ModularFunctions.cpp 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235
  1. /*
  2. * Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Debug.h>
  7. #include <LibCrypto/BigInt/Algorithms/UnsignedBigIntegerAlgorithms.h>
  8. #include <LibCrypto/NumberTheory/ModularFunctions.h>
  9. namespace Crypto {
  10. namespace NumberTheory {
  11. UnsignedBigInteger ModularInverse(const UnsignedBigInteger& a_, const UnsignedBigInteger& b)
  12. {
  13. if (b == 1)
  14. return { 1 };
  15. UnsignedBigInteger temp_1;
  16. UnsignedBigInteger temp_2;
  17. UnsignedBigInteger temp_3;
  18. UnsignedBigInteger temp_4;
  19. UnsignedBigInteger temp_minus;
  20. UnsignedBigInteger temp_quotient;
  21. UnsignedBigInteger temp_d;
  22. UnsignedBigInteger temp_u;
  23. UnsignedBigInteger temp_v;
  24. UnsignedBigInteger temp_x;
  25. UnsignedBigInteger result;
  26. UnsignedBigIntegerAlgorithms::modular_inverse_without_allocation(a_, b, temp_1, temp_2, temp_3, temp_4, temp_minus, temp_quotient, temp_d, temp_u, temp_v, temp_x, result);
  27. return result;
  28. }
  29. UnsignedBigInteger ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger& e, const UnsignedBigInteger& m)
  30. {
  31. if (m == 1)
  32. return 0;
  33. if (m.is_odd()) {
  34. UnsignedBigInteger temp_z0 { 0 };
  35. UnsignedBigInteger temp_rr { 0 };
  36. UnsignedBigInteger temp_one { 0 };
  37. UnsignedBigInteger temp_z { 0 };
  38. UnsignedBigInteger temp_zz { 0 };
  39. UnsignedBigInteger temp_x { 0 };
  40. UnsignedBigInteger temp_extra { 0 };
  41. UnsignedBigInteger result;
  42. UnsignedBigIntegerAlgorithms::montgomery_modular_power_with_minimal_allocations(b, e, m, temp_z0, temp_rr, temp_one, temp_z, temp_zz, temp_x, temp_extra, result);
  43. return result;
  44. }
  45. UnsignedBigInteger ep { e };
  46. UnsignedBigInteger base { b };
  47. UnsignedBigInteger result;
  48. UnsignedBigInteger temp_1;
  49. UnsignedBigInteger temp_2;
  50. UnsignedBigInteger temp_3;
  51. UnsignedBigInteger temp_4;
  52. UnsignedBigInteger temp_multiply;
  53. UnsignedBigInteger temp_quotient;
  54. UnsignedBigInteger temp_remainder;
  55. UnsignedBigIntegerAlgorithms::destructive_modular_power_without_allocation(ep, base, m, temp_1, temp_2, temp_3, temp_4, temp_multiply, temp_quotient, temp_remainder, result);
  56. return result;
  57. }
  58. UnsignedBigInteger GCD(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
  59. {
  60. UnsignedBigInteger temp_a { a };
  61. UnsignedBigInteger temp_b { b };
  62. UnsignedBigInteger temp_1;
  63. UnsignedBigInteger temp_2;
  64. UnsignedBigInteger temp_3;
  65. UnsignedBigInteger temp_4;
  66. UnsignedBigInteger temp_quotient;
  67. UnsignedBigInteger temp_remainder;
  68. UnsignedBigInteger output;
  69. UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, output);
  70. return output;
  71. }
  72. UnsignedBigInteger LCM(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
  73. {
  74. UnsignedBigInteger temp_a { a };
  75. UnsignedBigInteger temp_b { b };
  76. UnsignedBigInteger temp_1;
  77. UnsignedBigInteger temp_2;
  78. UnsignedBigInteger temp_3;
  79. UnsignedBigInteger temp_4;
  80. UnsignedBigInteger temp_quotient;
  81. UnsignedBigInteger temp_remainder;
  82. UnsignedBigInteger gcd_output;
  83. UnsignedBigInteger output { 0 };
  84. UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, gcd_output);
  85. if (gcd_output == 0) {
  86. dbgln_if(NT_DEBUG, "GCD is zero");
  87. return output;
  88. }
  89. // output = (a / gcd_output) * b
  90. UnsignedBigIntegerAlgorithms::divide_without_allocation(a, gcd_output, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
  91. UnsignedBigIntegerAlgorithms::multiply_without_allocation(temp_quotient, b, temp_1, temp_2, temp_3, output);
  92. dbgln_if(NT_DEBUG, "quot: {} rem: {} out: {}", temp_quotient, temp_remainder, output);
  93. return output;
  94. }
  95. static bool MR_primality_test(UnsignedBigInteger n, const Vector<UnsignedBigInteger, 256>& tests)
  96. {
  97. // Written using Wikipedia:
  98. // https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test
  99. VERIFY(!(n < 4));
  100. auto predecessor = n.minus({ 1 });
  101. auto d = predecessor;
  102. size_t r = 0;
  103. {
  104. auto div_result = d.divided_by(2);
  105. while (div_result.remainder == 0) {
  106. d = div_result.quotient;
  107. div_result = d.divided_by(2);
  108. ++r;
  109. }
  110. }
  111. if (r == 0) {
  112. // n - 1 is odd, so n was even. But there is only one even prime:
  113. return n == 2;
  114. }
  115. for (auto& a : tests) {
  116. // Technically: VERIFY(2 <= a && a <= n - 2)
  117. VERIFY(a < n);
  118. auto x = ModularPower(a, d, n);
  119. if (x == 1 || x == predecessor)
  120. continue;
  121. bool skip_this_witness = false;
  122. // r − 1 iterations.
  123. for (size_t i = 0; i < r - 1; ++i) {
  124. x = ModularPower(x, 2, n);
  125. if (x == predecessor) {
  126. skip_this_witness = true;
  127. break;
  128. }
  129. }
  130. if (skip_this_witness)
  131. continue;
  132. return false; // "composite"
  133. }
  134. return true; // "probably prime"
  135. }
  136. UnsignedBigInteger random_number(const UnsignedBigInteger& min, const UnsignedBigInteger& max_excluded)
  137. {
  138. VERIFY(min < max_excluded);
  139. auto range = max_excluded.minus(min);
  140. UnsignedBigInteger base;
  141. auto size = range.trimmed_length() * sizeof(u32) + 2;
  142. // "+2" is intentional (see below).
  143. auto buffer = ByteBuffer::create_uninitialized(size).release_value(); // FIXME: Handle possible OOM situation.
  144. auto* buf = buffer.data();
  145. fill_with_random(buf, size);
  146. UnsignedBigInteger random { buf, size };
  147. // At this point, `random` is a large number, in the range [0, 256^size).
  148. // To get down to the actual range, we could just compute random % range.
  149. // This introduces "modulo bias". However, since we added 2 to `size`,
  150. // we know that the generated range is at least 65536 times as large as the
  151. // required range! This means that the modulo bias is only 0.0015%, if all
  152. // inputs are chosen adversarially. Let's hope this is good enough.
  153. auto divmod = random.divided_by(range);
  154. // The proper way to fix this is to restart if `divmod.quotient` is maximal.
  155. return divmod.remainder.plus(min);
  156. }
  157. bool is_probably_prime(const UnsignedBigInteger& p)
  158. {
  159. // Is it a small number?
  160. if (p < 49) {
  161. u32 p_value = p.words()[0];
  162. // Is it a very small prime?
  163. if (p_value == 2 || p_value == 3 || p_value == 5 || p_value == 7)
  164. return true;
  165. // Is it the multiple of a very small prime?
  166. if (p_value % 2 == 0 || p_value % 3 == 0 || p_value % 5 == 0 || p_value % 7 == 0)
  167. return false;
  168. // Then it must be a prime, but not a very small prime, like 37.
  169. return true;
  170. }
  171. Vector<UnsignedBigInteger, 256> tests;
  172. // Make some good initial guesses that are guaranteed to find all primes < 2^64.
  173. tests.append(UnsignedBigInteger(2));
  174. tests.append(UnsignedBigInteger(3));
  175. tests.append(UnsignedBigInteger(5));
  176. tests.append(UnsignedBigInteger(7));
  177. tests.append(UnsignedBigInteger(11));
  178. tests.append(UnsignedBigInteger(13));
  179. UnsignedBigInteger seventeen { 17 };
  180. for (size_t i = tests.size(); i < 256; ++i) {
  181. tests.append(random_number(seventeen, p.minus(2)));
  182. }
  183. // Miller-Rabin's "error" is 8^-k. In adversarial cases, it's 4^-k.
  184. // With 200 random numbers, this would mean an error of about 2^-400.
  185. // So we don't need to worry too much about the quality of the random numbers.
  186. return MR_primality_test(p, tests);
  187. }
  188. UnsignedBigInteger random_big_prime(size_t bits)
  189. {
  190. VERIFY(bits >= 33);
  191. UnsignedBigInteger min = UnsignedBigInteger::from_base(10, "6074001000").shift_left(bits - 33);
  192. UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).minus(1);
  193. for (;;) {
  194. auto p = random_number(min, max);
  195. if ((p.words()[0] & 1) == 0) {
  196. // An even number is definitely not a large prime.
  197. continue;
  198. }
  199. if (is_probably_prime(p))
  200. return p;
  201. }
  202. }
  203. }
  204. }