  827. process->name().characters());
  828. }
  829. kprintf("Switch to kernel process @ %w:%x\n", s_kernelProcess->tss().cs, s_kernelProcess->tss().eip);
  830. return contextSwitch(Process::kernelProcess());
  831. }
  832. }
  833. }
  834. static bool contextSwitch(Process* t)
  835. {
  836. t->setTicksLeft(5);
  837. t->didSchedule();
  838. if (current == t)
  839. return false;
  840. #ifdef SCHEDULER_DEBUG
  841. // Some sanity checking to force a crash earlier.
  842. auto csRPL = t->tss().cs & 3;
  843. auto ssRPL = t->tss().ss & 3;
  844. if (csRPL != ssRPL) {
  845. kprintf("Fuckup! Switching from %s(%u) to %s(%u) has RPL mismatch\n",
  846. current->name().characters(), current->pid(),
  847. t->name().characters(), t->pid()
  848. );
  849. kprintf("code: %w:%x\n", t->tss().cs, t->tss().eip);
  850. kprintf(" stk: %w:%x\n", t->tss().ss, t->tss().esp);
  851. ASSERT(csRPL == ssRPL);
  852. }
  853. #endif
  854. if (current) {
  855. // If the last process hasn't blocked (still marked as running),
  856. // mark it as runnable for the next round.
  857. if (current->state() == Process::Running)
  858. current->set_state(Process::Runnable);
  859. }
  860. current = t;
  861. t->set_state(Process::Running);
  862. #ifdef COOL_GLOBALS
  863. g_cool_globals->current_pid = t->pid();
  864. #endif
  865. if (!t->selector()) {
  866. t->setSelector(gdt_alloc_entry());
  867. auto& descriptor = getGDTEntry(t->selector());
  868. descriptor.setBase(&t->tss());
  869. descriptor.setLimit(0xffff);
  870. descriptor.dpl = 0;
  871. descriptor.segment_present = 1;
  872. descriptor.granularity = 1;
  873. descriptor.zero = 0;
  874. descriptor.operation_size = 1;
  875. descriptor.descriptor_type = 0;
  876. }
  877. auto& descriptor = getGDTEntry(t->selector());
  878. descriptor.type = 11; // Busy TSS
  879. flushGDT();
  880. return true;
  881. }
  882. Process* Process::fromPID(pid_t pid)
  883. {
  884. ASSERT_INTERRUPTS_DISABLED();
  885. for (auto* process = s_processes->head(); process; process = process->next()) {
  886. if (process->pid() == pid)
  887. return process;
  888. }
  889. return nullptr;
  890. }
  891. FileDescriptor* Process::file_descriptor(int fd)
  892. {
  893. if (fd < 0)
  894. return nullptr;
  895. if ((size_t)fd < m_file_descriptors.size())
  896. return m_file_descriptors[fd].ptr();
  897. return nullptr;
  898. }
  899. const FileDescriptor* Process::file_descriptor(int fd) const
  900. {
  901. if (fd < 0)
  902. return nullptr;
  903. if ((size_t)fd < m_file_descriptors.size())
  904. return m_file_descriptors[fd].ptr();
  905. return nullptr;
  906. }
  907. ssize_t Process::sys$get_dir_entries(int fd, void* buffer, size_t size)
  908. {
  909. VALIDATE_USER_WRITE(buffer, size);
  910. auto* descriptor = file_descriptor(fd);
  911. if (!descriptor)
  912. return -EBADF;
  913. return descriptor->get_dir_entries((byte*)buffer, size);
  914. }
  915. int Process::sys$lseek(int fd, off_t offset, int whence)
  916. {
  917. auto* descriptor = file_descriptor(fd);
  918. if (!descriptor)
  919. return -EBADF;
  920. return descriptor->seek(offset, whence);
  921. }
  922. int Process::sys$ttyname_r(int fd, char* buffer, size_t size)
  923. {
  924. VALIDATE_USER_WRITE(buffer, size);
  925. auto* descriptor = file_descriptor(fd);
  926. if (!descriptor)
  927. return -EBADF;
  928. if (!descriptor->isTTY())
  929. return -ENOTTY;
  930. auto ttyName = descriptor->tty()->ttyName();
  931. if (size < ttyName.length() + 1)
  932. return -ERANGE;
  933. strcpy(buffer, ttyName.characters());
  934. return 0;
  935. }
  936. ssize_t Process::sys$write(int fd, const void* data, size_t size)
  937. {
  938. VALIDATE_USER_READ(data, size);
  939. #ifdef DEBUG_IO
  940. kprintf("Process::sys$write: called(%d, %p, %u)\n", fd, data, size);
  941. #endif
  942. auto* descriptor = file_descriptor(fd);
  943. #ifdef DEBUG_IO
  944. kprintf("Process::sys$write: handle=%p\n", descriptor);
  945. #endif
  946. if (!descriptor)
  947. return -EBADF;
  948. auto nwritten = descriptor->write((const byte*)data, size);
  949. #ifdef DEBUG_IO
  950. kprintf("Process::sys$write: nwritten=%u\n", nwritten);
  951. #endif
  952. return nwritten;
  953. }
  954. ssize_t Process::sys$read(int fd, void* outbuf, size_t nread)
  955. {
  956. VALIDATE_USER_WRITE(outbuf, nread);
  957. #ifdef DEBUG_IO
  958. kprintf("Process::sys$read: called(%d, %p, %u)\n", fd, outbuf, nread);
  959. #endif
  960. auto* descriptor = file_descriptor(fd);
  961. #ifdef DEBUG_IO
  962. kprintf("Process::sys$read: handle=%p\n", descriptor);
  963. #endif
  964. if (!descriptor)
  965. return -EBADF;
  966. if (descriptor->isBlocking()) {
  967. if (!descriptor->hasDataAvailableForRead()) {
  968. m_fdBlockedOnRead = fd;
  969. block(BlockedRead);
  970. sched_yield();
  971. }
  972. }
  973. nread = descriptor->read((byte*)outbuf, nread);
  974. #ifdef DEBUG_IO
  975. kprintf("Process::sys$read: nread=%u\n", nread);
  976. #endif
  977. return nread;
  978. }
  979. int Process::sys$close(int fd)
  980. {
  981. auto* descriptor = file_descriptor(fd);
  982. if (!descriptor)
  983. return -EBADF;
  984. int rc = descriptor->close();
  985. m_file_descriptors[fd] = nullptr;
  986. return rc;
  987. }
  988. int Process::sys$lstat(const char* path, Unix::stat* statbuf)
  989. {
  990. VALIDATE_USER_WRITE(statbuf, sizeof(Unix::stat));
  991. int error;
  992. auto descriptor = VirtualFileSystem::the().open(move(path), error, O_NOFOLLOW_NOERROR, cwdInode());
  993. if (!descriptor)
  994. return error;
  995. descriptor->stat(statbuf);
  996. return 0;
  997. }
  998. int Process::sys$stat(const char* path, Unix::stat* statbuf)
  999. {
  1000. VALIDATE_USER_WRITE(statbuf, sizeof(Unix::stat));
  1001. int error;
  1002. auto descriptor = VirtualFileSystem::the().open(move(path), error, 0, cwdInode());
  1003. if (!descriptor)
  1004. return error;
  1005. descriptor->stat(statbuf);
  1006. return 0;
  1007. }
  1008. int Process::sys$readlink(const char* path, char* buffer, size_t size)
  1009. {
  1010. VALIDATE_USER_READ(path, strlen(path));
  1011. VALIDATE_USER_WRITE(buffer, size);
  1012. int error;
  1013. auto descriptor = VirtualFileSystem::the().open(path, error, O_RDONLY | O_NOFOLLOW_NOERROR, cwdInode());
  1014. if (!descriptor)
  1015. return error;
  1016. if (!descriptor->metadata().isSymbolicLink())
  1017. return -EINVAL;
  1018. auto contents = descriptor->readEntireFile();
  1019. if (!contents)
  1020. return -EIO; // FIXME: Get a more detailed error from VFS.
  1021. memcpy(buffer, contents.pointer(), min(size, contents.size()));
  1022. if (contents.size() + 1 < size)
  1023. buffer[contents.size()] = '\0';
  1024. return 0;
  1025. }
  1026. int Process::sys$chdir(const char* path)
  1027. {
  1028. VALIDATE_USER_READ(path, strlen(path));
  1029. int error;
  1030. auto descriptor = VirtualFileSystem::the().open(path, error, 0, cwdInode());
  1031. if (!descriptor)
  1032. return error;
  1033. if (!descriptor->isDirectory())
  1034. return -ENOTDIR;
  1035. m_cwd = descriptor->vnode();
  1036. return 0;
  1037. }
  1038. int Process::sys$getcwd(char* buffer, size_t size)
  1039. {
  1040. VALIDATE_USER_WRITE(buffer, size);
  1041. auto path = VirtualFileSystem::the().absolutePath(cwdInode());
  1042. if (path.isNull())
  1043. return -EINVAL;
  1044. if (size < path.length() + 1)
  1045. return -ERANGE;
  1046. strcpy(buffer, path.characters());
  1047. return -ENOTIMPL;
  1048. }
  1049. size_t Process::number_of_open_file_descriptors() const
  1050. {
  1051. size_t count = 0;
  1052. for (auto& descriptor : m_file_descriptors) {
  1053. if (descriptor)
  1054. ++count;
  1055. }
  1056. return count;
  1057. }
  1058. int Process::sys$open(const char* path, int options)
  1059. {
  1060. #ifdef DEBUG_IO
  1061. kprintf("Process::sys$open(): PID=%u, path=%s {%u}\n", m_pid, path, pathLength);
  1062. #endif
  1063. VALIDATE_USER_READ(path, strlen(path));
  1064. if (number_of_open_file_descriptors() >= m_max_open_file_descriptors)
  1065. return -EMFILE;
  1066. int error;
  1067. auto descriptor = VirtualFileSystem::the().open(path, error, options, cwdInode());
  1068. if (!descriptor)
  1069. return error;
  1070. if (options & O_DIRECTORY && !descriptor->isDirectory())
  1071. return -ENOTDIR; // FIXME: This should be handled by VFS::open.
  1072. int fd = 0;
  1073. for (; fd < m_max_open_file_descriptors; ++fd) {
  1074. if (!m_file_descriptors[fd])
  1075. break;
  1076. }
  1077. m_file_descriptors[fd] = move(descriptor);
  1078. return fd;
  1079. }
  1080. int Process::sys$uname(utsname* buf)
  1081. {
  1082. VALIDATE_USER_WRITE(buf, sizeof(utsname));
  1083. strcpy(buf->sysname, "Serenity");
  1084. strcpy(buf->release, "1.0-dev");
  1085. strcpy(buf->version, "FIXME");
  1086. strcpy(buf->machine, "i386");
  1087. strcpy(buf->nodename, getHostname().characters());
  1088. return 0;
  1089. }
  1090. int Process::sys$isatty(int fd)
  1091. {
  1092. auto* descriptor = file_descriptor(fd);
  1093. if (!descriptor)
  1094. return -EBADF;
  1095. if (!descriptor->isTTY())
  1096. return -ENOTTY;
  1097. return 1;
  1098. }
  1099. int Process::sys$kill(pid_t pid, int signal)
  1100. {
  1101. if (pid == 0) {
  1102. // FIXME: Send to same-group processes.
  1103. ASSERT(pid != 0);
  1104. }
  1105. if (pid == -1) {
  1106. // FIXME: Send to all processes.
  1107. ASSERT(pid != -1);
  1108. }
  1109. ASSERT(pid != current->pid()); // FIXME: Support this scenario.
  1110. InterruptDisabler disabler;
  1111. auto* peer = Process::fromPID(pid);
  1112. if (!peer)
  1113. return -ESRCH;
  1114. peer->send_signal(signal, this);
  1115. return 0;
  1116. }
  1117. int Process::sys$sleep(unsigned seconds)
  1118. {
  1119. if (!seconds)
  1120. return 0;
  1121. sleep(seconds * TICKS_PER_SECOND);
  1122. return 0;
  1123. }
  1124. int Process::sys$gettimeofday(timeval* tv)
  1125. {
  1126. VALIDATE_USER_WRITE(tv, sizeof(tv));
  1127. InterruptDisabler disabler;
  1128. auto now = RTC::now();
  1129. tv->tv_sec = now;
  1130. tv->tv_usec = 0;
  1131. return 0;
  1132. }
  1133. uid_t Process::sys$getuid()
  1134. {
  1135. return m_uid;
  1136. }
  1137. gid_t Process::sys$getgid()
  1138. {
  1139. return m_gid;
  1140. }
  1141. uid_t Process::sys$geteuid()
  1142. {
  1143. return m_euid;
  1144. }
  1145. gid_t Process::sys$getegid()
  1146. {
  1147. return m_egid;
  1148. }
  1149. pid_t Process::sys$getpid()
  1150. {
  1151. return m_pid;
  1152. }
  1153. pid_t Process::sys$getppid()
  1154. {
  1155. return m_ppid;
  1156. }
  1157. mode_t Process::sys$umask(mode_t mask)
  1158. {
  1159. auto old_mask = m_umask;
  1160. m_umask = mask;
  1161. return old_mask;
  1162. }
  1163. pid_t Process::sys$waitpid(pid_t waitee, int* wstatus, int options)
  1164. {
  1165. if (wstatus)
  1166. VALIDATE_USER_WRITE(wstatus, sizeof(int));
  1167. InterruptDisabler disabler;
  1168. if (!Process::fromPID(waitee))
  1169. return -1;
  1170. m_waitee = waitee;
  1171. m_waiteeStatus = 0;
  1172. block(BlockedWait);
  1173. sched_yield();
  1174. if (wstatus)
  1175. *wstatus = m_waiteeStatus;
  1176. return m_waitee;
  1177. }
  1178. void Process::unblock()
  1179. {
  1180. ASSERT(m_state != Process::Runnable && m_state != Process::Running);
  1181. system.nblocked--;
  1182. m_state = Process::Runnable;
  1183. }
  1184. void Process::block(Process::State state)
  1185. {
  1186. ASSERT(current->state() == Process::Running);
  1187. system.nblocked++;
  1188. current->set_state(state);
  1189. }
  1190. void block(Process::State state)
  1191. {
  1192. current->block(state);
  1193. sched_yield();
  1194. }
  1195. void sleep(DWORD ticks)
  1196. {
  1197. ASSERT(current->state() == Process::Running);
  1198. current->setWakeupTime(system.uptime + ticks);
  1199. current->block(Process::BlockedSleep);
  1200. sched_yield();
  1201. }
  1202. Process* Process::kernelProcess()
  1203. {
  1204. ASSERT(s_kernelProcess);
  1205. return s_kernelProcess;
  1206. }
  1207. bool Process::isValidAddressForKernel(LinearAddress laddr) const
  1208. {
  1209. // We check extra carefully here since the first 4MB of the address space is identity-mapped.
  1210. // This code allows access outside of the known used address ranges to get caught.
  1211. InterruptDisabler disabler;
  1212. if (laddr.get() >= ksyms().first().address && laddr.get() <= ksyms().last().address)
  1213. return true;
  1214. if (is_kmalloc_address((void*)laddr.get()))
  1215. return true;
  1216. return validate_user_read(laddr);
  1217. }
  1218. bool Process::validate_user_read(LinearAddress laddr) const
  1219. {
  1220. InterruptDisabler disabler;
  1221. return MM.validate_user_read(*this, laddr);
  1222. }
  1223. bool Process::validate_user_write(LinearAddress laddr) const
  1224. {
  1225. InterruptDisabler disabler;
  1226. return MM.validate_user_write(*this, laddr);
  1227. }
  1228. pid_t Process::sys$getsid(pid_t pid)
  1229. {
  1230. if (pid == 0)
  1231. return m_sid;
  1232. InterruptDisabler disabler;
  1233. auto* process = Process::fromPID(pid);
  1234. if (!process)
  1235. return -ESRCH;
  1236. if (m_sid != process->m_sid)
  1237. return -EPERM;
  1238. return process->m_sid;
  1239. }
  1240. pid_t Process::sys$setsid()
  1241. {
  1242. InterruptDisabler disabler;
  1243. bool found_process_with_same_pgid_as_my_pid = false;
  1244. forEachProcess([&] (auto& process) {
  1245. if (process.pgid() == pid()) {
  1246. found_process_with_same_pgid_as_my_pid = true;
  1247. return false;
  1248. }
  1249. return true;
  1250. });
  1251. if (found_process_with_same_pgid_as_my_pid)
  1252. return -EPERM;
  1253. m_sid = m_pid;
  1254. m_pgid = m_pid;
  1255. return m_sid;
  1256. }
  1257. pid_t Process::sys$getpgid(pid_t pid)
  1258. {
  1259. if (pid == 0)
  1260. return m_pgid;
  1261. InterruptDisabler disabler; // FIXME: Use a ProcessHandle
  1262. auto* process = Process::fromPID(pid);
  1263. if (!process)
  1264. return -ESRCH;
  1265. return process->m_pgid;
  1266. }
  1267. pid_t Process::sys$getpgrp()
  1268. {
  1269. return m_pgid;
  1270. }
  1271. static pid_t get_sid_from_pgid(pid_t pgid)
  1272. {
  1273. InterruptDisabler disabler;
  1274. auto* group_leader = Process::fromPID(pgid);
  1275. if (!group_leader)
  1276. return -1;
  1277. return group_leader->sid();
  1278. }
  1279. int Process::sys$setpgid(pid_t specified_pid, pid_t specified_pgid)
  1280. {
  1281. InterruptDisabler disabler; // FIXME: Use a ProcessHandle
  1282. pid_t pid = specified_pid ? specified_pid : m_pid;
  1283. if (specified_pgid < 0)
  1284. return -EINVAL;
  1285. auto* process = Process::fromPID(pid);
  1286. if (!process)
  1287. return -ESRCH;
  1288. pid_t new_pgid = specified_pgid ? specified_pgid : process->m_pid;
  1289. pid_t current_sid = get_sid_from_pgid(process->m_pgid);
  1290. pid_t new_sid = get_sid_from_pgid(new_pgid);
  1291. if (current_sid != new_sid) {
  1292. // Can't move a process between sessions.
  1293. return -EPERM;
  1294. }
  1295. // FIXME: There are more EPERM conditions to check for here..
  1296. process->m_pgid = new_pgid;
  1297. return 0;
  1298. }
  1299. pid_t Process::sys$tcgetpgrp(int fd)
  1300. {
  1301. auto* descriptor = file_descriptor(fd);
  1302. if (!descriptor)
  1303. return -EBADF;
  1304. if (!descriptor->isTTY())
  1305. return -ENOTTY;
  1306. auto& tty = *descriptor->tty();
  1307. if (&tty != m_tty)
  1308. return -ENOTTY;
  1309. return tty.pgid();
  1310. }
  1311. int Process::sys$tcsetpgrp(int fd, pid_t pgid)
  1312. {
  1313. if (pgid < 0)
  1314. return -EINVAL;
  1315. if (get_sid_from_pgid(pgid) != m_sid)
  1316. return -EINVAL;
  1317. auto* descriptor = file_descriptor(fd);
  1318. if (!descriptor)
  1319. return -EBADF;
  1320. if (!descriptor->isTTY())
  1321. return -ENOTTY;
  1322. auto& tty = *descriptor->tty();
  1323. if (&tty != m_tty)
  1324. return -ENOTTY;
  1325. tty.set_pgid(pgid);
  1326. return 0;
  1327. }
  1328. int Process::sys$getdtablesize()
  1329. {
  1330. return m_max_open_file_descriptors;
  1331. }
  1332. int Process::sys$dup(int old_fd)
  1333. {
  1334. auto* descriptor = file_descriptor(old_fd);
  1335. if (!descriptor)
  1336. return -EBADF;
  1337. if (number_of_open_file_descriptors() == m_max_open_file_descriptors)
  1338. return -EMFILE;
  1339. int new_fd = 0;
  1340. for (; new_fd < m_max_open_file_descriptors; ++new_fd) {
  1341. if (!m_file_descriptors[new_fd])
  1342. break;
  1343. }
  1344. m_file_descriptors[new_fd] = descriptor;
  1345. return new_fd;
  1346. }
  1347. int Process::sys$dup2(int old_fd, int new_fd)
  1348. {
  1349. auto* descriptor = file_descriptor(old_fd);
  1350. if (!descriptor)
  1351. return -EBADF;
  1352. if (number_of_open_file_descriptors() == m_max_open_file_descriptors)
  1353. return -EMFILE;
  1354. m_file_descriptors[new_fd] = descriptor;
  1355. return new_fd;
  1356. }
  1357. Unix::sighandler_t Process::sys$signal(int signum, Unix::sighandler_t handler)
  1358. {
  1359. // FIXME: Fail with -EINVAL if attepmting to catch or ignore SIGKILL or SIGSTOP.
  1360. if (signum >= 32)
  1361. return (Unix::sighandler_t)-EINVAL;
  1362. dbgprintf("sys$signal: %d => L%x\n", signum, handler);
  1363. return nullptr;
  1364. }
  1365. int Process::sys$sigaction(int signum, const Unix::sigaction* act, Unix::sigaction* old_act)
  1366. {
  1367. // FIXME: Fail with -EINVAL if attepmting to change action for SIGKILL or SIGSTOP.
  1368. if (signum >= 32)
  1369. return -EINVAL;
  1370. VALIDATE_USER_READ(act, sizeof(Unix::sigaction));
  1371. InterruptDisabler disabler; // FIXME: This should use a narrower lock.
  1372. auto& action = m_signal_action_data[signum];
  1373. if (old_act) {
  1374. VALIDATE_USER_WRITE(old_act, sizeof(Unix::sigaction));
  1375. old_act->sa_flags = action.flags;
  1376. old_act->sa_restorer = (decltype(old_act->sa_restorer))action.restorer.get();
  1377. old_act->sa_sigaction = (decltype(old_act->sa_sigaction))action.handler_or_sigaction.get();
  1378. }
  1379. action.restorer = LinearAddress((dword)act->sa_restorer);
  1380. action.flags = act->sa_flags;
  1381. action.handler_or_sigaction = LinearAddress((dword)act->sa_sigaction);
  1382. return 0;
  1383. }
  1384. int Process::sys$getgroups(int count, gid_t* gids)
  1385. {
  1386. if (count < 0)
  1387. return -EINVAL;
  1388. ASSERT(m_gids.size() < MAX_PROCESS_GIDS);
  1389. if (!count)
  1390. return m_gids.size();
  1391. if (count != m_gids.size())
  1392. return -EINVAL;
  1393. VALIDATE_USER_WRITE(gids, sizeof(gid_t) * count);
  1394. size_t i = 0;
  1395. for (auto gid : m_gids)
  1396. gids[i++] = gid;
  1397. return 0;
  1398. }
  1399. int Process::sys$setgroups(size_t count, const gid_t* gids)
  1400. {
  1401. if (!is_root())
  1402. return -EPERM;
  1403. if (count >= MAX_PROCESS_GIDS)
  1404. return -EINVAL;
  1405. VALIDATE_USER_READ(gids, sizeof(gid_t) * count);
  1406. m_gids.clear();
  1407. m_gids.set(m_gid);
  1408. for (size_t i = 0; i < count; ++i)
  1409. m_gids.set(gids[i]);
  1410. return 0;
  1411. }