SoftMMU.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include "SoftMMU.h"
  7. #include "Emulator.h"
  8. #include "MmapRegion.h"
  9. #include "Report.h"
  10. #include <AK/ByteBuffer.h>
  11. #include <AK/Memory.h>
  12. #include <AK/QuickSort.h>
  13. namespace UserspaceEmulator {
  14. SoftMMU::SoftMMU(Emulator& emulator)
  15. : m_emulator(emulator)
  16. {
  17. }
  18. void SoftMMU::add_region(NonnullOwnPtr<Region> region)
  19. {
  20. VERIFY(!find_region({ 0x23, region->base() }));
  21. size_t first_page_in_region = region->base() / PAGE_SIZE;
  22. size_t last_page_in_region = (region->base() + region->size() - 1) / PAGE_SIZE;
  23. for (size_t page = first_page_in_region; page <= last_page_in_region; ++page) {
  24. m_page_to_region_map[page] = region.ptr();
  25. }
  26. m_regions.append(move(region));
  27. quick_sort((Vector<OwnPtr<Region>>&)m_regions, [](auto& a, auto& b) { return a->base() < b->base(); });
  28. }
  29. void SoftMMU::remove_region(Region& region)
  30. {
  31. size_t first_page_in_region = region.base() / PAGE_SIZE;
  32. for (size_t i = 0; i < ceil_div(region.size(), PAGE_SIZE); ++i) {
  33. m_page_to_region_map[first_page_in_region + i] = nullptr;
  34. }
  35. m_regions.remove_first_matching([&](auto& entry) { return entry.ptr() == &region; });
  36. }
  37. void SoftMMU::ensure_split_at(X86::LogicalAddress address)
  38. {
  39. // FIXME: If this fails, call Emulator::dump_backtrace
  40. VERIFY(address.selector() != 0x2b);
  41. u32 offset = address.offset();
  42. VERIFY((offset & (PAGE_SIZE - 1)) == 0);
  43. size_t page_index = address.offset() / PAGE_SIZE;
  44. if (!page_index)
  45. return;
  46. if (m_page_to_region_map[page_index - 1] != m_page_to_region_map[page_index])
  47. return;
  48. if (!m_page_to_region_map[page_index])
  49. return;
  50. // If we get here, we know that the page exists and belongs to a region, that there is
  51. // a previous page, and that it belongs to the same region.
  52. auto* old_region = verify_cast<MmapRegion>(m_page_to_region_map[page_index]);
  53. // dbgln("splitting at {:p}", address.offset());
  54. // dbgln(" old region: {:p}-{:p}", old_region->base(), old_region->end() - 1);
  55. NonnullOwnPtr<MmapRegion> new_region = old_region->split_at(VirtualAddress(offset));
  56. // dbgln(" new region: {:p}-{:p}", new_region->base(), new_region->end() - 1);
  57. // dbgln(" up old region: {:p}-{:p}", old_region->base(), old_region->end() - 1);
  58. size_t first_page_in_region = new_region->base() / PAGE_SIZE;
  59. size_t last_page_in_region = (new_region->base() + new_region->size() - 1) / PAGE_SIZE;
  60. // dbgln(" @ remapping pages {} thru {}", first_page_in_region, last_page_in_region);
  61. for (size_t page = first_page_in_region; page <= last_page_in_region; ++page) {
  62. VERIFY(m_page_to_region_map[page] == old_region);
  63. m_page_to_region_map[page] = new_region.ptr();
  64. }
  65. m_regions.append(move(new_region));
  66. quick_sort((Vector<OwnPtr<Region>>&)m_regions, [](auto& a, auto& b) { return a->base() < b->base(); });
  67. }
  68. void SoftMMU::set_tls_region(NonnullOwnPtr<Region> region)
  69. {
  70. VERIFY(!m_tls_region);
  71. m_tls_region = move(region);
  72. }
  73. ValueWithShadow<u8> SoftMMU::read8(X86::LogicalAddress address)
  74. {
  75. auto* region = find_region(address);
  76. if (!region) {
  77. reportln("SoftMMU::read8: No region for @ {:p}", address.offset());
  78. m_emulator.dump_backtrace();
  79. TODO();
  80. }
  81. if (!region->is_readable()) {
  82. reportln("SoftMMU::read8: Non-readable region @ {:p}", address.offset());
  83. m_emulator.dump_backtrace();
  84. TODO();
  85. }
  86. return region->read8(address.offset() - region->base());
  87. }
  88. ValueWithShadow<u16> SoftMMU::read16(X86::LogicalAddress address)
  89. {
  90. auto* region = find_region(address);
  91. if (!region) {
  92. reportln("SoftMMU::read16: No region for @ {:p}", address.offset());
  93. m_emulator.dump_backtrace();
  94. TODO();
  95. }
  96. if (!region->is_readable()) {
  97. reportln("SoftMMU::read16: Non-readable region @ {:p}", address.offset());
  98. m_emulator.dump_backtrace();
  99. TODO();
  100. }
  101. return region->read16(address.offset() - region->base());
  102. }
  103. ValueWithShadow<u32> SoftMMU::read32(X86::LogicalAddress address)
  104. {
  105. auto* region = find_region(address);
  106. if (!region) {
  107. reportln("SoftMMU::read32: No region for @ {:04x}:{:p}", address.selector(), address.offset());
  108. m_emulator.dump_backtrace();
  109. TODO();
  110. }
  111. if (!region->is_readable()) {
  112. reportln("SoftMMU::read32: Non-readable region @ {:p}", address.offset());
  113. m_emulator.dump_backtrace();
  114. TODO();
  115. }
  116. return region->read32(address.offset() - region->base());
  117. }
  118. ValueWithShadow<u64> SoftMMU::read64(X86::LogicalAddress address)
  119. {
  120. auto* region = find_region(address);
  121. if (!region) {
  122. reportln("SoftMMU::read64: No region for @ {:p}", address.offset());
  123. m_emulator.dump_backtrace();
  124. TODO();
  125. }
  126. if (!region->is_readable()) {
  127. reportln("SoftMMU::read64: Non-readable region @ {:p}", address.offset());
  128. m_emulator.dump_backtrace();
  129. TODO();
  130. }
  131. return region->read64(address.offset() - region->base());
  132. }
  133. ValueWithShadow<u128> SoftMMU::read128(X86::LogicalAddress address)
  134. {
  135. auto* region = find_region(address);
  136. if (!region) {
  137. reportln("SoftMMU::read128: No region for @ {:p}", address.offset());
  138. m_emulator.dump_backtrace();
  139. TODO();
  140. }
  141. if (!region->is_readable()) {
  142. reportln("SoftMMU::read128: Non-readable region @ {:p}", address.offset());
  143. m_emulator.dump_backtrace();
  144. TODO();
  145. }
  146. return region->read128(address.offset() - region->base());
  147. }
  148. ValueWithShadow<u256> SoftMMU::read256(X86::LogicalAddress address)
  149. {
  150. auto* region = find_region(address);
  151. if (!region) {
  152. reportln("SoftMMU::read256: No region for @ {:p}", address.offset());
  153. m_emulator.dump_backtrace();
  154. TODO();
  155. }
  156. if (!region->is_readable()) {
  157. reportln("SoftMMU::read256: Non-readable region @ {:p}", address.offset());
  158. m_emulator.dump_backtrace();
  159. TODO();
  160. }
  161. return region->read256(address.offset() - region->base());
  162. }
  163. void SoftMMU::write8(X86::LogicalAddress address, ValueWithShadow<u8> value)
  164. {
  165. auto* region = find_region(address);
  166. if (!region) {
  167. reportln("SoftMMU::write8: No region for @ {:p}", address.offset());
  168. m_emulator.dump_backtrace();
  169. TODO();
  170. }
  171. if (!region->is_writable()) {
  172. reportln("SoftMMU::write8: Non-writable region @ {:p}", address.offset());
  173. m_emulator.dump_backtrace();
  174. TODO();
  175. }
  176. region->write8(address.offset() - region->base(), value);
  177. }
  178. void SoftMMU::write16(X86::LogicalAddress address, ValueWithShadow<u16> value)
  179. {
  180. auto* region = find_region(address);
  181. if (!region) {
  182. reportln("SoftMMU::write16: No region for @ {:p}", address.offset());
  183. m_emulator.dump_backtrace();
  184. TODO();
  185. }
  186. if (!region->is_writable()) {
  187. reportln("SoftMMU::write16: Non-writable region @ {:p}", address.offset());
  188. m_emulator.dump_backtrace();
  189. TODO();
  190. }
  191. region->write16(address.offset() - region->base(), value);
  192. }
  193. void SoftMMU::write32(X86::LogicalAddress address, ValueWithShadow<u32> value)
  194. {
  195. auto* region = find_region(address);
  196. if (!region) {
  197. reportln("SoftMMU::write32: No region for @ {:p}", address.offset());
  198. m_emulator.dump_backtrace();
  199. TODO();
  200. }
  201. if (!region->is_writable()) {
  202. reportln("SoftMMU::write32: Non-writable region @ {:p}", address.offset());
  203. m_emulator.dump_backtrace();
  204. TODO();
  205. }
  206. region->write32(address.offset() - region->base(), value);
  207. }
  208. void SoftMMU::write64(X86::LogicalAddress address, ValueWithShadow<u64> value)
  209. {
  210. auto* region = find_region(address);
  211. if (!region) {
  212. reportln("SoftMMU::write64: No region for @ {:p}", address.offset());
  213. m_emulator.dump_backtrace();
  214. TODO();
  215. }
  216. if (!region->is_writable()) {
  217. reportln("SoftMMU::write64: Non-writable region @ {:p}", address.offset());
  218. m_emulator.dump_backtrace();
  219. TODO();
  220. }
  221. region->write64(address.offset() - region->base(), value);
  222. }
  223. void SoftMMU::write128(X86::LogicalAddress address, ValueWithShadow<u128> value)
  224. {
  225. auto* region = find_region(address);
  226. if (!region) {
  227. reportln("SoftMMU::write128: No region for @ {:p}", address.offset());
  228. m_emulator.dump_backtrace();
  229. TODO();
  230. }
  231. if (!region->is_writable()) {
  232. reportln("SoftMMU::write128: Non-writable region @ {:p}", address.offset());
  233. m_emulator.dump_backtrace();
  234. TODO();
  235. }
  236. region->write128(address.offset() - region->base(), value);
  237. }
  238. void SoftMMU::write256(X86::LogicalAddress address, ValueWithShadow<u256> value)
  239. {
  240. auto* region = find_region(address);
  241. if (!region) {
  242. reportln("SoftMMU::write256: No region for @ {:p}", address.offset());
  243. m_emulator.dump_backtrace();
  244. TODO();
  245. }
  246. if (!region->is_writable()) {
  247. reportln("SoftMMU::write256: Non-writable region @ {:p}", address.offset());
  248. m_emulator.dump_backtrace();
  249. TODO();
  250. }
  251. region->write256(address.offset() - region->base(), value);
  252. }
  253. void SoftMMU::copy_to_vm(FlatPtr destination, const void* source, size_t size)
  254. {
  255. // FIXME: We should have a way to preserve the shadow data here as well.
  256. for (size_t i = 0; i < size; ++i)
  257. write8({ 0x23, destination + i }, shadow_wrap_as_initialized(((const u8*)source)[i]));
  258. }
  259. void SoftMMU::copy_from_vm(void* destination, const FlatPtr source, size_t size)
  260. {
  261. // FIXME: We should have a way to preserve the shadow data here as well.
  262. for (size_t i = 0; i < size; ++i)
  263. ((u8*)destination)[i] = read8({ 0x23, source + i }).value();
  264. }
  265. ByteBuffer SoftMMU::copy_buffer_from_vm(const FlatPtr source, size_t size)
  266. {
  267. auto buffer = ByteBuffer::create_uninitialized(size).release_value(); // FIXME: Handle possible OOM situation.
  268. copy_from_vm(buffer.data(), source, size);
  269. return buffer;
  270. }
  271. bool SoftMMU::fast_fill_memory8(X86::LogicalAddress address, size_t size, ValueWithShadow<u8> value)
  272. {
  273. if (!size)
  274. return true;
  275. auto* region = find_region(address);
  276. if (!region)
  277. return false;
  278. if (!region->contains(address.offset() + size - 1))
  279. return false;
  280. if (is<MmapRegion>(*region) && static_cast<const MmapRegion&>(*region).is_malloc_block()) {
  281. if (auto* tracer = m_emulator.malloc_tracer()) {
  282. // FIXME: Add a way to audit an entire range of memory instead of looping here!
  283. for (size_t i = 0; i < size; ++i) {
  284. tracer->audit_write(*region, address.offset() + (i * sizeof(u8)), sizeof(u8));
  285. }
  286. }
  287. }
  288. size_t offset_in_region = address.offset() - region->base();
  289. memset(region->data() + offset_in_region, value.value(), size);
  290. memset(region->shadow_data() + offset_in_region, value.shadow(), size);
  291. return true;
  292. }
  293. bool SoftMMU::fast_fill_memory32(X86::LogicalAddress address, size_t count, ValueWithShadow<u32> value)
  294. {
  295. if (!count)
  296. return true;
  297. auto* region = find_region(address);
  298. if (!region)
  299. return false;
  300. if (!region->contains(address.offset() + (count * sizeof(u32)) - 1))
  301. return false;
  302. if (is<MmapRegion>(*region) && static_cast<const MmapRegion&>(*region).is_malloc_block()) {
  303. if (auto* tracer = m_emulator.malloc_tracer()) {
  304. // FIXME: Add a way to audit an entire range of memory instead of looping here!
  305. for (size_t i = 0; i < count; ++i) {
  306. tracer->audit_write(*region, address.offset() + (i * sizeof(u32)), sizeof(u32));
  307. }
  308. }
  309. }
  310. size_t offset_in_region = address.offset() - region->base();
  311. fast_u32_fill((u32*)(region->data() + offset_in_region), value.value(), count);
  312. fast_u32_fill((u32*)(region->shadow_data() + offset_in_region), value.shadow(), count);
  313. return true;
  314. }
  315. }