123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 |
- /*
- * Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/Debug.h>
- #include <LibCrypto/BigInt/Algorithms/UnsignedBigIntegerAlgorithms.h>
- #include <LibCrypto/NumberTheory/ModularFunctions.h>
- namespace Crypto {
- namespace NumberTheory {
- UnsignedBigInteger ModularInverse(const UnsignedBigInteger& a_, const UnsignedBigInteger& b)
- {
- if (b == 1)
- return { 1 };
- UnsignedBigInteger temp_1;
- UnsignedBigInteger temp_2;
- UnsignedBigInteger temp_3;
- UnsignedBigInteger temp_4;
- UnsignedBigInteger temp_minus;
- UnsignedBigInteger temp_quotient;
- UnsignedBigInteger temp_d;
- UnsignedBigInteger temp_u;
- UnsignedBigInteger temp_v;
- UnsignedBigInteger temp_x;
- UnsignedBigInteger result;
- UnsignedBigIntegerAlgorithms::modular_inverse_without_allocation(a_, b, temp_1, temp_2, temp_3, temp_4, temp_minus, temp_quotient, temp_d, temp_u, temp_v, temp_x, result);
- return result;
- }
- UnsignedBigInteger ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger& e, const UnsignedBigInteger& m)
- {
- if (m == 1)
- return 0;
- if (m.is_odd()) {
- UnsignedBigInteger temp_z0 { 0 };
- UnsignedBigInteger temp_rr { 0 };
- UnsignedBigInteger temp_one { 0 };
- UnsignedBigInteger temp_z { 0 };
- UnsignedBigInteger temp_zz { 0 };
- UnsignedBigInteger temp_x { 0 };
- UnsignedBigInteger temp_extra { 0 };
- UnsignedBigInteger result;
- UnsignedBigIntegerAlgorithms::montgomery_modular_power_with_minimal_allocations(b, e, m, temp_z0, temp_rr, temp_one, temp_z, temp_zz, temp_x, temp_extra, result);
- return result;
- }
- UnsignedBigInteger ep { e };
- UnsignedBigInteger base { b };
- UnsignedBigInteger result;
- UnsignedBigInteger temp_1;
- UnsignedBigInteger temp_2;
- UnsignedBigInteger temp_3;
- UnsignedBigInteger temp_4;
- UnsignedBigInteger temp_multiply;
- UnsignedBigInteger temp_quotient;
- UnsignedBigInteger temp_remainder;
- UnsignedBigIntegerAlgorithms::destructive_modular_power_without_allocation(ep, base, m, temp_1, temp_2, temp_3, temp_4, temp_multiply, temp_quotient, temp_remainder, result);
- return result;
- }
- UnsignedBigInteger GCD(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
- {
- UnsignedBigInteger temp_a { a };
- UnsignedBigInteger temp_b { b };
- UnsignedBigInteger temp_1;
- UnsignedBigInteger temp_2;
- UnsignedBigInteger temp_3;
- UnsignedBigInteger temp_4;
- UnsignedBigInteger temp_quotient;
- UnsignedBigInteger temp_remainder;
- UnsignedBigInteger output;
- UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, output);
- return output;
- }
- UnsignedBigInteger LCM(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
- {
- UnsignedBigInteger temp_a { a };
- UnsignedBigInteger temp_b { b };
- UnsignedBigInteger temp_1;
- UnsignedBigInteger temp_2;
- UnsignedBigInteger temp_3;
- UnsignedBigInteger temp_4;
- UnsignedBigInteger temp_quotient;
- UnsignedBigInteger temp_remainder;
- UnsignedBigInteger gcd_output;
- UnsignedBigInteger output { 0 };
- UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, gcd_output);
- if (gcd_output == 0) {
- dbgln_if(NT_DEBUG, "GCD is zero");
- return output;
- }
- // output = (a / gcd_output) * b
- UnsignedBigIntegerAlgorithms::divide_without_allocation(a, gcd_output, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
- UnsignedBigIntegerAlgorithms::multiply_without_allocation(temp_quotient, b, temp_1, temp_2, temp_3, output);
- dbgln_if(NT_DEBUG, "quot: {} rem: {} out: {}", temp_quotient, temp_remainder, output);
- return output;
- }
- static bool MR_primality_test(UnsignedBigInteger n, const Vector<UnsignedBigInteger, 256>& tests)
- {
- // Written using Wikipedia:
- // https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test
- VERIFY(!(n < 4));
- auto predecessor = n.minus({ 1 });
- auto d = predecessor;
- size_t r = 0;
- {
- auto div_result = d.divided_by(2);
- while (div_result.remainder == 0) {
- d = div_result.quotient;
- div_result = d.divided_by(2);
- ++r;
- }
- }
- if (r == 0) {
- // n - 1 is odd, so n was even. But there is only one even prime:
- return n == 2;
- }
- for (auto& a : tests) {
- // Technically: VERIFY(2 <= a && a <= n - 2)
- VERIFY(a < n);
- auto x = ModularPower(a, d, n);
- if (x == 1 || x == predecessor)
- continue;
- bool skip_this_witness = false;
- // r − 1 iterations.
- for (size_t i = 0; i < r - 1; ++i) {
- x = ModularPower(x, 2, n);
- if (x == predecessor) {
- skip_this_witness = true;
- break;
- }
- }
- if (skip_this_witness)
- continue;
- return false; // "composite"
- }
- return true; // "probably prime"
- }
- UnsignedBigInteger random_number(const UnsignedBigInteger& min, const UnsignedBigInteger& max_excluded)
- {
- VERIFY(min < max_excluded);
- auto range = max_excluded.minus(min);
- UnsignedBigInteger base;
- auto size = range.trimmed_length() * sizeof(u32) + 2;
- // "+2" is intentional (see below).
- auto buffer = ByteBuffer::create_uninitialized(size).release_value(); // FIXME: Handle possible OOM situation.
- auto* buf = buffer.data();
- fill_with_random(buf, size);
- UnsignedBigInteger random { buf, size };
- // At this point, `random` is a large number, in the range [0, 256^size).
- // To get down to the actual range, we could just compute random % range.
- // This introduces "modulo bias". However, since we added 2 to `size`,
- // we know that the generated range is at least 65536 times as large as the
- // required range! This means that the modulo bias is only 0.0015%, if all
- // inputs are chosen adversarially. Let's hope this is good enough.
- auto divmod = random.divided_by(range);
- // The proper way to fix this is to restart if `divmod.quotient` is maximal.
- return divmod.remainder.plus(min);
- }
- bool is_probably_prime(const UnsignedBigInteger& p)
- {
- // Is it a small number?
- if (p < 49) {
- u32 p_value = p.words()[0];
- // Is it a very small prime?
- if (p_value == 2 || p_value == 3 || p_value == 5 || p_value == 7)
- return true;
- // Is it the multiple of a very small prime?
- if (p_value % 2 == 0 || p_value % 3 == 0 || p_value % 5 == 0 || p_value % 7 == 0)
- return false;
- // Then it must be a prime, but not a very small prime, like 37.
- return true;
- }
- Vector<UnsignedBigInteger, 256> tests;
- // Make some good initial guesses that are guaranteed to find all primes < 2^64.
- tests.append(UnsignedBigInteger(2));
- tests.append(UnsignedBigInteger(3));
- tests.append(UnsignedBigInteger(5));
- tests.append(UnsignedBigInteger(7));
- tests.append(UnsignedBigInteger(11));
- tests.append(UnsignedBigInteger(13));
- UnsignedBigInteger seventeen { 17 };
- for (size_t i = tests.size(); i < 256; ++i) {
- tests.append(random_number(seventeen, p.minus(2)));
- }
- // Miller-Rabin's "error" is 8^-k. In adversarial cases, it's 4^-k.
- // With 200 random numbers, this would mean an error of about 2^-400.
- // So we don't need to worry too much about the quality of the random numbers.
- return MR_primality_test(p, tests);
- }
- UnsignedBigInteger random_big_prime(size_t bits)
- {
- VERIFY(bits >= 33);
- UnsignedBigInteger min = UnsignedBigInteger::from_base(10, "6074001000").shift_left(bits - 33);
- UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).minus(1);
- for (;;) {
- auto p = random_number(min, max);
- if ((p.words()[0] & 1) == 0) {
- // An even number is definitely not a large prime.
- continue;
- }
- if (is_probably_prime(p))
- return p;
- }
- }
- }
- }
|