Device.cpp 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724
  1. /*
  2. * Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
  3. * Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
  4. * Copyright (c) 2022, Jelle Raaijmakers <jelle@gmta.nl>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/AnyOf.h>
  9. #include <AK/Error.h>
  10. #include <AK/Math.h>
  11. #include <AK/NumericLimits.h>
  12. #include <AK/SIMDExtras.h>
  13. #include <AK/SIMDMath.h>
  14. #include <LibCore/ElapsedTimer.h>
  15. #include <LibGfx/Painter.h>
  16. #include <LibGfx/Vector2.h>
  17. #include <LibGfx/Vector3.h>
  18. #include <LibSoftGPU/Config.h>
  19. #include <LibSoftGPU/Device.h>
  20. #include <LibSoftGPU/Image.h>
  21. #include <LibSoftGPU/PixelConverter.h>
  22. #include <LibSoftGPU/PixelQuad.h>
  23. #include <LibSoftGPU/SIMD.h>
  24. #include <LibSoftGPU/Shader.h>
  25. #include <math.h>
  26. namespace SoftGPU {
  27. static i64 g_num_rasterized_triangles;
  28. static i64 g_num_pixels;
  29. static i64 g_num_pixels_shaded;
  30. static i64 g_num_pixels_blended;
  31. static i64 g_num_sampler_calls;
  32. static i64 g_num_stencil_writes;
  33. static i64 g_num_quads;
  34. using AK::abs;
  35. using AK::SIMD::any;
  36. using AK::SIMD::exp;
  37. using AK::SIMD::expand4;
  38. using AK::SIMD::f32x4;
  39. using AK::SIMD::i32x4;
  40. using AK::SIMD::load4_masked;
  41. using AK::SIMD::maskbits;
  42. using AK::SIMD::maskcount;
  43. using AK::SIMD::store4_masked;
  44. using AK::SIMD::to_f32x4;
  45. using AK::SIMD::to_u32x4;
  46. using AK::SIMD::u32x4;
  47. static constexpr int subpixel_factor = 1 << SUBPIXEL_BITS;
  48. // Returns positive values for counter-clockwise rotation of vertices. Note that it returns the
  49. // area of a parallelogram with sides {a, b} and {b, c}, so _double_ the area of the triangle {a, b, c}.
  50. constexpr static i32 edge_function(IntVector2 const& a, IntVector2 const& b, IntVector2 const& c)
  51. {
  52. return (c.y() - a.y()) * (b.x() - a.x()) - (c.x() - a.x()) * (b.y() - a.y());
  53. }
  54. constexpr static i32x4 edge_function4(IntVector2 const& a, IntVector2 const& b, Vector2<i32x4> const& c)
  55. {
  56. return (c.y() - a.y()) * (b.x() - a.x()) - (c.x() - a.x()) * (b.y() - a.y());
  57. }
  58. template<typename T, typename U>
  59. constexpr static auto interpolate(T const& v0, T const& v1, T const& v2, Vector3<U> const& barycentric_coords)
  60. {
  61. return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
  62. }
  63. static GPU::ColorType to_argb32(FloatVector4 const& color)
  64. {
  65. auto clamped = color.clamped(0.0f, 1.0f);
  66. auto r = static_cast<u8>(clamped.x() * 255);
  67. auto g = static_cast<u8>(clamped.y() * 255);
  68. auto b = static_cast<u8>(clamped.z() * 255);
  69. auto a = static_cast<u8>(clamped.w() * 255);
  70. return a << 24 | r << 16 | g << 8 | b;
  71. }
  72. ALWAYS_INLINE static u32x4 to_argb32(Vector4<f32x4> const& color)
  73. {
  74. auto clamped = color.clamped(expand4(0.0f), expand4(1.0f));
  75. auto r = to_u32x4(clamped.x() * 255);
  76. auto g = to_u32x4(clamped.y() * 255);
  77. auto b = to_u32x4(clamped.z() * 255);
  78. auto a = to_u32x4(clamped.w() * 255);
  79. return a << 24 | r << 16 | g << 8 | b;
  80. }
  81. static Vector4<f32x4> to_vec4(u32x4 bgra)
  82. {
  83. auto constexpr one_over_255 = expand4(1.0f / 255);
  84. return {
  85. to_f32x4((bgra >> 16) & 0xff) * one_over_255,
  86. to_f32x4((bgra >> 8) & 0xff) * one_over_255,
  87. to_f32x4(bgra & 0xff) * one_over_255,
  88. to_f32x4((bgra >> 24) & 0xff) * one_over_255,
  89. };
  90. }
  91. void Device::setup_blend_factors()
  92. {
  93. m_alpha_blend_factors = {};
  94. switch (m_options.blend_source_factor) {
  95. case GPU::BlendFactor::Zero:
  96. break;
  97. case GPU::BlendFactor::One:
  98. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  99. break;
  100. case GPU::BlendFactor::SrcColor:
  101. m_alpha_blend_factors.src_factor_src_color = 1;
  102. break;
  103. case GPU::BlendFactor::OneMinusSrcColor:
  104. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  105. m_alpha_blend_factors.src_factor_src_color = -1;
  106. break;
  107. case GPU::BlendFactor::SrcAlpha:
  108. m_alpha_blend_factors.src_factor_src_alpha = 1;
  109. break;
  110. case GPU::BlendFactor::OneMinusSrcAlpha:
  111. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  112. m_alpha_blend_factors.src_factor_src_alpha = -1;
  113. break;
  114. case GPU::BlendFactor::DstAlpha:
  115. m_alpha_blend_factors.src_factor_dst_alpha = 1;
  116. break;
  117. case GPU::BlendFactor::OneMinusDstAlpha:
  118. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  119. m_alpha_blend_factors.src_factor_dst_alpha = -1;
  120. break;
  121. case GPU::BlendFactor::DstColor:
  122. m_alpha_blend_factors.src_factor_dst_color = 1;
  123. break;
  124. case GPU::BlendFactor::OneMinusDstColor:
  125. m_alpha_blend_factors.src_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  126. m_alpha_blend_factors.src_factor_dst_color = -1;
  127. break;
  128. case GPU::BlendFactor::SrcAlphaSaturate:
  129. default:
  130. VERIFY_NOT_REACHED();
  131. }
  132. switch (m_options.blend_destination_factor) {
  133. case GPU::BlendFactor::Zero:
  134. break;
  135. case GPU::BlendFactor::One:
  136. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  137. break;
  138. case GPU::BlendFactor::SrcColor:
  139. m_alpha_blend_factors.dst_factor_src_color = 1;
  140. break;
  141. case GPU::BlendFactor::OneMinusSrcColor:
  142. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  143. m_alpha_blend_factors.dst_factor_src_color = -1;
  144. break;
  145. case GPU::BlendFactor::SrcAlpha:
  146. m_alpha_blend_factors.dst_factor_src_alpha = 1;
  147. break;
  148. case GPU::BlendFactor::OneMinusSrcAlpha:
  149. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  150. m_alpha_blend_factors.dst_factor_src_alpha = -1;
  151. break;
  152. case GPU::BlendFactor::DstAlpha:
  153. m_alpha_blend_factors.dst_factor_dst_alpha = 1;
  154. break;
  155. case GPU::BlendFactor::OneMinusDstAlpha:
  156. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  157. m_alpha_blend_factors.dst_factor_dst_alpha = -1;
  158. break;
  159. case GPU::BlendFactor::DstColor:
  160. m_alpha_blend_factors.dst_factor_dst_color = 1;
  161. break;
  162. case GPU::BlendFactor::OneMinusDstColor:
  163. m_alpha_blend_factors.dst_constant = { 1.0f, 1.0f, 1.0f, 1.0f };
  164. m_alpha_blend_factors.dst_factor_dst_color = -1;
  165. break;
  166. case GPU::BlendFactor::SrcAlphaSaturate:
  167. default:
  168. VERIFY_NOT_REACHED();
  169. }
  170. }
  171. ALWAYS_INLINE static void test_alpha(PixelQuad& quad, GPU::AlphaTestFunction alpha_test_function, f32x4 const& reference_value)
  172. {
  173. auto const alpha = quad.out_color.w();
  174. switch (alpha_test_function) {
  175. case GPU::AlphaTestFunction::Always:
  176. quad.mask &= expand4(~0);
  177. break;
  178. case GPU::AlphaTestFunction::Equal:
  179. quad.mask &= alpha == reference_value;
  180. break;
  181. case GPU::AlphaTestFunction::Greater:
  182. quad.mask &= alpha > reference_value;
  183. break;
  184. case GPU::AlphaTestFunction::GreaterOrEqual:
  185. quad.mask &= alpha >= reference_value;
  186. break;
  187. case GPU::AlphaTestFunction::Less:
  188. quad.mask &= alpha < reference_value;
  189. break;
  190. case GPU::AlphaTestFunction::LessOrEqual:
  191. quad.mask &= alpha <= reference_value;
  192. break;
  193. case GPU::AlphaTestFunction::NotEqual:
  194. quad.mask &= alpha != reference_value;
  195. break;
  196. case GPU::AlphaTestFunction::Never:
  197. default:
  198. VERIFY_NOT_REACHED();
  199. }
  200. }
  201. template<typename CB1, typename CB2, typename CB3>
  202. ALWAYS_INLINE void Device::rasterize(Gfx::IntRect& render_bounds, CB1 set_coverage_mask, CB2 set_quad_depth, CB3 set_quad_attributes)
  203. {
  204. // Return if alpha testing is a no-op
  205. if (m_options.enable_alpha_test && m_options.alpha_test_func == GPU::AlphaTestFunction::Never)
  206. return;
  207. auto const alpha_test_ref_value = expand4(m_options.alpha_test_ref_value);
  208. // Buffers
  209. auto color_buffer = m_frame_buffer->color_buffer();
  210. auto depth_buffer = m_frame_buffer->depth_buffer();
  211. auto stencil_buffer = m_frame_buffer->stencil_buffer();
  212. // Stencil configuration and writing
  213. auto const& stencil_configuration = m_stencil_configuration[GPU::Face::Front];
  214. auto const stencil_reference_value = stencil_configuration.reference_value & stencil_configuration.test_mask;
  215. auto write_to_stencil = [](GPU::StencilType* stencil_ptrs[4], i32x4 stencil_value, GPU::StencilOperation op, GPU::StencilType reference_value, GPU::StencilType write_mask, i32x4 pixel_mask) {
  216. if (write_mask == 0 || op == GPU::StencilOperation::Keep)
  217. return;
  218. switch (op) {
  219. case GPU::StencilOperation::Decrement:
  220. stencil_value = (stencil_value & ~write_mask) | (max(stencil_value - 1, expand4(0)) & write_mask);
  221. break;
  222. case GPU::StencilOperation::DecrementWrap:
  223. stencil_value = (stencil_value & ~write_mask) | (((stencil_value - 1) & 0xFF) & write_mask);
  224. break;
  225. case GPU::StencilOperation::Increment:
  226. stencil_value = (stencil_value & ~write_mask) | (min(stencil_value + 1, expand4(0xFF)) & write_mask);
  227. break;
  228. case GPU::StencilOperation::IncrementWrap:
  229. stencil_value = (stencil_value & ~write_mask) | (((stencil_value + 1) & 0xFF) & write_mask);
  230. break;
  231. case GPU::StencilOperation::Invert:
  232. stencil_value ^= write_mask;
  233. break;
  234. case GPU::StencilOperation::Replace:
  235. stencil_value = (stencil_value & ~write_mask) | (reference_value & write_mask);
  236. break;
  237. case GPU::StencilOperation::Zero:
  238. stencil_value &= ~write_mask;
  239. break;
  240. default:
  241. VERIFY_NOT_REACHED();
  242. }
  243. INCREASE_STATISTICS_COUNTER(g_num_stencil_writes, maskcount(pixel_mask));
  244. store4_masked(stencil_value, stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], pixel_mask);
  245. };
  246. // Limit rendering to framebuffer and scissor rects
  247. render_bounds.intersect(m_frame_buffer->rect());
  248. if (m_options.scissor_enabled)
  249. render_bounds.intersect(m_options.scissor_box);
  250. // Quad bounds
  251. auto const render_bounds_left = render_bounds.left();
  252. auto const render_bounds_right = render_bounds.right();
  253. auto const render_bounds_top = render_bounds.top();
  254. auto const render_bounds_bottom = render_bounds.bottom();
  255. auto const qx0 = render_bounds_left & ~1;
  256. auto const qx1 = render_bounds_right & ~1;
  257. auto const qy0 = render_bounds_top & ~1;
  258. auto const qy1 = render_bounds_bottom & ~1;
  259. // Rasterize all quads
  260. // FIXME: this could be embarrassingly parallel
  261. for (int qy = qy0; qy <= qy1; qy += 2) {
  262. for (int qx = qx0; qx <= qx1; qx += 2) {
  263. PixelQuad quad;
  264. quad.screen_coordinates = {
  265. i32x4 { qx, qx + 1, qx, qx + 1 },
  266. i32x4 { qy, qy, qy + 1, qy + 1 },
  267. };
  268. // Set coverage mask and test against render bounds
  269. set_coverage_mask(quad);
  270. quad.mask &= quad.screen_coordinates.x() >= render_bounds_left
  271. && quad.screen_coordinates.x() <= render_bounds_right
  272. && quad.screen_coordinates.y() >= render_bounds_top
  273. && quad.screen_coordinates.y() <= render_bounds_bottom;
  274. auto coverage_bits = maskbits(quad.mask);
  275. if (coverage_bits == 0)
  276. continue;
  277. INCREASE_STATISTICS_COUNTER(g_num_quads, 1);
  278. INCREASE_STATISTICS_COUNTER(g_num_pixels, maskcount(quad.mask));
  279. // Stencil testing
  280. GPU::StencilType* stencil_ptrs[4];
  281. i32x4 stencil_value;
  282. if (m_options.enable_stencil_test) {
  283. stencil_ptrs[0] = coverage_bits & 1 ? &stencil_buffer->scanline(qy)[qx] : nullptr;
  284. stencil_ptrs[1] = coverage_bits & 2 ? &stencil_buffer->scanline(qy)[qx + 1] : nullptr;
  285. stencil_ptrs[2] = coverage_bits & 4 ? &stencil_buffer->scanline(qy + 1)[qx] : nullptr;
  286. stencil_ptrs[3] = coverage_bits & 8 ? &stencil_buffer->scanline(qy + 1)[qx + 1] : nullptr;
  287. stencil_value = load4_masked(stencil_ptrs[0], stencil_ptrs[1], stencil_ptrs[2], stencil_ptrs[3], quad.mask);
  288. stencil_value &= stencil_configuration.test_mask;
  289. i32x4 stencil_test_passed;
  290. switch (stencil_configuration.test_function) {
  291. case GPU::StencilTestFunction::Always:
  292. stencil_test_passed = expand4(~0);
  293. break;
  294. case GPU::StencilTestFunction::Equal:
  295. stencil_test_passed = stencil_value == stencil_reference_value;
  296. break;
  297. case GPU::StencilTestFunction::Greater:
  298. stencil_test_passed = stencil_value > stencil_reference_value;
  299. break;
  300. case GPU::StencilTestFunction::GreaterOrEqual:
  301. stencil_test_passed = stencil_value >= stencil_reference_value;
  302. break;
  303. case GPU::StencilTestFunction::Less:
  304. stencil_test_passed = stencil_value < stencil_reference_value;
  305. break;
  306. case GPU::StencilTestFunction::LessOrEqual:
  307. stencil_test_passed = stencil_value <= stencil_reference_value;
  308. break;
  309. case GPU::StencilTestFunction::Never:
  310. stencil_test_passed = expand4(0);
  311. break;
  312. case GPU::StencilTestFunction::NotEqual:
  313. stencil_test_passed = stencil_value != stencil_reference_value;
  314. break;
  315. default:
  316. VERIFY_NOT_REACHED();
  317. }
  318. // Update stencil buffer for pixels that failed the stencil test
  319. write_to_stencil(
  320. stencil_ptrs,
  321. stencil_value,
  322. stencil_configuration.on_stencil_test_fail,
  323. stencil_reference_value,
  324. stencil_configuration.write_mask,
  325. quad.mask & ~stencil_test_passed);
  326. // Update coverage mask + early quad rejection
  327. quad.mask &= stencil_test_passed;
  328. coverage_bits = maskbits(quad.mask);
  329. if (coverage_bits == 0)
  330. continue;
  331. }
  332. // Depth testing
  333. GPU::DepthType* depth_ptrs[4] = {
  334. coverage_bits & 1 ? &depth_buffer->scanline(qy)[qx] : nullptr,
  335. coverage_bits & 2 ? &depth_buffer->scanline(qy)[qx + 1] : nullptr,
  336. coverage_bits & 4 ? &depth_buffer->scanline(qy + 1)[qx] : nullptr,
  337. coverage_bits & 8 ? &depth_buffer->scanline(qy + 1)[qx + 1] : nullptr,
  338. };
  339. if (m_options.enable_depth_test) {
  340. set_quad_depth(quad);
  341. auto depth = load4_masked(depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
  342. i32x4 depth_test_passed;
  343. switch (m_options.depth_func) {
  344. case GPU::DepthTestFunction::Always:
  345. depth_test_passed = expand4(~0);
  346. break;
  347. case GPU::DepthTestFunction::Never:
  348. depth_test_passed = expand4(0);
  349. break;
  350. case GPU::DepthTestFunction::Greater:
  351. depth_test_passed = quad.depth > depth;
  352. break;
  353. case GPU::DepthTestFunction::GreaterOrEqual:
  354. depth_test_passed = quad.depth >= depth;
  355. break;
  356. case GPU::DepthTestFunction::NotEqual:
  357. #ifdef __SSE__
  358. depth_test_passed = quad.depth != depth;
  359. #else
  360. depth_test_passed = i32x4 {
  361. bit_cast<u32>(quad.depth[0]) != bit_cast<u32>(depth[0]) ? -1 : 0,
  362. bit_cast<u32>(quad.depth[1]) != bit_cast<u32>(depth[1]) ? -1 : 0,
  363. bit_cast<u32>(quad.depth[2]) != bit_cast<u32>(depth[2]) ? -1 : 0,
  364. bit_cast<u32>(quad.depth[3]) != bit_cast<u32>(depth[3]) ? -1 : 0,
  365. };
  366. #endif
  367. break;
  368. case GPU::DepthTestFunction::Equal:
  369. #ifdef __SSE__
  370. depth_test_passed = quad.depth == depth;
  371. #else
  372. //
  373. // This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is
  374. // compiled for the i686 target. When we calculate our depth value to be stored in the buffer,
  375. // it is an 80-bit x87 floating point number, however, when stored into the depth buffer, this is
  376. // truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually
  377. // used here the comparison fails.
  378. // This could be solved by using a `long double` for the depth buffer, however this would take
  379. // up significantly more space and is completely overkill for a depth buffer. As such, comparing
  380. // the first 32-bits of this depth value is "good enough" that if we get a hit on it being
  381. // equal, we can pretty much guarantee that it's actually equal.
  382. //
  383. depth_test_passed = i32x4 {
  384. bit_cast<u32>(quad.depth[0]) == bit_cast<u32>(depth[0]) ? -1 : 0,
  385. bit_cast<u32>(quad.depth[1]) == bit_cast<u32>(depth[1]) ? -1 : 0,
  386. bit_cast<u32>(quad.depth[2]) == bit_cast<u32>(depth[2]) ? -1 : 0,
  387. bit_cast<u32>(quad.depth[3]) == bit_cast<u32>(depth[3]) ? -1 : 0,
  388. };
  389. #endif
  390. break;
  391. case GPU::DepthTestFunction::LessOrEqual:
  392. depth_test_passed = quad.depth <= depth;
  393. break;
  394. case GPU::DepthTestFunction::Less:
  395. depth_test_passed = quad.depth < depth;
  396. break;
  397. default:
  398. VERIFY_NOT_REACHED();
  399. }
  400. // Update stencil buffer for pixels that failed the depth test
  401. if (m_options.enable_stencil_test) {
  402. write_to_stencil(
  403. stencil_ptrs,
  404. stencil_value,
  405. stencil_configuration.on_depth_test_fail,
  406. stencil_reference_value,
  407. stencil_configuration.write_mask,
  408. quad.mask & ~depth_test_passed);
  409. }
  410. // Update coverage mask + early quad rejection
  411. quad.mask &= depth_test_passed;
  412. coverage_bits = maskbits(quad.mask);
  413. if (coverage_bits == 0)
  414. continue;
  415. }
  416. // Update stencil buffer for passed pixels
  417. if (m_options.enable_stencil_test) {
  418. write_to_stencil(
  419. stencil_ptrs,
  420. stencil_value,
  421. stencil_configuration.on_pass,
  422. stencil_reference_value,
  423. stencil_configuration.write_mask,
  424. quad.mask);
  425. }
  426. INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, maskcount(quad.mask));
  427. set_quad_attributes(quad);
  428. shade_fragments(quad);
  429. // Alpha testing
  430. if (m_options.enable_alpha_test) {
  431. test_alpha(quad, m_options.alpha_test_func, alpha_test_ref_value);
  432. coverage_bits = maskbits(quad.mask);
  433. if (coverage_bits == 0)
  434. continue;
  435. }
  436. // Write to depth buffer
  437. if (m_options.enable_depth_test && m_options.enable_depth_write)
  438. store4_masked(quad.depth, depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
  439. // We will not update the color buffer at all
  440. if ((m_options.color_mask == 0) || !m_options.enable_color_write)
  441. continue;
  442. GPU::ColorType* color_ptrs[4] = {
  443. coverage_bits & 1 ? &color_buffer->scanline(qy)[qx] : nullptr,
  444. coverage_bits & 2 ? &color_buffer->scanline(qy)[qx + 1] : nullptr,
  445. coverage_bits & 4 ? &color_buffer->scanline(qy + 1)[qx] : nullptr,
  446. coverage_bits & 8 ? &color_buffer->scanline(qy + 1)[qx + 1] : nullptr,
  447. };
  448. u32x4 dst_u32;
  449. if (m_options.enable_blending || m_options.color_mask != 0xffffffff)
  450. dst_u32 = load4_masked(color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
  451. if (m_options.enable_blending) {
  452. INCREASE_STATISTICS_COUNTER(g_num_pixels_blended, maskcount(quad.mask));
  453. // Blend color values from pixel_staging into color_buffer
  454. auto const& src = quad.out_color;
  455. auto dst = to_vec4(dst_u32);
  456. auto src_factor = expand4(m_alpha_blend_factors.src_constant)
  457. + src * m_alpha_blend_factors.src_factor_src_color
  458. + Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.src_factor_src_alpha
  459. + dst * m_alpha_blend_factors.src_factor_dst_color
  460. + Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.src_factor_dst_alpha;
  461. auto dst_factor = expand4(m_alpha_blend_factors.dst_constant)
  462. + src * m_alpha_blend_factors.dst_factor_src_color
  463. + Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * m_alpha_blend_factors.dst_factor_src_alpha
  464. + dst * m_alpha_blend_factors.dst_factor_dst_color
  465. + Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * m_alpha_blend_factors.dst_factor_dst_alpha;
  466. quad.out_color = src * src_factor + dst * dst_factor;
  467. }
  468. auto const argb32_color = to_argb32(quad.out_color);
  469. if (m_options.color_mask == 0xffffffff)
  470. store4_masked(argb32_color, color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
  471. else
  472. store4_masked((argb32_color & m_options.color_mask) | (dst_u32 & ~m_options.color_mask), color_ptrs[0], color_ptrs[1], color_ptrs[2], color_ptrs[3], quad.mask);
  473. }
  474. }
  475. }
  476. void Device::rasterize_line_aliased(GPU::Vertex& from, GPU::Vertex& to)
  477. {
  478. // FIXME: implement aliased lines; for now we fall back to anti-aliased logic
  479. rasterize_line_antialiased(from, to);
  480. }
  481. void Device::rasterize_line_antialiased(GPU::Vertex& from, GPU::Vertex& to)
  482. {
  483. auto const from_coords = from.window_coordinates.xy();
  484. auto const to_coords = to.window_coordinates.xy();
  485. auto const line_width = ceilf(m_options.line_width);
  486. auto const line_radius = line_width / 2;
  487. auto render_bounds = Gfx::IntRect {
  488. min(from_coords.x(), to_coords.x()),
  489. min(from_coords.y(), to_coords.y()),
  490. abs(from_coords.x() - to_coords.x()) + 1,
  491. abs(from_coords.y() - to_coords.y()) + 1,
  492. };
  493. render_bounds.inflate(line_width, line_width);
  494. auto const from_coords4 = expand4(from_coords);
  495. auto const line_vector = to_coords - from_coords;
  496. auto const line_vector4 = expand4(line_vector);
  497. auto const line_dot4 = expand4(line_vector.dot(line_vector));
  498. auto const from_depth4 = expand4(from.window_coordinates.z());
  499. auto const to_depth4 = expand4(to.window_coordinates.z());
  500. auto const from_color4 = expand4(from.color);
  501. auto const from_fog_depth4 = expand4(abs(from.eye_coordinates.z()));
  502. // Rasterize using a 2D signed distance field for a line segment
  503. // FIXME: performance-wise, this might be the absolute worst way to draw an anti-aliased line
  504. f32x4 distance_along_line;
  505. rasterize(
  506. render_bounds,
  507. [&from_coords4, &distance_along_line, &line_vector4, &line_dot4, &line_radius](auto& quad) {
  508. auto const screen_coordinates4 = to_vec2_f32x4(quad.screen_coordinates);
  509. auto const pixel_vector = screen_coordinates4 - from_coords4;
  510. distance_along_line = AK::SIMD::clamp(pixel_vector.dot(line_vector4) / line_dot4, 0.f, 1.f);
  511. auto distance_to_line = length(pixel_vector - line_vector4 * distance_along_line) - line_radius;
  512. // Add .5f to the distance so coverage transitions half a pixel before the actual border
  513. quad.coverage = 1.f - AK::SIMD::clamp(distance_to_line + 0.5f, 0.f, 1.f);
  514. quad.mask = quad.coverage > 0.f;
  515. },
  516. [&from_depth4, &to_depth4, &distance_along_line](auto& quad) {
  517. quad.depth = mix(from_depth4, to_depth4, distance_along_line);
  518. },
  519. [&from_color4, &from, &from_fog_depth4](auto& quad) {
  520. // FIXME: interpolate color, tex coords and fog depth along the distance of the line
  521. // in clip space (i.e. NOT distance_from_line)
  522. quad.vertex_color = from_color4;
  523. for (size_t i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i)
  524. quad.texture_coordinates[i] = expand4(from.tex_coords[i]);
  525. quad.fog_depth = from_fog_depth4;
  526. });
  527. }
  528. void Device::rasterize_line(GPU::Vertex& from, GPU::Vertex& to)
  529. {
  530. if (m_options.line_smooth)
  531. rasterize_line_antialiased(from, to);
  532. else
  533. rasterize_line_aliased(from, to);
  534. }
  535. void Device::rasterize_point_aliased(GPU::Vertex& point)
  536. {
  537. // Determine aliased point width
  538. constexpr size_t maximum_aliased_point_size = 64;
  539. auto point_width = clamp(round_to<int>(m_options.point_size), 1, maximum_aliased_point_size);
  540. // Determine aliased center coordinates
  541. IntVector2 point_center;
  542. if (point_width % 2 == 1)
  543. point_center = point.window_coordinates.xy().to_type<int>();
  544. else
  545. point_center = (point.window_coordinates.xy() + FloatVector2 { .5f, .5f }).to_type<int>();
  546. // Aliased points are rects; calculate boundaries around center
  547. auto point_rect = Gfx::IntRect {
  548. point_center.x() - point_width / 2,
  549. point_center.y() - point_width / 2,
  550. point_width,
  551. point_width,
  552. };
  553. // Rasterize the point as a rect
  554. rasterize(
  555. point_rect,
  556. [](auto& quad) {
  557. // We already passed in point_rect, so this doesn't matter
  558. quad.mask = expand4(~0);
  559. },
  560. [&point](auto& quad) {
  561. quad.depth = expand4(point.window_coordinates.z());
  562. },
  563. [&point](auto& quad) {
  564. quad.vertex_color = expand4(point.color);
  565. for (size_t i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i)
  566. quad.texture_coordinates[i] = expand4(point.tex_coords[i]);
  567. quad.fog_depth = expand4(abs(point.eye_coordinates.z()));
  568. });
  569. }
  570. void Device::rasterize_point_antialiased(GPU::Vertex& point)
  571. {
  572. auto const center = point.window_coordinates.xy();
  573. auto const center4 = expand4(center);
  574. auto const radius = m_options.point_size / 2;
  575. auto render_bounds = Gfx::IntRect {
  576. center.x() - radius,
  577. center.y() - radius,
  578. radius * 2 + 1,
  579. radius * 2 + 1,
  580. };
  581. // Rasterize using a 2D signed distance field for a circle
  582. rasterize(
  583. render_bounds,
  584. [&center4, &radius](auto& quad) {
  585. auto screen_coords = to_vec2_f32x4(quad.screen_coordinates);
  586. auto distance_to_point = length(center4 - screen_coords) - radius;
  587. // Add .5f to the distance so coverage transitions half a pixel before the actual border
  588. quad.coverage = 1.f - AK::SIMD::clamp(distance_to_point + .5f, 0.f, 1.f);
  589. quad.mask = quad.coverage > 0.f;
  590. },
  591. [&point](auto& quad) {
  592. quad.depth = expand4(point.window_coordinates.z());
  593. },
  594. [&point](auto& quad) {
  595. quad.vertex_color = expand4(point.color);
  596. for (size_t i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i)
  597. quad.texture_coordinates[i] = expand4(point.tex_coords[i]);
  598. quad.fog_depth = expand4(abs(point.eye_coordinates.z()));
  599. });
  600. }
  601. void Device::rasterize_point(GPU::Vertex& point)
  602. {
  603. if (m_options.point_smooth)
  604. rasterize_point_antialiased(point);
  605. else
  606. rasterize_point_aliased(point);
  607. }
  608. void Device::rasterize_triangle(Triangle& triangle)
  609. {
  610. INCREASE_STATISTICS_COUNTER(g_num_rasterized_triangles, 1);
  611. auto v0 = (triangle.vertices[0].window_coordinates.xy() * subpixel_factor).to_rounded<int>();
  612. auto v1 = (triangle.vertices[1].window_coordinates.xy() * subpixel_factor).to_rounded<int>();
  613. auto v2 = (triangle.vertices[2].window_coordinates.xy() * subpixel_factor).to_rounded<int>();
  614. auto triangle_area = edge_function(v0, v1, v2);
  615. if (triangle_area == 0)
  616. return;
  617. // Perform face culling
  618. if (m_options.enable_culling) {
  619. bool is_front = (m_options.front_face == GPU::WindingOrder::CounterClockwise ? triangle_area > 0 : triangle_area < 0);
  620. if (!is_front && m_options.cull_back)
  621. return;
  622. if (is_front && m_options.cull_front)
  623. return;
  624. }
  625. // Force counter-clockwise ordering of vertices
  626. if (triangle_area < 0) {
  627. swap(triangle.vertices[0], triangle.vertices[1]);
  628. swap(v0, v1);
  629. triangle_area *= -1;
  630. }
  631. auto const& vertex0 = triangle.vertices[0];
  632. auto const& vertex1 = triangle.vertices[1];
  633. auto const& vertex2 = triangle.vertices[2];
  634. auto const one_over_area = 1.0f / triangle_area;
  635. // This function calculates the 3 edge values for the pixel relative to the triangle.
  636. auto calculate_edge_values4 = [v0, v1, v2](Vector2<i32x4> const& p) -> Vector3<i32x4> {
  637. return {
  638. edge_function4(v1, v2, p),
  639. edge_function4(v2, v0, p),
  640. edge_function4(v0, v1, p),
  641. };
  642. };
  643. // Zero is used in testing against edge values below, applying the "top-left rule". If a pixel
  644. // lies exactly on an edge shared by two triangles, we only render that pixel if the edge in
  645. // question is a "top" or "left" edge. By setting either a 1 or 0, we effectively change the
  646. // comparisons against the edge values below from "> 0" into ">= 0".
  647. IntVector3 const zero {
  648. (v2.y() < v1.y() || (v2.y() == v1.y() && v2.x() < v1.x())) ? 0 : 1,
  649. (v0.y() < v2.y() || (v0.y() == v2.y() && v0.x() < v2.x())) ? 0 : 1,
  650. (v1.y() < v0.y() || (v1.y() == v0.y() && v1.x() < v0.x())) ? 0 : 1,
  651. };
  652. // This function tests whether a point as identified by its 3 edge values lies within the triangle
  653. auto test_point4 = [zero](Vector3<i32x4> const& edges) -> i32x4 {
  654. return edges.x() >= zero.x()
  655. && edges.y() >= zero.y()
  656. && edges.z() >= zero.z();
  657. };
  658. // Calculate render bounds based on the triangle's vertices
  659. Gfx::IntRect render_bounds;
  660. render_bounds.set_left(min(min(v0.x(), v1.x()), v2.x()) / subpixel_factor);
  661. render_bounds.set_right(max(max(v0.x(), v1.x()), v2.x()) / subpixel_factor);
  662. render_bounds.set_top(min(min(v0.y(), v1.y()), v2.y()) / subpixel_factor);
  663. render_bounds.set_bottom(max(max(v0.y(), v1.y()), v2.y()) / subpixel_factor);
  664. // Calculate depth of fragment for fog;
  665. // OpenGL 1.5 chapter 3.10: "An implementation may choose to approximate the
  666. // eye-coordinate distance from the eye to each fragment center by |Ze|."
  667. Vector3<f32x4> fog_depth;
  668. if (m_options.fog_enabled) {
  669. fog_depth = {
  670. expand4(abs(vertex0.eye_coordinates.z())),
  671. expand4(abs(vertex1.eye_coordinates.z())),
  672. expand4(abs(vertex2.eye_coordinates.z())),
  673. };
  674. }
  675. auto const half_pixel_offset = Vector2<i32x4> { expand4(subpixel_factor / 2), expand4(subpixel_factor / 2) };
  676. auto const window_w_coordinates = Vector3<f32x4> {
  677. expand4(vertex0.window_coordinates.w()),
  678. expand4(vertex1.window_coordinates.w()),
  679. expand4(vertex2.window_coordinates.w()),
  680. };
  681. // Calculate depth offset to apply
  682. float depth_offset = 0.f;
  683. if (m_options.depth_offset_enabled) {
  684. // OpenGL 2.0 § 3.5.5 allows us to approximate the maximum slope
  685. auto delta_z = max(
  686. max(
  687. abs(vertex0.window_coordinates.z() - vertex1.window_coordinates.z()),
  688. abs(vertex1.window_coordinates.z() - vertex2.window_coordinates.z())),
  689. abs(vertex2.window_coordinates.z() - vertex0.window_coordinates.z()));
  690. auto depth_max_slope = max(delta_z / render_bounds.width(), delta_z / render_bounds.height());
  691. // Calculate total depth offset
  692. depth_offset = depth_max_slope * m_options.depth_offset_factor + NumericLimits<float>::epsilon() * m_options.depth_offset_constant;
  693. }
  694. auto const window_z_coordinates = Vector3<f32x4> {
  695. expand4(vertex0.window_coordinates.z() + depth_offset),
  696. expand4(vertex1.window_coordinates.z() + depth_offset),
  697. expand4(vertex2.window_coordinates.z() + depth_offset),
  698. };
  699. rasterize(
  700. render_bounds,
  701. [&](auto& quad) {
  702. auto edge_values = calculate_edge_values4(quad.screen_coordinates * subpixel_factor + half_pixel_offset);
  703. quad.mask = test_point4(edge_values);
  704. quad.barycentrics = {
  705. to_f32x4(edge_values.x()),
  706. to_f32x4(edge_values.y()),
  707. to_f32x4(edge_values.z()),
  708. };
  709. },
  710. [&](auto& quad) {
  711. // Determine each edge's ratio to the total area
  712. quad.barycentrics = quad.barycentrics * one_over_area;
  713. // Because the Z coordinates were divided by W, we can interpolate between them
  714. quad.depth = AK::SIMD::clamp(window_z_coordinates.dot(quad.barycentrics), 0.f, 1.f);
  715. },
  716. [&](auto& quad) {
  717. auto const interpolated_reciprocal_w = window_w_coordinates.dot(quad.barycentrics);
  718. quad.barycentrics = quad.barycentrics * window_w_coordinates / interpolated_reciprocal_w;
  719. // FIXME: make this more generic. We want to interpolate more than just color and uv
  720. if (m_options.shade_smooth)
  721. quad.vertex_color = interpolate(expand4(vertex0.color), expand4(vertex1.color), expand4(vertex2.color), quad.barycentrics);
  722. else
  723. quad.vertex_color = expand4(vertex0.color);
  724. for (GPU::TextureUnitIndex i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i)
  725. quad.texture_coordinates[i] = interpolate(expand4(vertex0.tex_coords[i]), expand4(vertex1.tex_coords[i]), expand4(vertex2.tex_coords[i]), quad.barycentrics);
  726. if (m_options.fog_enabled)
  727. quad.fog_depth = fog_depth.dot(quad.barycentrics);
  728. });
  729. }
  730. Device::Device(Gfx::IntSize size)
  731. : m_frame_buffer(FrameBuffer<GPU::ColorType, GPU::DepthType, GPU::StencilType>::try_create(size).release_value_but_fixme_should_propagate_errors())
  732. {
  733. m_options.scissor_box = m_frame_buffer->rect();
  734. m_options.viewport = m_frame_buffer->rect();
  735. }
  736. GPU::DeviceInfo Device::info() const
  737. {
  738. return {
  739. .vendor_name = "SerenityOS",
  740. .device_name = "SoftGPU",
  741. .num_texture_units = GPU::NUM_TEXTURE_UNITS,
  742. .num_lights = NUM_LIGHTS,
  743. .max_clip_planes = MAX_CLIP_PLANES,
  744. .max_texture_size = MAX_TEXTURE_SIZE,
  745. .max_texture_lod_bias = MAX_TEXTURE_LOD_BIAS,
  746. .stencil_bits = sizeof(GPU::StencilType) * 8,
  747. .supports_npot_textures = true,
  748. .supports_texture_clamp_to_edge = true,
  749. .supports_texture_env_add = true,
  750. };
  751. }
  752. static void generate_texture_coordinates(GPU::Vertex const& vertex, FloatVector4& tex_coord, GPU::TextureUnitConfiguration const& texture_unit_configuration)
  753. {
  754. auto generate_coordinate = [&](size_t config_index) -> float {
  755. auto const& tex_coord_generation = texture_unit_configuration.tex_coord_generation[config_index];
  756. switch (tex_coord_generation.mode) {
  757. case GPU::TexCoordGenerationMode::ObjectLinear: {
  758. auto coefficients = tex_coord_generation.coefficients;
  759. return coefficients.dot(vertex.position);
  760. }
  761. case GPU::TexCoordGenerationMode::EyeLinear: {
  762. auto coefficients = tex_coord_generation.coefficients;
  763. return coefficients.dot(vertex.eye_coordinates);
  764. }
  765. case GPU::TexCoordGenerationMode::SphereMap: {
  766. auto const eye_unit = vertex.eye_coordinates.normalized();
  767. FloatVector3 const eye_unit_xyz = eye_unit.xyz();
  768. auto const normal = vertex.normal;
  769. auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
  770. reflection.set_z(reflection.z() + 1);
  771. auto const reflection_value = reflection[config_index];
  772. return reflection_value / (2 * reflection.length()) + 0.5f;
  773. }
  774. case GPU::TexCoordGenerationMode::ReflectionMap: {
  775. auto const eye_unit = vertex.eye_coordinates.normalized();
  776. FloatVector3 const eye_unit_xyz = eye_unit.xyz();
  777. auto const normal = vertex.normal;
  778. auto reflection = eye_unit_xyz - normal * 2 * normal.dot(eye_unit_xyz);
  779. return reflection[config_index];
  780. }
  781. case GPU::TexCoordGenerationMode::NormalMap: {
  782. return vertex.normal[config_index];
  783. }
  784. }
  785. VERIFY_NOT_REACHED();
  786. };
  787. auto const enabled_coords = texture_unit_configuration.tex_coord_generation_enabled;
  788. if (enabled_coords == GPU::TexCoordGenerationCoordinate::None)
  789. return;
  790. tex_coord = {
  791. ((enabled_coords & GPU::TexCoordGenerationCoordinate::S) > 0) ? generate_coordinate(0) : tex_coord.x(),
  792. ((enabled_coords & GPU::TexCoordGenerationCoordinate::T) > 0) ? generate_coordinate(1) : tex_coord.y(),
  793. ((enabled_coords & GPU::TexCoordGenerationCoordinate::R) > 0) ? generate_coordinate(2) : tex_coord.z(),
  794. ((enabled_coords & GPU::TexCoordGenerationCoordinate::Q) > 0) ? generate_coordinate(3) : tex_coord.w(),
  795. };
  796. }
  797. void Device::calculate_vertex_lighting(GPU::Vertex& vertex) const
  798. {
  799. if (!m_options.lighting_enabled)
  800. return;
  801. auto const& material = m_materials.at(0);
  802. auto ambient = material.ambient;
  803. auto diffuse = material.diffuse;
  804. auto emissive = material.emissive;
  805. auto specular = material.specular;
  806. if (m_options.color_material_enabled
  807. && (m_options.color_material_face == GPU::ColorMaterialFace::Front || m_options.color_material_face == GPU::ColorMaterialFace::FrontAndBack)) {
  808. switch (m_options.color_material_mode) {
  809. case GPU::ColorMaterialMode::Ambient:
  810. ambient = vertex.color;
  811. break;
  812. case GPU::ColorMaterialMode::AmbientAndDiffuse:
  813. ambient = vertex.color;
  814. diffuse = vertex.color;
  815. break;
  816. case GPU::ColorMaterialMode::Diffuse:
  817. diffuse = vertex.color;
  818. break;
  819. case GPU::ColorMaterialMode::Emissive:
  820. emissive = vertex.color;
  821. break;
  822. case GPU::ColorMaterialMode::Specular:
  823. specular = vertex.color;
  824. break;
  825. }
  826. }
  827. FloatVector4 result_color = emissive + ambient * m_lighting_model.scene_ambient_color;
  828. for (auto const& light : m_lights) {
  829. if (!light.is_enabled)
  830. continue;
  831. // We need to save the length here because the attenuation factor requires a non-normalized vector!
  832. auto sgi_arrow_operator = [](FloatVector4 const& p1, FloatVector4 const& p2, float& output_length) {
  833. FloatVector3 light_vector;
  834. if ((p1.w() != 0.f) && (p2.w() == 0.f))
  835. light_vector = p2.xyz();
  836. else if ((p1.w() == 0.f) && (p2.w() != 0.f))
  837. light_vector = -p1.xyz();
  838. else
  839. light_vector = p2.xyz() - p1.xyz();
  840. output_length = light_vector.length();
  841. if (output_length == 0.f)
  842. return light_vector;
  843. return light_vector / output_length;
  844. };
  845. auto sgi_dot_operator = [](FloatVector3 const& d1, FloatVector3 const& d2) {
  846. return AK::max(d1.dot(d2), 0.0f);
  847. };
  848. float vertex_to_light_length = 0.f;
  849. FloatVector3 vertex_to_light = sgi_arrow_operator(vertex.eye_coordinates, light.position, vertex_to_light_length);
  850. // Light attenuation value.
  851. float light_attenuation_factor = 1.0f;
  852. if (light.position.w() != 0.0f)
  853. light_attenuation_factor = 1.0f / (light.constant_attenuation + (light.linear_attenuation * vertex_to_light_length) + (light.quadratic_attenuation * vertex_to_light_length * vertex_to_light_length));
  854. // Spotlight factor
  855. float spotlight_factor = 1.0f;
  856. if (light.spotlight_cutoff_angle != 180.0f) {
  857. auto const vertex_to_light_dot_spotlight_direction = sgi_dot_operator(vertex_to_light, light.spotlight_direction.normalized());
  858. auto const cos_spotlight_cutoff = AK::cos<float>(light.spotlight_cutoff_angle * AK::Pi<float> / 180.f);
  859. if (vertex_to_light_dot_spotlight_direction >= cos_spotlight_cutoff)
  860. spotlight_factor = AK::pow<float>(vertex_to_light_dot_spotlight_direction, light.spotlight_exponent);
  861. else
  862. spotlight_factor = 0.0f;
  863. }
  864. // FIXME: The spec allows for splitting the colors calculated here into multiple different colors (primary/secondary color). Investigate what this means.
  865. (void)m_lighting_model.color_control;
  866. // FIXME: Two sided lighting should be implemented eventually (I believe this is where the normals are -ve and then lighting is calculated with the BACK material)
  867. (void)m_lighting_model.two_sided_lighting;
  868. // Ambient
  869. auto const ambient_component = ambient * light.ambient_intensity;
  870. // Diffuse
  871. auto const normal_dot_vertex_to_light = sgi_dot_operator(vertex.normal, vertex_to_light);
  872. auto const diffuse_component = diffuse * light.diffuse_intensity * normal_dot_vertex_to_light;
  873. // Specular
  874. FloatVector4 specular_component = { 0.0f, 0.0f, 0.0f, 0.0f };
  875. if (normal_dot_vertex_to_light > 0.0f) {
  876. FloatVector3 half_vector_normalized;
  877. if (!m_lighting_model.viewer_at_infinity) {
  878. half_vector_normalized = vertex_to_light + FloatVector3(0.0f, 0.0f, 1.0f);
  879. } else {
  880. auto const vertex_to_eye_point = sgi_arrow_operator(vertex.eye_coordinates, { 0.f, 0.f, 0.f, 1.f }, vertex_to_light_length);
  881. half_vector_normalized = vertex_to_light + vertex_to_eye_point;
  882. }
  883. half_vector_normalized.normalize();
  884. auto const normal_dot_half_vector = sgi_dot_operator(vertex.normal, half_vector_normalized);
  885. auto const specular_coefficient = AK::pow(normal_dot_half_vector, material.shininess);
  886. specular_component = specular * light.specular_intensity * specular_coefficient;
  887. }
  888. auto color = ambient_component + diffuse_component + specular_component;
  889. color = color * light_attenuation_factor * spotlight_factor;
  890. result_color += color;
  891. }
  892. vertex.color = result_color;
  893. vertex.color.set_w(diffuse.w()); // OpenGL 1.5 spec, page 59: "The A produced by lighting is the alpha value associated with diffuse color material"
  894. vertex.color.clamp(0.0f, 1.0f);
  895. }
  896. void Device::draw_primitives(GPU::PrimitiveType primitive_type, FloatMatrix4x4 const& model_view_transform, FloatMatrix4x4 const& projection_transform, Vector<GPU::Vertex>& vertices)
  897. {
  898. // At this point, the user has effectively specified that they are done with defining the geometry
  899. // of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview):
  900. //
  901. // 1. Transform all of the vertices in the current vertex list into eye space by multiplying the model-view matrix
  902. // 2. Transform all of the vertices from eye space into clip space by multiplying by the projection matrix
  903. // 3. If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling)
  904. // 4. Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates)
  905. // 5. The triangle's vertices are sorted in a counter-clockwise orientation
  906. // 6. The triangles are then sent off to the rasterizer and drawn to the screen
  907. if (vertices.is_empty())
  908. return;
  909. // Set up normals transform by taking the upper left 3x3 elements from the model view matrix
  910. // See section 2.11.3 of the OpenGL 1.5 spec
  911. auto const normal_transform = model_view_transform.submatrix_from_topleft<3>().transpose().inverse();
  912. // First, transform all vertices
  913. for (auto& vertex : vertices) {
  914. vertex.eye_coordinates = model_view_transform * vertex.position;
  915. vertex.normal = normal_transform * vertex.normal;
  916. if (m_options.normalization_enabled)
  917. vertex.normal.normalize();
  918. calculate_vertex_lighting(vertex);
  919. vertex.clip_coordinates = projection_transform * vertex.eye_coordinates;
  920. for (GPU::TextureUnitIndex i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i) {
  921. auto const& texture_unit_configuration = m_texture_unit_configuration[i];
  922. if (!texture_unit_configuration.enabled)
  923. continue;
  924. generate_texture_coordinates(vertex, vertex.tex_coords[i], texture_unit_configuration);
  925. vertex.tex_coords[i] = texture_unit_configuration.transformation_matrix * vertex.tex_coords[i];
  926. }
  927. }
  928. // Window coordinate calculation
  929. auto const viewport = m_options.viewport;
  930. auto const viewport_half_width = viewport.width() / 2.f;
  931. auto const viewport_half_height = viewport.height() / 2.f;
  932. auto const viewport_center_x = viewport.x() + viewport_half_width;
  933. auto const viewport_center_y = viewport.y() + viewport_half_height;
  934. auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
  935. auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;
  936. auto calculate_vertex_window_coordinates = [&](GPU::Vertex& vertex) {
  937. auto const one_over_w = 1 / vertex.clip_coordinates.w();
  938. auto const ndc_coordinates = vertex.clip_coordinates.xyz() * one_over_w;
  939. vertex.window_coordinates = {
  940. viewport_center_x + ndc_coordinates.x() * viewport_half_width,
  941. viewport_center_y + ndc_coordinates.y() * viewport_half_height,
  942. depth_halfway + ndc_coordinates.z() * depth_half_range,
  943. one_over_w,
  944. };
  945. };
  946. // Process points
  947. if (primitive_type == GPU::PrimitiveType::Points) {
  948. m_clipper.clip_points_against_frustum(vertices);
  949. for (auto& vertex : vertices) {
  950. calculate_vertex_window_coordinates(vertex);
  951. rasterize_point(vertex);
  952. }
  953. return;
  954. }
  955. // Process lines, line loop and line strips
  956. auto rasterize_line_segment = [&](GPU::Vertex& from, GPU::Vertex& to) {
  957. if (!m_clipper.clip_line_against_frustum(from, to))
  958. return;
  959. calculate_vertex_window_coordinates(from);
  960. calculate_vertex_window_coordinates(to);
  961. rasterize_line(from, to);
  962. };
  963. if (primitive_type == GPU::PrimitiveType::Lines) {
  964. if (vertices.size() < 2)
  965. return;
  966. for (size_t i = 0; i < vertices.size() - 1; i += 2)
  967. rasterize_line_segment(vertices[i], vertices[i + 1]);
  968. return;
  969. } else if (primitive_type == GPU::PrimitiveType::LineLoop) {
  970. if (vertices.size() < 2)
  971. return;
  972. for (size_t i = 0; i < vertices.size(); ++i)
  973. rasterize_line_segment(vertices[i], vertices[(i + 1) % vertices.size()]);
  974. return;
  975. } else if (primitive_type == GPU::PrimitiveType::LineStrip) {
  976. if (vertices.size() < 2)
  977. return;
  978. for (size_t i = 0; i < vertices.size() - 1; ++i)
  979. rasterize_line_segment(vertices[i], vertices[i + 1]);
  980. return;
  981. }
  982. // Let's construct some triangles
  983. m_triangle_list.clear_with_capacity();
  984. m_processed_triangles.clear_with_capacity();
  985. if (primitive_type == GPU::PrimitiveType::Triangles) {
  986. Triangle triangle;
  987. if (vertices.size() < 3)
  988. return;
  989. for (size_t i = 0; i < vertices.size() - 2; i += 3) {
  990. triangle.vertices[0] = vertices.at(i);
  991. triangle.vertices[1] = vertices.at(i + 1);
  992. triangle.vertices[2] = vertices.at(i + 2);
  993. m_triangle_list.append(triangle);
  994. }
  995. } else if (primitive_type == GPU::PrimitiveType::Quads) {
  996. // We need to construct two triangles to form the quad
  997. Triangle triangle;
  998. if (vertices.size() < 4)
  999. return;
  1000. for (size_t i = 0; i < vertices.size() - 3; i += 4) {
  1001. // Triangle 1
  1002. triangle.vertices[0] = vertices.at(i);
  1003. triangle.vertices[1] = vertices.at(i + 1);
  1004. triangle.vertices[2] = vertices.at(i + 2);
  1005. m_triangle_list.append(triangle);
  1006. // Triangle 2
  1007. triangle.vertices[0] = vertices.at(i + 2);
  1008. triangle.vertices[1] = vertices.at(i + 3);
  1009. triangle.vertices[2] = vertices.at(i);
  1010. m_triangle_list.append(triangle);
  1011. }
  1012. } else if (primitive_type == GPU::PrimitiveType::TriangleFan) {
  1013. Triangle triangle;
  1014. triangle.vertices[0] = vertices.at(0); // Root vertex is always the vertex defined first
  1015. // This is technically `n-2` triangles. We start at index 1
  1016. for (size_t i = 1; i < vertices.size() - 1; i++) {
  1017. triangle.vertices[1] = vertices.at(i);
  1018. triangle.vertices[2] = vertices.at(i + 1);
  1019. m_triangle_list.append(triangle);
  1020. }
  1021. } else if (primitive_type == GPU::PrimitiveType::TriangleStrip) {
  1022. Triangle triangle;
  1023. if (vertices.size() < 3)
  1024. return;
  1025. for (size_t i = 0; i < vertices.size() - 2; i++) {
  1026. if (i % 2 == 0) {
  1027. triangle.vertices[0] = vertices.at(i);
  1028. triangle.vertices[1] = vertices.at(i + 1);
  1029. triangle.vertices[2] = vertices.at(i + 2);
  1030. } else {
  1031. triangle.vertices[0] = vertices.at(i + 1);
  1032. triangle.vertices[1] = vertices.at(i);
  1033. triangle.vertices[2] = vertices.at(i + 2);
  1034. }
  1035. m_triangle_list.append(triangle);
  1036. }
  1037. }
  1038. // Clip triangles
  1039. for (auto& triangle : m_triangle_list) {
  1040. m_clipped_vertices.clear_with_capacity();
  1041. m_clipped_vertices.append(triangle.vertices[0]);
  1042. m_clipped_vertices.append(triangle.vertices[1]);
  1043. m_clipped_vertices.append(triangle.vertices[2]);
  1044. m_clipper.clip_triangle_against_frustum(m_clipped_vertices);
  1045. if (m_clip_planes.size() > 0)
  1046. m_clipper.clip_triangle_against_user_defined(m_clipped_vertices, m_clip_planes);
  1047. if (m_clipped_vertices.size() < 3)
  1048. continue;
  1049. for (auto& vertex : m_clipped_vertices)
  1050. calculate_vertex_window_coordinates(vertex);
  1051. Triangle tri;
  1052. tri.vertices[0] = m_clipped_vertices[0];
  1053. for (size_t i = 1; i < m_clipped_vertices.size() - 1; i++) {
  1054. tri.vertices[1] = m_clipped_vertices[i];
  1055. tri.vertices[2] = m_clipped_vertices[i + 1];
  1056. m_processed_triangles.append(tri);
  1057. }
  1058. }
  1059. for (auto& triangle : m_processed_triangles)
  1060. rasterize_triangle(triangle);
  1061. }
  1062. ALWAYS_INLINE void Device::shade_fragments(PixelQuad& quad)
  1063. {
  1064. Array<Vector4<f32x4>, GPU::NUM_TEXTURE_UNITS> texture_stage_texel;
  1065. auto current_color = quad.vertex_color;
  1066. for (GPU::TextureUnitIndex i = 0; i < GPU::NUM_TEXTURE_UNITS; ++i) {
  1067. if (!m_texture_unit_configuration[i].enabled)
  1068. continue;
  1069. auto const& sampler = m_samplers[i];
  1070. // OpenGL 2.0 ¶ 3.5.1 states (in a roundabout way) that texture coordinates must be divided by Q
  1071. auto texel = sampler.sample_2d(quad.texture_coordinates[i].xy() / quad.texture_coordinates[i].w());
  1072. texture_stage_texel[i] = texel;
  1073. INCREASE_STATISTICS_COUNTER(g_num_sampler_calls, 1);
  1074. // FIXME: implement support for GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_INTENSITY and GL_RGB internal formats
  1075. auto& fixed_function_env = sampler.config().fixed_function_texture_environment;
  1076. switch (fixed_function_env.env_mode) {
  1077. case GPU::TextureEnvMode::Add:
  1078. current_color.set_x(current_color.x() + texel.x());
  1079. current_color.set_y(current_color.y() + texel.y());
  1080. current_color.set_z(current_color.z() + texel.z());
  1081. current_color.set_w(current_color.w() * texel.w());
  1082. break;
  1083. case GPU::TextureEnvMode::Blend: {
  1084. auto blend_color = expand4(fixed_function_env.color);
  1085. current_color.set_x(mix(current_color.x(), blend_color.x(), texel.x()));
  1086. current_color.set_y(mix(current_color.y(), blend_color.y(), texel.y()));
  1087. current_color.set_z(mix(current_color.z(), blend_color.z(), texel.z()));
  1088. current_color.set_w(current_color.w() * texel.w());
  1089. break;
  1090. }
  1091. case GPU::TextureEnvMode::Combine: {
  1092. auto get_source_color = [&](GPU::TextureSource source, u8 texture_stage) {
  1093. switch (source) {
  1094. case GPU::TextureSource::Constant:
  1095. return expand4(fixed_function_env.color);
  1096. case GPU::TextureSource::Previous:
  1097. return current_color;
  1098. case GPU::TextureSource::PrimaryColor:
  1099. return quad.vertex_color;
  1100. case GPU::TextureSource::Texture:
  1101. return texel;
  1102. case GPU::TextureSource::TextureStage:
  1103. return texture_stage_texel[texture_stage];
  1104. }
  1105. VERIFY_NOT_REACHED();
  1106. };
  1107. auto get_argument_value = [](GPU::TextureOperand operand, auto value) {
  1108. switch (operand) {
  1109. case GPU::TextureOperand::OneMinusSourceAlpha:
  1110. case GPU::TextureOperand::OneMinusSourceColor:
  1111. return expand4(FloatVector4 { 1.f, 1.f, 1.f, 1.f }) - value;
  1112. case GPU::TextureOperand::SourceAlpha:
  1113. case GPU::TextureOperand::SourceColor:
  1114. return value;
  1115. }
  1116. VERIFY_NOT_REACHED();
  1117. };
  1118. auto calculate_combinator = [](GPU::TextureCombinator combinator, auto arg0, auto arg1, auto arg2) {
  1119. switch (combinator) {
  1120. case GPU::TextureCombinator::Add:
  1121. return arg0 + arg1;
  1122. case GPU::TextureCombinator::AddSigned:
  1123. return arg0 + arg1 - expand4(FloatVector4 { .5f, .5f, .5f, .5f });
  1124. case GPU::TextureCombinator::Dot3RGB:
  1125. case GPU::TextureCombinator::Dot3RGBA: {
  1126. auto scalar = 4.f * ((arg0.x() - .5f) * (arg1.x() - .5f) + (arg0.y() - 0.5f) * (arg1.y() - 0.5f) + (arg0.z() - 0.5f) * (arg1.z() - 0.5f));
  1127. return Vector4<f32x4> { scalar, scalar, scalar, scalar };
  1128. }
  1129. case GPU::TextureCombinator::Interpolate:
  1130. return mix(arg0, arg1, arg2);
  1131. case GPU::TextureCombinator::Modulate:
  1132. return arg0 * arg1;
  1133. case GPU::TextureCombinator::Replace:
  1134. return arg0;
  1135. case GPU::TextureCombinator::Subtract:
  1136. return arg0 - arg1;
  1137. }
  1138. VERIFY_NOT_REACHED();
  1139. };
  1140. auto calculate_color = [&](GPU::TextureCombinator combinator, auto& operands, auto& sources, u8 texture_stage) {
  1141. auto arg0 = get_argument_value(operands[0], get_source_color(sources[0], texture_stage));
  1142. auto arg1 = get_argument_value(operands[1], get_source_color(sources[1], texture_stage));
  1143. auto arg2 = get_argument_value(operands[2], get_source_color(sources[2], texture_stage));
  1144. return calculate_combinator(combinator, arg0, arg1, arg2);
  1145. };
  1146. auto rgb_color = calculate_color(
  1147. fixed_function_env.rgb_combinator,
  1148. fixed_function_env.rgb_operand,
  1149. fixed_function_env.rgb_source,
  1150. fixed_function_env.rgb_source_texture_stage);
  1151. auto alpha_color = calculate_color(
  1152. fixed_function_env.alpha_combinator,
  1153. fixed_function_env.alpha_operand,
  1154. fixed_function_env.alpha_source,
  1155. fixed_function_env.alpha_source_texture_stage);
  1156. current_color.set_x(rgb_color.x() * fixed_function_env.rgb_scale);
  1157. current_color.set_y(rgb_color.y() * fixed_function_env.rgb_scale);
  1158. current_color.set_z(rgb_color.z() * fixed_function_env.rgb_scale);
  1159. current_color.set_w(alpha_color.w() * fixed_function_env.alpha_scale);
  1160. current_color.clamp(expand4(0.f), expand4(1.f));
  1161. break;
  1162. }
  1163. case GPU::TextureEnvMode::Decal: {
  1164. auto dst_alpha = texel.w();
  1165. current_color.set_x(mix(current_color.x(), texel.x(), dst_alpha));
  1166. current_color.set_y(mix(current_color.y(), texel.y(), dst_alpha));
  1167. current_color.set_z(mix(current_color.z(), texel.z(), dst_alpha));
  1168. break;
  1169. }
  1170. case GPU::TextureEnvMode::Modulate:
  1171. current_color = current_color * texel;
  1172. break;
  1173. case GPU::TextureEnvMode::Replace:
  1174. current_color = texel;
  1175. break;
  1176. }
  1177. }
  1178. quad.out_color = current_color;
  1179. // Calculate fog
  1180. // Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html
  1181. // FIXME: exponential fog is not vectorized, we should add a SIMD exp function that calculates an approximation.
  1182. if (m_options.fog_enabled) {
  1183. f32x4 factor;
  1184. switch (m_options.fog_mode) {
  1185. case GPU::FogMode::Linear:
  1186. factor = (m_options.fog_end - quad.fog_depth) / (m_options.fog_end - m_options.fog_start);
  1187. break;
  1188. case GPU::FogMode::Exp: {
  1189. auto argument = -m_options.fog_density * quad.fog_depth;
  1190. factor = exp(argument);
  1191. } break;
  1192. case GPU::FogMode::Exp2: {
  1193. auto argument = m_options.fog_density * quad.fog_depth;
  1194. argument *= -argument;
  1195. factor = exp(argument);
  1196. } break;
  1197. default:
  1198. VERIFY_NOT_REACHED();
  1199. }
  1200. // Mix texel's RGB with fog's RBG - leave alpha alone
  1201. auto fog_color = expand4(m_options.fog_color);
  1202. quad.out_color.set_x(mix(fog_color.x(), quad.out_color.x(), factor));
  1203. quad.out_color.set_y(mix(fog_color.y(), quad.out_color.y(), factor));
  1204. quad.out_color.set_z(mix(fog_color.z(), quad.out_color.z(), factor));
  1205. }
  1206. // Multiply coverage with the fragment's alpha to obtain the final alpha value
  1207. quad.out_color.set_w(quad.out_color.w() * quad.coverage);
  1208. }
  1209. void Device::resize(Gfx::IntSize size)
  1210. {
  1211. auto frame_buffer_or_error = FrameBuffer<GPU::ColorType, GPU::DepthType, GPU::StencilType>::try_create(size);
  1212. m_frame_buffer = MUST(frame_buffer_or_error);
  1213. }
  1214. void Device::clear_color(FloatVector4 const& color)
  1215. {
  1216. auto const fill_color = to_argb32(color);
  1217. auto clear_rect = m_frame_buffer->rect();
  1218. if (m_options.scissor_enabled)
  1219. clear_rect.intersect(m_options.scissor_box);
  1220. m_frame_buffer->color_buffer()->fill(fill_color, clear_rect);
  1221. }
  1222. void Device::clear_depth(GPU::DepthType depth)
  1223. {
  1224. auto clear_rect = m_frame_buffer->rect();
  1225. if (m_options.scissor_enabled)
  1226. clear_rect.intersect(m_options.scissor_box);
  1227. m_frame_buffer->depth_buffer()->fill(depth, clear_rect);
  1228. }
  1229. void Device::clear_stencil(GPU::StencilType value)
  1230. {
  1231. auto clear_rect = m_frame_buffer->rect();
  1232. if (m_options.scissor_enabled)
  1233. clear_rect.intersect(m_options.scissor_box);
  1234. m_frame_buffer->stencil_buffer()->fill(value, clear_rect);
  1235. }
  1236. GPU::ImageDataLayout Device::color_buffer_data_layout(Vector2<u32> size, Vector2<i32> offset)
  1237. {
  1238. return {
  1239. .pixel_type = {
  1240. .format = GPU::PixelFormat::BGRA,
  1241. .bits = GPU::PixelComponentBits::B8_8_8_8,
  1242. .data_type = GPU::PixelDataType::UnsignedInt,
  1243. .components_order = GPU::ComponentsOrder::Reversed,
  1244. },
  1245. .dimensions = {
  1246. .width = static_cast<u32>(m_frame_buffer->rect().width()),
  1247. .height = static_cast<u32>(m_frame_buffer->rect().height()),
  1248. .depth = 1,
  1249. },
  1250. .selection = {
  1251. .offset_x = offset.x(),
  1252. .offset_y = offset.y(),
  1253. .offset_z = 0,
  1254. .width = size.x(),
  1255. .height = size.y(),
  1256. .depth = 1,
  1257. },
  1258. };
  1259. }
  1260. GPU::ImageDataLayout Device::depth_buffer_data_layout(Vector2<u32> size, Vector2<i32> offset)
  1261. {
  1262. return {
  1263. .pixel_type = {
  1264. .format = GPU::PixelFormat::DepthComponent,
  1265. .bits = GPU::PixelComponentBits::AllBits,
  1266. .data_type = GPU::PixelDataType::Float,
  1267. },
  1268. .dimensions = {
  1269. .width = static_cast<u32>(m_frame_buffer->rect().width()),
  1270. .height = static_cast<u32>(m_frame_buffer->rect().height()),
  1271. .depth = 1,
  1272. },
  1273. .selection = {
  1274. .offset_x = offset.x(),
  1275. .offset_y = offset.y(),
  1276. .offset_z = 0,
  1277. .width = size.x(),
  1278. .height = size.y(),
  1279. .depth = 1,
  1280. },
  1281. };
  1282. }
  1283. void Device::blit_from_color_buffer(Gfx::Bitmap& target)
  1284. {
  1285. m_frame_buffer->color_buffer()->blit_flipped_to_bitmap(target, m_frame_buffer->rect());
  1286. if constexpr (ENABLE_STATISTICS_OVERLAY)
  1287. draw_statistics_overlay(target);
  1288. }
  1289. void Device::blit_from_color_buffer(NonnullRefPtr<GPU::Image> image, u32 level, Vector2<u32> input_size, Vector2<i32> input_offset, Vector3<i32> output_offset)
  1290. {
  1291. auto input_layout = color_buffer_data_layout(input_size, input_offset);
  1292. auto const* input_data = m_frame_buffer->color_buffer()->scanline(0);
  1293. auto const& softgpu_image = reinterpret_cast<Image*>(image.ptr());
  1294. auto output_layout = softgpu_image->image_data_layout(level, output_offset);
  1295. auto* output_data = softgpu_image->texel_pointer(level, 0, 0, 0);
  1296. PixelConverter converter { input_layout, output_layout };
  1297. auto conversion_result = converter.convert(input_data, output_data, {});
  1298. if (conversion_result.is_error())
  1299. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1300. }
  1301. void Device::blit_from_color_buffer(void* output_data, Vector2<i32> input_offset, GPU::ImageDataLayout const& output_layout)
  1302. {
  1303. auto const& output_selection = output_layout.selection;
  1304. auto input_layout = color_buffer_data_layout({ output_selection.width, output_selection.height }, input_offset);
  1305. PixelConverter converter { input_layout, output_layout };
  1306. auto const* input_data = m_frame_buffer->color_buffer()->scanline(0);
  1307. auto conversion_result = converter.convert(input_data, output_data, {});
  1308. if (conversion_result.is_error())
  1309. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1310. }
  1311. void Device::blit_from_depth_buffer(void* output_data, Vector2<i32> input_offset, GPU::ImageDataLayout const& output_layout)
  1312. {
  1313. auto const& output_selection = output_layout.selection;
  1314. auto input_layout = depth_buffer_data_layout({ output_selection.width, output_selection.height }, input_offset);
  1315. PixelConverter converter { input_layout, output_layout };
  1316. auto const* input_data = m_frame_buffer->depth_buffer()->scanline(0);
  1317. auto conversion_result = converter.convert(input_data, output_data, {});
  1318. if (conversion_result.is_error())
  1319. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1320. }
  1321. void Device::blit_from_depth_buffer(NonnullRefPtr<GPU::Image> image, u32 level, Vector2<u32> input_size, Vector2<i32> input_offset, Vector3<i32> output_offset)
  1322. {
  1323. auto input_layout = depth_buffer_data_layout(input_size, input_offset);
  1324. auto const* input_data = m_frame_buffer->depth_buffer()->scanline(0);
  1325. auto const& softgpu_image = reinterpret_cast<Image*>(image.ptr());
  1326. auto output_layout = softgpu_image->image_data_layout(level, output_offset);
  1327. auto* output_data = softgpu_image->texel_pointer(level, 0, 0, 0);
  1328. PixelConverter converter { input_layout, output_layout };
  1329. auto conversion_result = converter.convert(input_data, output_data, {});
  1330. if (conversion_result.is_error())
  1331. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1332. }
  1333. void Device::blit_to_color_buffer_at_raster_position(void const* input_data, GPU::ImageDataLayout const& input_layout)
  1334. {
  1335. if (!m_raster_position.valid)
  1336. return;
  1337. auto input_selection = input_layout.selection;
  1338. INCREASE_STATISTICS_COUNTER(g_num_pixels, input_selection.width * input_selection.height);
  1339. INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, input_selection.width * input_selection.height);
  1340. auto const rasterization_rect = get_rasterization_rect_of_size({ input_selection.width, input_selection.height });
  1341. auto output_layout = color_buffer_data_layout(
  1342. { static_cast<u32>(rasterization_rect.width()), static_cast<u32>(rasterization_rect.height()) },
  1343. { rasterization_rect.x(), rasterization_rect.y() });
  1344. PixelConverter converter { input_layout, output_layout };
  1345. auto* output_data = m_frame_buffer->color_buffer()->scanline(0);
  1346. auto conversion_result = converter.convert(input_data, output_data, {});
  1347. if (conversion_result.is_error())
  1348. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1349. }
  1350. void Device::blit_to_depth_buffer_at_raster_position(void const* input_data, GPU::ImageDataLayout const& input_layout)
  1351. {
  1352. if (!m_raster_position.valid)
  1353. return;
  1354. auto input_selection = input_layout.selection;
  1355. auto const rasterization_rect = get_rasterization_rect_of_size({ input_selection.width, input_selection.height });
  1356. auto output_layout = depth_buffer_data_layout(
  1357. { static_cast<u32>(rasterization_rect.width()), static_cast<u32>(rasterization_rect.height()) },
  1358. { rasterization_rect.x(), rasterization_rect.y() });
  1359. PixelConverter converter { input_layout, output_layout };
  1360. auto* output_data = m_frame_buffer->depth_buffer()->scanline(0);
  1361. auto conversion_result = converter.convert(input_data, output_data, {});
  1362. if (conversion_result.is_error())
  1363. dbgln("Pixel conversion failed: {}", conversion_result.error().string_literal());
  1364. }
  1365. void Device::draw_statistics_overlay(Gfx::Bitmap& target)
  1366. {
  1367. static Core::ElapsedTimer timer;
  1368. static DeprecatedString debug_string;
  1369. static int frame_counter;
  1370. frame_counter++;
  1371. int milliseconds = 0;
  1372. if (timer.is_valid())
  1373. milliseconds = timer.elapsed();
  1374. else
  1375. timer.start();
  1376. Gfx::Painter painter { target };
  1377. if (milliseconds > MILLISECONDS_PER_STATISTICS_PERIOD) {
  1378. int num_rendertarget_pixels = m_frame_buffer->rect().size().area();
  1379. StringBuilder builder;
  1380. builder.append(DeprecatedString::formatted("Timings : {:.1}ms {:.1}FPS\n",
  1381. static_cast<double>(milliseconds) / frame_counter,
  1382. (milliseconds > 0) ? 1000.0 * frame_counter / milliseconds : 9999.0));
  1383. builder.append(DeprecatedString::formatted("Triangles : {}\n", g_num_rasterized_triangles));
  1384. builder.append(DeprecatedString::formatted("SIMD usage : {}%\n", g_num_quads > 0 ? g_num_pixels_shaded * 25 / g_num_quads : 0));
  1385. builder.append(DeprecatedString::formatted("Pixels : {}, Stencil: {}%, Shaded: {}%, Blended: {}%, Overdraw: {}%\n",
  1386. g_num_pixels,
  1387. g_num_pixels > 0 ? g_num_stencil_writes * 100 / g_num_pixels : 0,
  1388. g_num_pixels > 0 ? g_num_pixels_shaded * 100 / g_num_pixels : 0,
  1389. g_num_pixels_shaded > 0 ? g_num_pixels_blended * 100 / g_num_pixels_shaded : 0,
  1390. num_rendertarget_pixels > 0 ? g_num_pixels_shaded * 100 / num_rendertarget_pixels - 100 : 0));
  1391. builder.append(DeprecatedString::formatted("Sampler calls: {}\n", g_num_sampler_calls));
  1392. debug_string = builder.to_deprecated_string();
  1393. frame_counter = 0;
  1394. timer.start();
  1395. }
  1396. g_num_rasterized_triangles = 0;
  1397. g_num_pixels = 0;
  1398. g_num_pixels_shaded = 0;
  1399. g_num_pixels_blended = 0;
  1400. g_num_sampler_calls = 0;
  1401. g_num_stencil_writes = 0;
  1402. g_num_quads = 0;
  1403. auto& font = Gfx::FontDatabase::default_fixed_width_font();
  1404. for (int y = -1; y < 2; y++)
  1405. for (int x = -1; x < 2; x++)
  1406. if (x != 0 && y != 0)
  1407. painter.draw_text(target.rect().translated(x + 2, y + 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::Black);
  1408. painter.draw_text(target.rect().translated(2, 2), debug_string, font, Gfx::TextAlignment::TopLeft, Gfx::Color::White);
  1409. }
  1410. void Device::set_options(GPU::RasterizerOptions const& options)
  1411. {
  1412. m_options = options;
  1413. if (m_options.enable_blending)
  1414. setup_blend_factors();
  1415. }
  1416. void Device::set_light_model_params(GPU::LightModelParameters const& lighting_model)
  1417. {
  1418. m_lighting_model = lighting_model;
  1419. }
  1420. NonnullRefPtr<GPU::Image> Device::create_image(GPU::PixelFormat const& pixel_format, u32 width, u32 height, u32 depth, u32 max_levels)
  1421. {
  1422. VERIFY(width > 0);
  1423. VERIFY(height > 0);
  1424. VERIFY(depth > 0);
  1425. VERIFY(max_levels > 0);
  1426. return adopt_ref(*new Image(this, pixel_format, width, height, depth, max_levels));
  1427. }
  1428. ErrorOr<NonnullRefPtr<GPU::Shader>> Device::create_shader(GPU::IR::Shader const&)
  1429. {
  1430. return adopt_ref(*new Shader(this));
  1431. }
  1432. void Device::set_sampler_config(unsigned sampler, GPU::SamplerConfig const& config)
  1433. {
  1434. VERIFY(config.bound_image.is_null() || config.bound_image->ownership_token() == this);
  1435. m_samplers[sampler].set_config(config);
  1436. }
  1437. void Device::set_light_state(unsigned int light_id, GPU::Light const& light)
  1438. {
  1439. m_lights.at(light_id) = light;
  1440. }
  1441. void Device::set_material_state(GPU::Face face, GPU::Material const& material)
  1442. {
  1443. m_materials[face] = material;
  1444. }
  1445. void Device::set_stencil_configuration(GPU::Face face, GPU::StencilConfiguration const& stencil_configuration)
  1446. {
  1447. m_stencil_configuration[face] = stencil_configuration;
  1448. }
  1449. void Device::set_texture_unit_configuration(GPU::TextureUnitIndex index, GPU::TextureUnitConfiguration const& configuration)
  1450. {
  1451. m_texture_unit_configuration[index] = configuration;
  1452. }
  1453. void Device::set_raster_position(GPU::RasterPosition const& raster_position)
  1454. {
  1455. m_raster_position = raster_position;
  1456. }
  1457. void Device::set_clip_planes(Vector<FloatVector4> const& clip_planes)
  1458. {
  1459. m_clip_planes = clip_planes;
  1460. }
  1461. void Device::set_raster_position(FloatVector4 const& position, FloatMatrix4x4 const& model_view_transform, FloatMatrix4x4 const& projection_transform)
  1462. {
  1463. auto const eye_coordinates = model_view_transform * position;
  1464. auto const clip_coordinates = projection_transform * eye_coordinates;
  1465. // FIXME: implement clipping
  1466. m_raster_position.valid = true;
  1467. auto ndc_coordinates = clip_coordinates / clip_coordinates.w();
  1468. ndc_coordinates.set_w(clip_coordinates.w());
  1469. auto const viewport = m_options.viewport;
  1470. auto const viewport_half_width = viewport.width() / 2.0f;
  1471. auto const viewport_half_height = viewport.height() / 2.0f;
  1472. auto const viewport_center_x = viewport.x() + viewport_half_width;
  1473. auto const viewport_center_y = viewport.y() + viewport_half_height;
  1474. auto const depth_half_range = (m_options.depth_max - m_options.depth_min) / 2;
  1475. auto const depth_halfway = (m_options.depth_min + m_options.depth_max) / 2;
  1476. // FIXME: implement other raster position properties such as color and texcoords
  1477. m_raster_position.window_coordinates = {
  1478. viewport_center_x + ndc_coordinates.x() * viewport_half_width,
  1479. viewport_center_y + ndc_coordinates.y() * viewport_half_height,
  1480. depth_halfway + ndc_coordinates.z() * depth_half_range,
  1481. ndc_coordinates.w(),
  1482. };
  1483. m_raster_position.eye_coordinate_distance = eye_coordinates.length();
  1484. }
  1485. Gfx::IntRect Device::get_rasterization_rect_of_size(Gfx::IntSize size) const
  1486. {
  1487. // Round the X and Y floating point coordinates to the nearest integer; OpenGL 1.5 spec:
  1488. // "Any fragments whose centers lie inside of this rectangle (or on its bottom or left
  1489. // boundaries) are produced in correspondence with this particular group of elements."
  1490. return {
  1491. round_to<int>(m_raster_position.window_coordinates.x()),
  1492. round_to<int>(m_raster_position.window_coordinates.y()),
  1493. size.width(),
  1494. size.height(),
  1495. };
  1496. }
  1497. }
  1498. extern "C" {
  1499. GPU::Device* serenity_gpu_create_device(Gfx::IntSize size)
  1500. {
  1501. return make<SoftGPU::Device>(size).leak_ptr();
  1502. }
  1503. }