123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691 |
- /*
- * Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
- * Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org>
- * Copyright (c) 2022, David Tuin <davidot@serenityos.org>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #pragma once
- #include <AK/Assertions.h>
- #include <AK/BitCast.h>
- #include <AK/DeprecatedString.h>
- #include <AK/Format.h>
- #include <AK/Forward.h>
- #include <AK/Function.h>
- #include <AK/Result.h>
- #include <AK/String.h>
- #include <AK/Types.h>
- #include <LibJS/Forward.h>
- #include <LibJS/Heap/GCPtr.h>
- #include <math.h>
- // 2 ** 53 - 1
- static constexpr double MAX_ARRAY_LIKE_INDEX = 9007199254740991.0;
- // Unique bit representation of negative zero (only sign bit set)
- static constexpr u64 NEGATIVE_ZERO_BITS = ((u64)1 << 63);
- namespace JS {
- static_assert(sizeof(double) == 8);
- static_assert(sizeof(void*) == sizeof(double) || sizeof(void*) == sizeof(u32));
- // To make our Value representation compact we can use the fact that IEEE
- // doubles have a lot (2^52 - 2) of NaN bit patterns. The canonical form being
- // just 0x7FF8000000000000 i.e. sign = 0 exponent is all ones and the top most
- // bit of the mantissa set.
- static constexpr u64 CANON_NAN_BITS = bit_cast<u64>(__builtin_nan(""));
- static_assert(CANON_NAN_BITS == 0x7FF8000000000000);
- // (Unfortunately all the other values are valid so we have to convert any
- // incoming NaNs to this pattern although in practice it seems only the negative
- // version of these CANON_NAN_BITS)
- // +/- Infinity are represented by a full exponent but without any bits of the
- // mantissa set.
- static constexpr u64 POSITIVE_INFINITY_BITS = bit_cast<u64>(__builtin_huge_val());
- static constexpr u64 NEGATIVE_INFINITY_BITS = bit_cast<u64>(-__builtin_huge_val());
- static_assert(POSITIVE_INFINITY_BITS == 0x7FF0000000000000);
- static_assert(NEGATIVE_INFINITY_BITS == 0xFFF0000000000000);
- // However as long as any bit is set in the mantissa with the exponent of all
- // ones this value is a NaN, and it even ignores the sign bit.
- // (NOTE: we have to use __builtin_isnan here since some isnan implementations are not constexpr)
- static_assert(__builtin_isnan(bit_cast<double>(0x7FF0000000000001)));
- static_assert(__builtin_isnan(bit_cast<double>(0xFFF0000000040000)));
- // This means we can use all of these NaNs to store all other options for Value.
- // To make sure all of these other representations we use 0x7FF8 as the base top
- // 2 bytes which ensures the value is always a NaN.
- static constexpr u64 BASE_TAG = 0x7FF8;
- // This leaves the sign bit and the three lower bits for tagging a value and then
- // 48 bits of potential payload.
- // First the pointer backed types (Object, String etc.), to signify this category
- // and make stack scanning easier we use the sign bit (top most bit) of 1 to
- // signify that it is a pointer backed type.
- static constexpr u64 IS_CELL_BIT = 0x8000 | BASE_TAG;
- // On all current 64-bit systems this code runs pointer actually only use the
- // lowest 6 bytes which fits neatly into our NaN payload with the top two bytes
- // left over for marking it as a NaN and tagging the type.
- // Note that we do need to take care when extracting the pointer value but this
- // is explained in the extract_pointer method.
- // This leaves us 3 bits to tag the type of pointer:
- static constexpr u64 OBJECT_TAG = 0b001 | IS_CELL_BIT;
- static constexpr u64 STRING_TAG = 0b010 | IS_CELL_BIT;
- static constexpr u64 SYMBOL_TAG = 0b011 | IS_CELL_BIT;
- static constexpr u64 ACCESSOR_TAG = 0b100 | IS_CELL_BIT;
- static constexpr u64 BIGINT_TAG = 0b101 | IS_CELL_BIT;
- // We can then by extracting the top 13 bits quickly check if a Value is
- // pointer backed.
- static constexpr u64 IS_CELL_PATTERN = 0xFFF8ULL;
- static_assert((OBJECT_TAG & IS_CELL_PATTERN) == IS_CELL_PATTERN);
- static_assert((STRING_TAG & IS_CELL_PATTERN) == IS_CELL_PATTERN);
- static_assert((CANON_NAN_BITS & IS_CELL_PATTERN) != IS_CELL_PATTERN);
- static_assert((NEGATIVE_INFINITY_BITS & IS_CELL_PATTERN) != IS_CELL_PATTERN);
- // Then for the non pointer backed types we don't set the sign bit and use the
- // three lower bits for tagging as well.
- static constexpr u64 UNDEFINED_TAG = 0b110 | BASE_TAG;
- static constexpr u64 NULL_TAG = 0b111 | BASE_TAG;
- static constexpr u64 BOOLEAN_TAG = 0b001 | BASE_TAG;
- static constexpr u64 INT32_TAG = 0b010 | BASE_TAG;
- static constexpr u64 EMPTY_TAG = 0b011 | BASE_TAG;
- // Notice how only undefined and null have the top bit set, this mean we can
- // quickly check for nullish values by checking if the top and bottom bits are set
- // but the middle one isn't.
- static constexpr u64 IS_NULLISH_EXTRACT_PATTERN = 0xFFFEULL;
- static constexpr u64 IS_NULLISH_PATTERN = 0x7FFEULL;
- static_assert((UNDEFINED_TAG & IS_NULLISH_EXTRACT_PATTERN) == IS_NULLISH_PATTERN);
- static_assert((NULL_TAG & IS_NULLISH_EXTRACT_PATTERN) == IS_NULLISH_PATTERN);
- static_assert((BOOLEAN_TAG & IS_NULLISH_EXTRACT_PATTERN) != IS_NULLISH_PATTERN);
- static_assert((INT32_TAG & IS_NULLISH_EXTRACT_PATTERN) != IS_NULLISH_PATTERN);
- static_assert((EMPTY_TAG & IS_NULLISH_EXTRACT_PATTERN) != IS_NULLISH_PATTERN);
- // We also have the empty tag to represent array holes however since empty
- // values are not valid anywhere else we can use this "value" to our advantage
- // in Optional<Value> to represent the empty optional.
- static constexpr u64 TAG_EXTRACTION = 0xFFFF000000000000;
- static constexpr u64 TAG_SHIFT = 48;
- static constexpr u64 SHIFTED_INT32_TAG = INT32_TAG << TAG_SHIFT;
- static constexpr u64 SHIFTED_IS_CELL_PATTERN = IS_CELL_PATTERN << TAG_SHIFT;
- // Summary:
- // To pack all the different value in to doubles we use the following schema:
- // s = sign, e = exponent, m = mantissa
- // The top part is the tag and the bottom the payload.
- // 0bseeeeeeeeeeemmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
- // 0b0111111111111000 0... is the only real NaN
- // 0b1111111111111xxx yyy... xxx = pointer type, yyy = pointer value
- // 0b0111111111111xxx yyy... xxx = non-pointer type, yyy = value or 0 if just type
- // Future expansion: We are not fully utilizing all the possible bit patterns
- // yet, these choices were made to make it easy to implement and understand.
- // We can for example drop the always 1 top bit of the mantissa expanding our
- // options from 8 tags to 15 but since we currently only use 5 for both sign bits
- // this is not needed.
- class Value {
- public:
- enum class PreferredType {
- Default,
- String,
- Number,
- };
- bool is_empty() const { return m_value.tag == EMPTY_TAG; }
- bool is_undefined() const { return m_value.tag == UNDEFINED_TAG; }
- bool is_null() const { return m_value.tag == NULL_TAG; }
- bool is_number() const { return is_double() || is_int32(); }
- bool is_string() const { return m_value.tag == STRING_TAG; }
- bool is_object() const { return m_value.tag == OBJECT_TAG; }
- bool is_boolean() const { return m_value.tag == BOOLEAN_TAG; }
- bool is_symbol() const { return m_value.tag == SYMBOL_TAG; }
- bool is_accessor() const { return m_value.tag == ACCESSOR_TAG; };
- bool is_bigint() const { return m_value.tag == BIGINT_TAG; };
- bool is_nullish() const { return (m_value.tag & IS_NULLISH_EXTRACT_PATTERN) == IS_NULLISH_PATTERN; }
- bool is_cell() const { return (m_value.tag & IS_CELL_PATTERN) == IS_CELL_PATTERN; }
- ThrowCompletionOr<bool> is_array(VM&) const;
- bool is_function() const;
- bool is_constructor() const;
- ThrowCompletionOr<bool> is_regexp(VM&) const;
- bool is_nan() const
- {
- return m_value.encoded == CANON_NAN_BITS;
- }
- bool is_infinity() const
- {
- static_assert(NEGATIVE_INFINITY_BITS == (0x1ULL << 63 | POSITIVE_INFINITY_BITS));
- return (0x1ULL << 63 | m_value.encoded) == NEGATIVE_INFINITY_BITS;
- }
- bool is_positive_infinity() const
- {
- return m_value.encoded == POSITIVE_INFINITY_BITS;
- }
- bool is_negative_infinity() const
- {
- return m_value.encoded == NEGATIVE_INFINITY_BITS;
- }
- bool is_positive_zero() const
- {
- return m_value.encoded == 0 || (is_int32() && as_i32() == 0);
- }
- bool is_negative_zero() const
- {
- return m_value.encoded == NEGATIVE_ZERO_BITS;
- }
- bool is_integral_number() const
- {
- if (is_int32())
- return true;
- return is_finite_number() && trunc(as_double()) == as_double();
- }
- bool is_finite_number() const
- {
- if (!is_number())
- return false;
- if (is_int32())
- return true;
- return !is_nan() && !is_infinity();
- }
- Value()
- : Value(EMPTY_TAG << TAG_SHIFT, (u64)0)
- {
- }
- template<typename T>
- requires(IsSameIgnoringCV<T, bool>) explicit Value(T value)
- : Value(BOOLEAN_TAG << TAG_SHIFT, (u64)value)
- {
- }
- explicit Value(double value)
- {
- bool is_negative_zero = bit_cast<u64>(value) == NEGATIVE_ZERO_BITS;
- if (value >= NumericLimits<i32>::min() && value <= NumericLimits<i32>::max() && trunc(value) == value && !is_negative_zero) {
- VERIFY(!(SHIFTED_INT32_TAG & (static_cast<i32>(value) & 0xFFFFFFFFul)));
- m_value.encoded = SHIFTED_INT32_TAG | (static_cast<i32>(value) & 0xFFFFFFFFul);
- } else {
- if (isnan(value)) [[unlikely]]
- m_value.encoded = CANON_NAN_BITS;
- else
- m_value.as_double = value;
- }
- }
- // NOTE: A couple of integral types are excluded here:
- // - i32 has its own dedicated Value constructor
- // - i64 cannot safely be cast to a double
- // - bool isn't a number type and has its own dedicated Value constructor
- template<typename T>
- requires(IsIntegral<T> && !IsSameIgnoringCV<T, i32> && !IsSameIgnoringCV<T, i64> && !IsSameIgnoringCV<T, bool>) explicit Value(T value)
- {
- if (value > NumericLimits<i32>::max()) {
- m_value.as_double = static_cast<double>(value);
- } else {
- VERIFY(!(SHIFTED_INT32_TAG & (static_cast<i32>(value) & 0xFFFFFFFFul)));
- m_value.encoded = SHIFTED_INT32_TAG | (static_cast<i32>(value) & 0xFFFFFFFFul);
- }
- }
- explicit Value(unsigned value)
- {
- if (value > NumericLimits<i32>::max()) {
- m_value.as_double = static_cast<double>(value);
- } else {
- VERIFY(!(SHIFTED_INT32_TAG & (static_cast<i32>(value) & 0xFFFFFFFFul)));
- m_value.encoded = SHIFTED_INT32_TAG | (static_cast<i32>(value) & 0xFFFFFFFFul);
- }
- }
- explicit Value(i32 value)
- : Value(SHIFTED_INT32_TAG, (u32)value)
- {
- }
- Value(Object const* object)
- : Value(OBJECT_TAG << TAG_SHIFT, reinterpret_cast<void const*>(object))
- {
- }
- Value(PrimitiveString const* string)
- : Value(STRING_TAG << TAG_SHIFT, reinterpret_cast<void const*>(string))
- {
- }
- Value(Symbol const* symbol)
- : Value(SYMBOL_TAG << TAG_SHIFT, reinterpret_cast<void const*>(symbol))
- {
- }
- Value(Accessor const* accessor)
- : Value(ACCESSOR_TAG << TAG_SHIFT, reinterpret_cast<void const*>(accessor))
- {
- }
- Value(BigInt const* bigint)
- : Value(BIGINT_TAG << TAG_SHIFT, reinterpret_cast<void const*>(bigint))
- {
- }
- template<typename T>
- Value(GCPtr<T> ptr)
- : Value(ptr.ptr())
- {
- }
- template<typename T>
- Value(NonnullGCPtr<T> ptr)
- : Value(ptr.ptr())
- {
- }
- double as_double() const
- {
- VERIFY(is_number());
- if (is_int32())
- return as_i32();
- return m_value.as_double;
- }
- bool as_bool() const
- {
- VERIFY(is_boolean());
- return static_cast<bool>(m_value.encoded & 0x1);
- }
- Object& as_object()
- {
- VERIFY(is_object());
- return *extract_pointer<Object>();
- }
- Object const& as_object() const
- {
- VERIFY(is_object());
- return *extract_pointer<Object>();
- }
- PrimitiveString& as_string()
- {
- VERIFY(is_string());
- return *extract_pointer<PrimitiveString>();
- }
- PrimitiveString const& as_string() const
- {
- VERIFY(is_string());
- return *extract_pointer<PrimitiveString>();
- }
- Symbol& as_symbol()
- {
- VERIFY(is_symbol());
- return *extract_pointer<Symbol>();
- }
- Symbol const& as_symbol() const
- {
- VERIFY(is_symbol());
- return *extract_pointer<Symbol>();
- }
- Cell& as_cell()
- {
- VERIFY(is_cell());
- return *extract_pointer<Cell>();
- }
- Accessor& as_accessor()
- {
- VERIFY(is_accessor());
- return *extract_pointer<Accessor>();
- }
- BigInt const& as_bigint() const
- {
- VERIFY(is_bigint());
- return *extract_pointer<BigInt>();
- }
- BigInt& as_bigint()
- {
- VERIFY(is_bigint());
- return *extract_pointer<BigInt>();
- }
- Array& as_array();
- FunctionObject& as_function();
- FunctionObject const& as_function() const;
- u64 encoded() const { return m_value.encoded; }
- ThrowCompletionOr<String> to_string(VM&) const;
- ThrowCompletionOr<DeprecatedString> to_deprecated_string(VM&) const;
- ThrowCompletionOr<Utf16String> to_utf16_string(VM&) const;
- ThrowCompletionOr<NonnullGCPtr<PrimitiveString>> to_primitive_string(VM&);
- ThrowCompletionOr<Value> to_primitive(VM&, PreferredType preferred_type = PreferredType::Default) const;
- ThrowCompletionOr<NonnullGCPtr<Object>> to_object(VM&) const;
- ThrowCompletionOr<Value> to_numeric(VM&) const;
- ThrowCompletionOr<Value> to_number(VM&) const;
- ThrowCompletionOr<NonnullGCPtr<BigInt>> to_bigint(VM&) const;
- ThrowCompletionOr<i64> to_bigint_int64(VM&) const;
- ThrowCompletionOr<u64> to_bigint_uint64(VM&) const;
- ThrowCompletionOr<double> to_double(VM&) const;
- ThrowCompletionOr<PropertyKey> to_property_key(VM&) const;
- ThrowCompletionOr<i32> to_i32(VM&) const;
- ThrowCompletionOr<u32> to_u32(VM&) const;
- ThrowCompletionOr<i16> to_i16(VM&) const;
- ThrowCompletionOr<u16> to_u16(VM&) const;
- ThrowCompletionOr<i8> to_i8(VM&) const;
- ThrowCompletionOr<u8> to_u8(VM&) const;
- ThrowCompletionOr<u8> to_u8_clamp(VM&) const;
- ThrowCompletionOr<size_t> to_length(VM&) const;
- ThrowCompletionOr<size_t> to_index(VM&) const;
- ThrowCompletionOr<double> to_integer_or_infinity(VM&) const;
- bool to_boolean() const;
- ThrowCompletionOr<Value> get(VM&, PropertyKey const&) const;
- ThrowCompletionOr<FunctionObject*> get_method(VM&, PropertyKey const&) const;
- ErrorOr<String> to_string_without_side_effects() const;
- Value value_or(Value fallback) const
- {
- if (is_empty())
- return fallback;
- return *this;
- }
- StringView typeof() const;
- bool operator==(Value const&) const;
- template<typename... Args>
- [[nodiscard]] ALWAYS_INLINE ThrowCompletionOr<Value> invoke(VM&, PropertyKey const& property_key, Args... args);
- static constexpr FlatPtr extract_pointer_bits(u64 encoded)
- {
- #ifdef AK_ARCH_32_BIT
- // For 32-bit system the pointer fully fits so we can just return it directly.
- static_assert(sizeof(void*) == sizeof(u32));
- return static_cast<FlatPtr>(encoded & 0xffff'ffff);
- #elif ARCH(X86_64)
- // For x86_64 the top 16 bits should be sign extending the "real" top bit (47th).
- // So first shift the top 16 bits away then using the right shift it sign extends the top 16 bits.
- return static_cast<FlatPtr>((static_cast<i64>(encoded << 16)) >> 16);
- #elif ARCH(AARCH64)
- // For AArch64 the top 16 bits of the pointer should be zero.
- return static_cast<FlatPtr>(encoded & 0xffff'ffff'ffffULL);
- #else
- # error "Unknown architecture. Don't know whether pointers need to be sign-extended."
- #endif
- }
- private:
- Value(u64 tag, u64 val)
- {
- VERIFY(!(tag & val));
- m_value.encoded = tag | val;
- }
- template<typename PointerType>
- Value(u64 tag, PointerType const* ptr)
- {
- if (!ptr) {
- // Make sure all nullptrs are null
- m_value.tag = NULL_TAG;
- return;
- }
- VERIFY((tag & 0x8000000000000000ul) == 0x8000000000000000ul);
- if constexpr (sizeof(PointerType*) < sizeof(u64)) {
- m_value.encoded = tag | reinterpret_cast<u32>(ptr);
- } else {
- // NOTE: Pointers in x86-64 use just 48 bits however are supposed to be
- // sign extended up from the 47th bit.
- // This means that all bits above the 47th should be the same as
- // the 47th. When storing a pointer we thus drop the top 16 bits as
- // we can recover it when extracting the pointer again.
- // See also: Value::extract_pointer.
- m_value.encoded = tag | (reinterpret_cast<u64>(ptr) & 0x0000ffffffffffffULL);
- }
- }
- // A double is any Value which does not have the full exponent and top mantissa bit set or has
- // exactly only those bits set.
- bool is_double() const { return (m_value.encoded & CANON_NAN_BITS) != CANON_NAN_BITS || (m_value.encoded == CANON_NAN_BITS); }
- bool is_int32() const { return m_value.tag == INT32_TAG; }
- i32 as_i32() const
- {
- VERIFY(is_int32());
- return static_cast<i32>(m_value.encoded & 0xFFFFFFFF);
- }
- template<typename PointerType>
- PointerType* extract_pointer() const
- {
- VERIFY(is_cell());
- return reinterpret_cast<PointerType*>(extract_pointer_bits(m_value.encoded));
- }
- [[nodiscard]] ThrowCompletionOr<Value> invoke_internal(VM&, PropertyKey const&, Optional<MarkedVector<Value>> arguments);
- ThrowCompletionOr<i32> to_i32_slow_case(VM&) const;
- union {
- double as_double;
- struct {
- u64 payload : 48;
- u64 tag : 16;
- };
- u64 encoded;
- } m_value { .encoded = 0 };
- friend Value js_undefined();
- friend Value js_null();
- friend ThrowCompletionOr<Value> greater_than(VM&, Value lhs, Value rhs);
- friend ThrowCompletionOr<Value> greater_than_equals(VM&, Value lhs, Value rhs);
- friend ThrowCompletionOr<Value> less_than(VM&, Value lhs, Value rhs);
- friend ThrowCompletionOr<Value> less_than_equals(VM&, Value lhs, Value rhs);
- friend ThrowCompletionOr<Value> add(VM&, Value lhs, Value rhs);
- friend bool same_value_non_number(Value lhs, Value rhs);
- };
- inline Value js_undefined()
- {
- return Value(UNDEFINED_TAG << TAG_SHIFT, (u64)0);
- }
- inline Value js_null()
- {
- return Value(NULL_TAG << TAG_SHIFT, (u64)0);
- }
- inline Value js_nan()
- {
- return Value(NAN);
- }
- inline Value js_infinity()
- {
- return Value(INFINITY);
- }
- inline Value js_negative_infinity()
- {
- return Value(-INFINITY);
- }
- ThrowCompletionOr<Value> greater_than(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> greater_than_equals(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> less_than(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> less_than_equals(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> bitwise_and(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> bitwise_or(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> bitwise_xor(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> bitwise_not(VM&, Value);
- ThrowCompletionOr<Value> unary_plus(VM&, Value);
- ThrowCompletionOr<Value> unary_minus(VM&, Value);
- ThrowCompletionOr<Value> left_shift(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> right_shift(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> unsigned_right_shift(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> add(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> sub(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> mul(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> div(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> mod(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> exp(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> in(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> instance_of(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<Value> ordinary_has_instance(VM&, Value lhs, Value rhs);
- ThrowCompletionOr<bool> is_loosely_equal(VM&, Value lhs, Value rhs);
- bool is_strictly_equal(Value lhs, Value rhs);
- bool same_value(Value lhs, Value rhs);
- bool same_value_zero(Value lhs, Value rhs);
- bool same_value_non_number(Value lhs, Value rhs);
- ThrowCompletionOr<TriState> is_less_than(VM&, Value lhs, Value rhs, bool left_first);
- double to_integer_or_infinity(double);
- enum class NumberToStringMode {
- WithExponent,
- WithoutExponent,
- };
- ErrorOr<String> number_to_string(double, NumberToStringMode = NumberToStringMode::WithExponent);
- DeprecatedString number_to_deprecated_string(double, NumberToStringMode = NumberToStringMode::WithExponent);
- double string_to_number(StringView);
- inline bool Value::operator==(Value const& value) const { return same_value(*this, value); }
- }
- namespace AK {
- static_assert(sizeof(JS::Value) == sizeof(double));
- template<>
- class Optional<JS::Value> {
- template<typename U>
- friend class Optional;
- public:
- using ValueType = JS::Value;
- Optional() = default;
- Optional(Optional<JS::Value> const& other)
- {
- if (other.has_value())
- m_value = other.m_value;
- }
- Optional(Optional&& other)
- : m_value(other.m_value)
- {
- }
- template<typename U = JS::Value>
- explicit(!IsConvertible<U&&, JS::Value>) Optional(U&& value)
- requires(!IsSame<RemoveCVReference<U>, Optional<JS::Value>> && IsConstructible<JS::Value, U &&>)
- : m_value(forward<U>(value))
- {
- }
- Optional& operator=(Optional const& other)
- {
- if (this != &other) {
- clear();
- m_value = other.m_value;
- }
- return *this;
- }
- Optional& operator=(Optional&& other)
- {
- if (this != &other) {
- clear();
- m_value = other.m_value;
- }
- return *this;
- }
- void clear()
- {
- m_value = {};
- }
- [[nodiscard]] bool has_value() const
- {
- return !m_value.is_empty();
- }
- [[nodiscard]] JS::Value& value() &
- {
- VERIFY(has_value());
- return m_value;
- }
- [[nodiscard]] JS::Value const& value() const&
- {
- VERIFY(has_value());
- return m_value;
- }
- [[nodiscard]] JS::Value value() &&
- {
- return release_value();
- }
- [[nodiscard]] JS::Value release_value()
- {
- VERIFY(has_value());
- JS::Value released_value = m_value;
- clear();
- return released_value;
- }
- JS::Value value_or(JS::Value const& fallback) const&
- {
- if (has_value())
- return value();
- return fallback;
- }
- [[nodiscard]] JS::Value value_or(JS::Value&& fallback) &&
- {
- if (has_value())
- return value();
- return fallback;
- }
- JS::Value const& operator*() const { return value(); }
- JS::Value& operator*() { return value(); }
- JS::Value const* operator->() const { return &value(); }
- JS::Value* operator->() { return &value(); }
- private:
- JS::Value m_value;
- };
- template<>
- struct Formatter<JS::Value> : Formatter<StringView> {
- ErrorOr<void> format(FormatBuilder& builder, JS::Value value)
- {
- if (value.is_empty())
- return Formatter<StringView>::format(builder, "<empty>"sv);
- return Formatter<StringView>::format(builder, TRY(value.to_string_without_side_effects()));
- }
- };
- }
|