SVGPathElement.cpp 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267
  1. /*
  2. * Copyright (c) 2020, Matthew Olsson <mattco@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Debug.h>
  7. #include <AK/ExtraMathConstants.h>
  8. #include <LibGfx/Painter.h>
  9. #include <LibGfx/Path.h>
  10. #include <LibWeb/DOM/Document.h>
  11. #include <LibWeb/DOM/Event.h>
  12. #include <LibWeb/Layout/SVGGeometryBox.h>
  13. #include <LibWeb/SVG/SVGPathElement.h>
  14. namespace Web::SVG {
  15. [[maybe_unused]] static void print_instruction(const PathInstruction& instruction)
  16. {
  17. VERIFY(PATH_DEBUG);
  18. auto& data = instruction.data;
  19. switch (instruction.type) {
  20. case PathInstructionType::Move:
  21. dbgln("Move (absolute={})", instruction.absolute);
  22. for (size_t i = 0; i < data.size(); i += 2)
  23. dbgln(" x={}, y={}", data[i], data[i + 1]);
  24. break;
  25. case PathInstructionType::ClosePath:
  26. dbgln("ClosePath (absolute={})", instruction.absolute);
  27. break;
  28. case PathInstructionType::Line:
  29. dbgln("Line (absolute={})", instruction.absolute);
  30. for (size_t i = 0; i < data.size(); i += 2)
  31. dbgln(" x={}, y={}", data[i], data[i + 1]);
  32. break;
  33. case PathInstructionType::HorizontalLine:
  34. dbgln("HorizontalLine (absolute={})", instruction.absolute);
  35. for (size_t i = 0; i < data.size(); ++i)
  36. dbgln(" x={}", data[i]);
  37. break;
  38. case PathInstructionType::VerticalLine:
  39. dbgln("VerticalLine (absolute={})", instruction.absolute);
  40. for (size_t i = 0; i < data.size(); ++i)
  41. dbgln(" y={}", data[i]);
  42. break;
  43. case PathInstructionType::Curve:
  44. dbgln("Curve (absolute={})", instruction.absolute);
  45. for (size_t i = 0; i < data.size(); i += 6)
  46. dbgln(" (x1={}, y1={}, x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3], data[i + 4], data[i + 5]);
  47. break;
  48. case PathInstructionType::SmoothCurve:
  49. dbgln("SmoothCurve (absolute={})", instruction.absolute);
  50. for (size_t i = 0; i < data.size(); i += 4)
  51. dbgln(" (x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]);
  52. break;
  53. case PathInstructionType::QuadraticBezierCurve:
  54. dbgln("QuadraticBezierCurve (absolute={})", instruction.absolute);
  55. for (size_t i = 0; i < data.size(); i += 4)
  56. dbgln(" (x1={}, y1={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]);
  57. break;
  58. case PathInstructionType::SmoothQuadraticBezierCurve:
  59. dbgln("SmoothQuadraticBezierCurve (absolute={})", instruction.absolute);
  60. for (size_t i = 0; i < data.size(); i += 2)
  61. dbgln(" x={}, y={}", data[i], data[i + 1]);
  62. break;
  63. case PathInstructionType::EllipticalArc:
  64. dbgln("EllipticalArc (absolute={})", instruction.absolute);
  65. for (size_t i = 0; i < data.size(); i += 7)
  66. dbgln(" (rx={}, ry={}) x-axis-rotation={}, large-arc-flag={}, sweep-flag={}, (x={}, y={})",
  67. data[i],
  68. data[i + 1],
  69. data[i + 2],
  70. data[i + 3],
  71. data[i + 4],
  72. data[i + 5],
  73. data[i + 6]);
  74. break;
  75. case PathInstructionType::Invalid:
  76. dbgln("Invalid");
  77. break;
  78. }
  79. }
  80. SVGPathElement::SVGPathElement(DOM::Document& document, QualifiedName qualified_name)
  81. : SVGGeometryElement(document, move(qualified_name))
  82. {
  83. }
  84. void SVGPathElement::parse_attribute(const FlyString& name, const String& value)
  85. {
  86. SVGGeometryElement::parse_attribute(name, value);
  87. if (name == "d")
  88. m_instructions = AttributeParser(value).parse_path_data();
  89. }
  90. Gfx::Path& SVGPathElement::get_path()
  91. {
  92. if (m_path.has_value())
  93. return m_path.value();
  94. Gfx::Path path;
  95. PathInstructionType last_instruction = PathInstructionType::Invalid;
  96. for (auto& instruction : m_instructions) {
  97. // If the first path element uses relative coordinates, we treat them as absolute by making them relative to (0, 0).
  98. auto last_point = path.segments().is_empty() ? Gfx::FloatPoint { 0, 0 } : path.segments().last().point();
  99. auto& absolute = instruction.absolute;
  100. auto& data = instruction.data;
  101. if constexpr (PATH_DEBUG) {
  102. print_instruction(instruction);
  103. }
  104. bool clear_last_control_point = true;
  105. switch (instruction.type) {
  106. case PathInstructionType::Move: {
  107. Gfx::FloatPoint point = { data[0], data[1] };
  108. if (absolute) {
  109. path.move_to(point);
  110. } else {
  111. path.move_to(point + last_point);
  112. }
  113. break;
  114. }
  115. case PathInstructionType::ClosePath:
  116. path.close();
  117. break;
  118. case PathInstructionType::Line: {
  119. Gfx::FloatPoint point = { data[0], data[1] };
  120. if (absolute) {
  121. path.line_to(point);
  122. } else {
  123. path.line_to(point + last_point);
  124. }
  125. break;
  126. }
  127. case PathInstructionType::HorizontalLine: {
  128. if (absolute)
  129. path.line_to(Gfx::FloatPoint { data[0], last_point.y() });
  130. else
  131. path.line_to(Gfx::FloatPoint { data[0] + last_point.x(), last_point.y() });
  132. break;
  133. }
  134. case PathInstructionType::VerticalLine: {
  135. if (absolute)
  136. path.line_to(Gfx::FloatPoint { last_point.x(), data[0] });
  137. else
  138. path.line_to(Gfx::FloatPoint { last_point.x(), data[0] + last_point.y() });
  139. break;
  140. }
  141. case PathInstructionType::EllipticalArc: {
  142. double rx = data[0];
  143. double ry = data[1];
  144. double x_axis_rotation = double { data[2] } * M_DEG2RAD;
  145. double large_arc_flag = data[3];
  146. double sweep_flag = data[4];
  147. Gfx::FloatPoint next_point;
  148. if (absolute)
  149. next_point = { data[5], data[6] };
  150. else
  151. next_point = { data[5] + last_point.x(), data[6] + last_point.y() };
  152. path.elliptical_arc_to(next_point, { rx, ry }, x_axis_rotation, large_arc_flag != 0, sweep_flag != 0);
  153. break;
  154. }
  155. case PathInstructionType::QuadraticBezierCurve: {
  156. clear_last_control_point = false;
  157. Gfx::FloatPoint through = { data[0], data[1] };
  158. Gfx::FloatPoint point = { data[2], data[3] };
  159. if (absolute) {
  160. path.quadratic_bezier_curve_to(through, point);
  161. m_previous_control_point = through;
  162. } else {
  163. auto control_point = through + last_point;
  164. path.quadratic_bezier_curve_to(control_point, point + last_point);
  165. m_previous_control_point = control_point;
  166. }
  167. break;
  168. }
  169. case PathInstructionType::SmoothQuadraticBezierCurve: {
  170. clear_last_control_point = false;
  171. if (m_previous_control_point.is_null()
  172. || ((last_instruction != PathInstructionType::QuadraticBezierCurve) && (last_instruction != PathInstructionType::SmoothQuadraticBezierCurve))) {
  173. m_previous_control_point = last_point;
  174. }
  175. auto dx_end_control = last_point.dx_relative_to(m_previous_control_point);
  176. auto dy_end_control = last_point.dy_relative_to(m_previous_control_point);
  177. auto control_point = Gfx::FloatPoint { last_point.x() + dx_end_control, last_point.y() + dy_end_control };
  178. Gfx::FloatPoint end_point = { data[0], data[1] };
  179. if (absolute) {
  180. path.quadratic_bezier_curve_to(control_point, end_point);
  181. } else {
  182. path.quadratic_bezier_curve_to(control_point, end_point + last_point);
  183. }
  184. m_previous_control_point = control_point;
  185. break;
  186. }
  187. case PathInstructionType::Curve: {
  188. clear_last_control_point = false;
  189. Gfx::FloatPoint c1 = { data[0], data[1] };
  190. Gfx::FloatPoint c2 = { data[2], data[3] };
  191. Gfx::FloatPoint p2 = { data[4], data[5] };
  192. if (!absolute) {
  193. p2 += last_point;
  194. c1 += last_point;
  195. c2 += last_point;
  196. }
  197. path.cubic_bezier_curve_to(c1, c2, p2);
  198. m_previous_control_point = c2;
  199. break;
  200. }
  201. case PathInstructionType::SmoothCurve: {
  202. clear_last_control_point = false;
  203. if (m_previous_control_point.is_null()
  204. || ((last_instruction != PathInstructionType::Curve) && (last_instruction != PathInstructionType::SmoothCurve))) {
  205. m_previous_control_point = last_point;
  206. }
  207. auto reflected_previous_control_x = last_point.dx_relative_to(m_previous_control_point);
  208. auto reflected_previous_control_y = last_point.dy_relative_to(m_previous_control_point);
  209. Gfx::FloatPoint c1 = Gfx::FloatPoint { reflected_previous_control_x, reflected_previous_control_y };
  210. Gfx::FloatPoint c2 = { data[0], data[1] };
  211. Gfx::FloatPoint p2 = { data[2], data[3] };
  212. if (!absolute) {
  213. p2 += last_point;
  214. c1 += last_point;
  215. c2 += last_point;
  216. }
  217. path.cubic_bezier_curve_to(c1, c2, p2);
  218. m_previous_control_point = c2;
  219. break;
  220. }
  221. case PathInstructionType::Invalid:
  222. VERIFY_NOT_REACHED();
  223. }
  224. if (clear_last_control_point) {
  225. m_previous_control_point = Gfx::FloatPoint {};
  226. }
  227. last_instruction = instruction.type;
  228. }
  229. m_path = path;
  230. return m_path.value();
  231. }
  232. }