execve.cpp 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2022, the SerenityOS developers.
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/ScopeGuard.h>
  8. #include <AK/TemporaryChange.h>
  9. #include <AK/WeakPtr.h>
  10. #include <Kernel/Debug.h>
  11. #include <Kernel/FileSystem/Custody.h>
  12. #include <Kernel/FileSystem/OpenFileDescription.h>
  13. #include <Kernel/Memory/AllocationStrategy.h>
  14. #include <Kernel/Memory/MemoryManager.h>
  15. #include <Kernel/Memory/PageDirectory.h>
  16. #include <Kernel/Memory/Region.h>
  17. #include <Kernel/Memory/SharedInodeVMObject.h>
  18. #include <Kernel/Panic.h>
  19. #include <Kernel/PerformanceManager.h>
  20. #include <Kernel/Process.h>
  21. #include <Kernel/Random.h>
  22. #include <Kernel/Scheduler.h>
  23. #include <Kernel/Time/TimeManagement.h>
  24. #include <LibC/limits.h>
  25. #include <LibELF/AuxiliaryVector.h>
  26. #include <LibELF/Image.h>
  27. #include <LibELF/Validation.h>
  28. namespace Kernel {
  29. extern Memory::Region* g_signal_trampoline_region;
  30. struct LoadResult {
  31. OwnPtr<Memory::AddressSpace> space;
  32. FlatPtr load_base { 0 };
  33. FlatPtr entry_eip { 0 };
  34. size_t size { 0 };
  35. WeakPtr<Memory::Region> tls_region;
  36. size_t tls_size { 0 };
  37. size_t tls_alignment { 0 };
  38. WeakPtr<Memory::Region> stack_region;
  39. };
  40. static constexpr size_t auxiliary_vector_size = 15;
  41. static Array<ELF::AuxiliaryValue, auxiliary_vector_size> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, UserID uid, UserID euid, GroupID gid, GroupID egid, StringView executable_path, Optional<Process::ScopedDescriptionAllocation> const& main_program_fd_allocation);
  42. static bool validate_stack_size(NonnullOwnPtrVector<KString> const& arguments, NonnullOwnPtrVector<KString>& environment)
  43. {
  44. size_t total_arguments_size = 0;
  45. size_t total_environment_size = 0;
  46. for (auto const& a : arguments)
  47. total_arguments_size += a.length() + 1;
  48. for (auto const& e : environment)
  49. total_environment_size += e.length() + 1;
  50. total_arguments_size += sizeof(char*) * (arguments.size() + 1);
  51. total_environment_size += sizeof(char*) * (environment.size() + 1);
  52. if (total_arguments_size > Process::max_arguments_size)
  53. return false;
  54. if (total_environment_size > Process::max_environment_size)
  55. return false;
  56. // FIXME: This doesn't account for the size of the auxiliary vector
  57. return true;
  58. }
  59. static ErrorOr<FlatPtr> make_userspace_context_for_main_thread([[maybe_unused]] ThreadRegisters& regs, Memory::Region& region, NonnullOwnPtrVector<KString> const& arguments,
  60. NonnullOwnPtrVector<KString> const& environment, Array<ELF::AuxiliaryValue, auxiliary_vector_size> auxiliary_values)
  61. {
  62. FlatPtr new_sp = region.range().end().get();
  63. // Add some bits of randomness to the user stack pointer.
  64. new_sp -= round_up_to_power_of_two(get_fast_random<u32>() % 4096, 16);
  65. auto push_on_new_stack = [&new_sp](FlatPtr value) {
  66. new_sp -= sizeof(FlatPtr);
  67. Userspace<FlatPtr*> stack_ptr = new_sp;
  68. auto result = copy_to_user(stack_ptr, &value);
  69. VERIFY(!result.is_error());
  70. };
  71. auto push_aux_value_on_new_stack = [&new_sp](auxv_t value) {
  72. new_sp -= sizeof(auxv_t);
  73. Userspace<auxv_t*> stack_ptr = new_sp;
  74. auto result = copy_to_user(stack_ptr, &value);
  75. VERIFY(!result.is_error());
  76. };
  77. auto push_string_on_new_stack = [&new_sp](StringView string) {
  78. new_sp -= round_up_to_power_of_two(string.length() + 1, sizeof(FlatPtr));
  79. Userspace<FlatPtr*> stack_ptr = new_sp;
  80. auto result = copy_to_user(stack_ptr, string.characters_without_null_termination(), string.length() + 1);
  81. VERIFY(!result.is_error());
  82. };
  83. Vector<FlatPtr> argv_entries;
  84. for (auto const& argument : arguments) {
  85. push_string_on_new_stack(argument.view());
  86. TRY(argv_entries.try_append(new_sp));
  87. }
  88. Vector<FlatPtr> env_entries;
  89. for (auto const& variable : environment) {
  90. push_string_on_new_stack(variable.view());
  91. TRY(env_entries.try_append(new_sp));
  92. }
  93. for (auto& value : auxiliary_values) {
  94. if (!value.optional_string.is_empty()) {
  95. push_string_on_new_stack(value.optional_string);
  96. value.auxv.a_un.a_ptr = (void*)new_sp;
  97. }
  98. if (value.auxv.a_type == ELF::AuxiliaryValue::Random) {
  99. u8 random_bytes[16] {};
  100. get_fast_random_bytes({ random_bytes, sizeof(random_bytes) });
  101. push_string_on_new_stack({ random_bytes, sizeof(random_bytes) });
  102. value.auxv.a_un.a_ptr = (void*)new_sp;
  103. }
  104. }
  105. for (ssize_t i = auxiliary_values.size() - 1; i >= 0; --i) {
  106. auto& value = auxiliary_values[i];
  107. push_aux_value_on_new_stack(value.auxv);
  108. }
  109. push_on_new_stack(0);
  110. for (ssize_t i = env_entries.size() - 1; i >= 0; --i)
  111. push_on_new_stack(env_entries[i]);
  112. FlatPtr envp = new_sp;
  113. push_on_new_stack(0);
  114. for (ssize_t i = argv_entries.size() - 1; i >= 0; --i)
  115. push_on_new_stack(argv_entries[i]);
  116. FlatPtr argv = new_sp;
  117. // NOTE: The stack needs to be 16-byte aligned.
  118. new_sp -= new_sp % 16;
  119. #if ARCH(I386)
  120. // GCC assumes that the return address has been pushed to the stack when it enters the function,
  121. // so we need to reserve an extra pointer's worth of bytes below this to make GCC's stack alignment
  122. // calculations work
  123. new_sp -= sizeof(void*);
  124. push_on_new_stack(envp);
  125. push_on_new_stack(argv);
  126. push_on_new_stack(argv_entries.size());
  127. #else
  128. regs.rdi = argv_entries.size();
  129. regs.rsi = argv;
  130. regs.rdx = envp;
  131. #endif
  132. VERIFY(new_sp % 16 == 0);
  133. // FIXME: The way we're setting up the stack and passing arguments to the entry point isn't ABI-compliant
  134. return new_sp;
  135. }
  136. struct RequiredLoadRange {
  137. FlatPtr start { 0 };
  138. FlatPtr end { 0 };
  139. };
  140. static ErrorOr<RequiredLoadRange> get_required_load_range(OpenFileDescription& program_description)
  141. {
  142. auto& inode = *(program_description.inode());
  143. auto vmobject = TRY(Memory::SharedInodeVMObject::try_create_with_inode(inode));
  144. size_t executable_size = inode.size();
  145. size_t rounded_executable_size = TRY(Memory::page_round_up(executable_size));
  146. auto region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, rounded_executable_size, "ELF memory range calculation", Memory::Region::Access::Read));
  147. auto elf_image = ELF::Image(region->vaddr().as_ptr(), executable_size);
  148. if (!elf_image.is_valid()) {
  149. return EINVAL;
  150. }
  151. RequiredLoadRange range {};
  152. elf_image.for_each_program_header([&range](auto const& pheader) {
  153. if (pheader.type() != PT_LOAD)
  154. return;
  155. auto region_start = (FlatPtr)pheader.vaddr().as_ptr();
  156. auto region_end = region_start + pheader.size_in_memory();
  157. if (range.start == 0 || region_start < range.start)
  158. range.start = region_start;
  159. if (range.end == 0 || region_end > range.end)
  160. range.end = region_end;
  161. });
  162. VERIFY(range.end > range.start);
  163. return range;
  164. };
  165. static ErrorOr<FlatPtr> get_load_offset(const ElfW(Ehdr) & main_program_header, OpenFileDescription& main_program_description, OpenFileDescription* interpreter_description)
  166. {
  167. constexpr FlatPtr load_range_start = 0x08000000;
  168. constexpr FlatPtr load_range_size = 65536 * PAGE_SIZE; // 2**16 * PAGE_SIZE = 256MB
  169. constexpr FlatPtr minimum_load_offset_randomization_size = 10 * MiB;
  170. auto random_load_offset_in_range([](auto start, auto size) {
  171. return Memory::page_round_down(start + get_good_random<FlatPtr>() % size);
  172. });
  173. if (main_program_header.e_type == ET_DYN) {
  174. return random_load_offset_in_range(load_range_start, load_range_size);
  175. }
  176. if (main_program_header.e_type != ET_EXEC)
  177. return EINVAL;
  178. auto main_program_load_range = TRY(get_required_load_range(main_program_description));
  179. RequiredLoadRange selected_range {};
  180. if (interpreter_description) {
  181. auto interpreter_load_range = TRY(get_required_load_range(*interpreter_description));
  182. auto interpreter_size_in_memory = interpreter_load_range.end - interpreter_load_range.start;
  183. auto interpreter_load_range_end = load_range_start + load_range_size - interpreter_size_in_memory;
  184. // No intersection
  185. if (main_program_load_range.end < load_range_start || main_program_load_range.start > interpreter_load_range_end)
  186. return random_load_offset_in_range(load_range_start, load_range_size);
  187. RequiredLoadRange first_available_part = { load_range_start, main_program_load_range.start };
  188. RequiredLoadRange second_available_part = { main_program_load_range.end, interpreter_load_range_end };
  189. // Select larger part
  190. if (first_available_part.end - first_available_part.start > second_available_part.end - second_available_part.start)
  191. selected_range = first_available_part;
  192. else
  193. selected_range = second_available_part;
  194. } else
  195. selected_range = main_program_load_range;
  196. // If main program is too big and leaves us without enough space for adequate loader randomization
  197. if (selected_range.end - selected_range.start < minimum_load_offset_randomization_size)
  198. return E2BIG;
  199. return random_load_offset_in_range(selected_range.start, selected_range.end - selected_range.start);
  200. }
  201. enum class ShouldAllocateTls {
  202. No,
  203. Yes,
  204. };
  205. enum class ShouldAllowSyscalls {
  206. No,
  207. Yes,
  208. };
  209. static ErrorOr<LoadResult> load_elf_object(NonnullOwnPtr<Memory::AddressSpace> new_space, OpenFileDescription& object_description,
  210. FlatPtr load_offset, ShouldAllocateTls should_allocate_tls, ShouldAllowSyscalls should_allow_syscalls)
  211. {
  212. auto& inode = *(object_description.inode());
  213. auto vmobject = TRY(Memory::SharedInodeVMObject::try_create_with_inode(inode));
  214. if (vmobject->writable_mappings()) {
  215. dbgln("Refusing to execute a write-mapped program");
  216. return ETXTBSY;
  217. }
  218. size_t executable_size = inode.size();
  219. size_t rounded_executable_size = TRY(Memory::page_round_up(executable_size));
  220. auto executable_region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, rounded_executable_size, "ELF loading", Memory::Region::Access::Read));
  221. auto elf_image = ELF::Image(executable_region->vaddr().as_ptr(), executable_size);
  222. if (!elf_image.is_valid())
  223. return ENOEXEC;
  224. Memory::Region* master_tls_region { nullptr };
  225. size_t master_tls_size = 0;
  226. size_t master_tls_alignment = 0;
  227. FlatPtr load_base_address = 0;
  228. auto elf_name = TRY(object_description.pseudo_path());
  229. VERIFY(!Processor::in_critical());
  230. Memory::MemoryManager::enter_address_space(*new_space);
  231. auto load_tls_section = [&](auto& program_header) -> ErrorOr<void> {
  232. VERIFY(should_allocate_tls == ShouldAllocateTls::Yes);
  233. VERIFY(program_header.size_in_memory());
  234. if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
  235. dbgln("Shenanigans! ELF PT_TLS header sneaks outside of executable.");
  236. return ENOEXEC;
  237. }
  238. auto region_name = TRY(KString::formatted("{} (master-tls)", elf_name));
  239. master_tls_region = TRY(new_space->allocate_region(Memory::RandomizeVirtualAddress::Yes, {}, program_header.size_in_memory(), PAGE_SIZE, region_name->view(), PROT_READ | PROT_WRITE, AllocationStrategy::Reserve));
  240. master_tls_size = program_header.size_in_memory();
  241. master_tls_alignment = program_header.alignment();
  242. TRY(copy_to_user(master_tls_region->vaddr().as_ptr(), program_header.raw_data(), program_header.size_in_image()));
  243. return {};
  244. };
  245. auto load_writable_section = [&](auto& program_header) -> ErrorOr<void> {
  246. // Writable section: create a copy in memory.
  247. VERIFY(program_header.alignment() % PAGE_SIZE == 0);
  248. if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
  249. dbgln("Shenanigans! Writable ELF PT_LOAD header sneaks outside of executable.");
  250. return ENOEXEC;
  251. }
  252. int prot = 0;
  253. if (program_header.is_readable())
  254. prot |= PROT_READ;
  255. if (program_header.is_writable())
  256. prot |= PROT_WRITE;
  257. auto region_name = TRY(KString::formatted("{} (data-{}{})", elf_name, program_header.is_readable() ? "r" : "", program_header.is_writable() ? "w" : ""));
  258. auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
  259. size_t rounded_range_end = TRY(Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()));
  260. auto range_end = VirtualAddress { rounded_range_end };
  261. auto region = TRY(new_space->allocate_region(Memory::RandomizeVirtualAddress::Yes, range_base, range_end.get() - range_base.get(), PAGE_SIZE, region_name->view(), prot, AllocationStrategy::Reserve));
  262. // It's not always the case with PIE executables (and very well shouldn't be) that the
  263. // virtual address in the program header matches the one we end up giving the process.
  264. // In order to copy the data image correctly into memory, we need to copy the data starting at
  265. // the right initial page offset into the pages allocated for the elf_alloc-XX section.
  266. // FIXME: There's an opportunity to munmap, or at least mprotect, the padding space between
  267. // the .text and .data PT_LOAD sections of the executable.
  268. // Accessing it would definitely be a bug.
  269. auto page_offset = program_header.vaddr();
  270. page_offset.mask(~PAGE_MASK);
  271. TRY(copy_to_user((u8*)region->vaddr().as_ptr() + page_offset.get(), program_header.raw_data(), program_header.size_in_image()));
  272. return {};
  273. };
  274. auto load_section = [&](auto& program_header) -> ErrorOr<void> {
  275. if (program_header.size_in_memory() == 0)
  276. return {};
  277. if (program_header.is_writable())
  278. return load_writable_section(program_header);
  279. // Non-writable section: map the executable itself in memory.
  280. VERIFY(program_header.alignment() % PAGE_SIZE == 0);
  281. int prot = 0;
  282. if (program_header.is_readable())
  283. prot |= PROT_READ;
  284. if (program_header.is_writable())
  285. prot |= PROT_WRITE;
  286. if (program_header.is_executable())
  287. prot |= PROT_EXEC;
  288. auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
  289. size_t rounded_range_end = TRY(Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()));
  290. auto range_end = VirtualAddress { rounded_range_end };
  291. auto region = TRY(new_space->allocate_region_with_vmobject(Memory::RandomizeVirtualAddress::Yes, range_base, range_end.get() - range_base.get(), program_header.alignment(), *vmobject, program_header.offset(), elf_name->view(), prot, true));
  292. if (should_allow_syscalls == ShouldAllowSyscalls::Yes)
  293. region->set_syscall_region(true);
  294. if (program_header.offset() == 0)
  295. load_base_address = (FlatPtr)region->vaddr().as_ptr();
  296. return {};
  297. };
  298. auto load_elf_program_header = [&](auto& program_header) -> ErrorOr<void> {
  299. if (program_header.type() == PT_TLS)
  300. return load_tls_section(program_header);
  301. if (program_header.type() == PT_LOAD)
  302. return load_section(program_header);
  303. // NOTE: We ignore other program header types.
  304. return {};
  305. };
  306. TRY([&] {
  307. ErrorOr<void> result;
  308. elf_image.for_each_program_header([&](ELF::Image::ProgramHeader const& program_header) {
  309. result = load_elf_program_header(program_header);
  310. return result.is_error() ? IterationDecision::Break : IterationDecision::Continue;
  311. });
  312. return result;
  313. }());
  314. if (!elf_image.entry().offset(load_offset).get()) {
  315. dbgln("do_exec: Failure loading program, entry pointer is invalid! {})", elf_image.entry().offset(load_offset));
  316. return ENOEXEC;
  317. }
  318. auto* stack_region = TRY(new_space->allocate_region(Memory::RandomizeVirtualAddress::Yes, {}, Thread::default_userspace_stack_size, PAGE_SIZE, "Stack (Main thread)", PROT_READ | PROT_WRITE, AllocationStrategy::Reserve));
  319. stack_region->set_stack(true);
  320. return LoadResult {
  321. move(new_space),
  322. load_base_address,
  323. elf_image.entry().offset(load_offset).get(),
  324. executable_size,
  325. TRY(AK::try_make_weak_ptr_if_nonnull(master_tls_region)),
  326. master_tls_size,
  327. master_tls_alignment,
  328. TRY(stack_region->try_make_weak_ptr())
  329. };
  330. }
  331. ErrorOr<LoadResult>
  332. Process::load(NonnullRefPtr<OpenFileDescription> main_program_description,
  333. RefPtr<OpenFileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header)
  334. {
  335. auto new_space = TRY(Memory::AddressSpace::try_create(nullptr));
  336. ScopeGuard space_guard([&]() {
  337. Memory::MemoryManager::enter_process_address_space(*this);
  338. });
  339. auto load_offset = TRY(get_load_offset(main_program_header, main_program_description, interpreter_description));
  340. if (interpreter_description.is_null()) {
  341. auto load_result = TRY(load_elf_object(move(new_space), main_program_description, load_offset, ShouldAllocateTls::Yes, ShouldAllowSyscalls::No));
  342. m_master_tls_region = load_result.tls_region;
  343. m_master_tls_size = load_result.tls_size;
  344. m_master_tls_alignment = load_result.tls_alignment;
  345. return load_result;
  346. }
  347. auto interpreter_load_result = TRY(load_elf_object(move(new_space), *interpreter_description, load_offset, ShouldAllocateTls::No, ShouldAllowSyscalls::Yes));
  348. // TLS allocation will be done in userspace by the loader
  349. VERIFY(!interpreter_load_result.tls_region);
  350. VERIFY(!interpreter_load_result.tls_alignment);
  351. VERIFY(!interpreter_load_result.tls_size);
  352. return interpreter_load_result;
  353. }
  354. ErrorOr<void> Process::do_exec(NonnullRefPtr<OpenFileDescription> main_program_description, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment,
  355. RefPtr<OpenFileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header)
  356. {
  357. VERIFY(is_user_process());
  358. VERIFY(!Processor::in_critical());
  359. // Although we *could* handle a pseudo_path here, trying to execute something that doesn't have
  360. // a custody (e.g. BlockDevice or RandomDevice) is pretty suspicious anyway.
  361. auto path = TRY(main_program_description->original_absolute_path());
  362. dbgln_if(EXEC_DEBUG, "do_exec: {}", path);
  363. // FIXME: How much stack space does process startup need?
  364. if (!validate_stack_size(arguments, environment))
  365. return E2BIG;
  366. // FIXME: split_view() currently allocates (Vector) without checking for failure.
  367. auto parts = path->view().split_view('/');
  368. if (parts.is_empty())
  369. return ENOENT;
  370. auto new_process_name = TRY(KString::try_create(parts.last()));
  371. auto new_main_thread_name = TRY(new_process_name->try_clone());
  372. auto load_result = TRY(load(main_program_description, interpreter_description, main_program_header));
  373. // NOTE: We don't need the interpreter executable description after this point.
  374. // We destroy it here to prevent it from getting destroyed when we return from this function.
  375. // That's important because when we're returning from this function, we're in a very delicate
  376. // state where we can't block (e.g by trying to acquire a mutex in description teardown.)
  377. bool has_interpreter = interpreter_description;
  378. interpreter_description = nullptr;
  379. auto* signal_trampoline_region = TRY(load_result.space->allocate_region_with_vmobject(Memory::RandomizeVirtualAddress::Yes, {}, PAGE_SIZE, PAGE_SIZE, g_signal_trampoline_region->vmobject(), 0, "Signal trampoline", PROT_READ | PROT_EXEC, true));
  380. signal_trampoline_region->set_syscall_region(true);
  381. // (For dynamically linked executable) Allocate an FD for passing the main executable to the dynamic loader.
  382. Optional<ScopedDescriptionAllocation> main_program_fd_allocation;
  383. if (has_interpreter)
  384. main_program_fd_allocation = TRY(allocate_fd());
  385. // We commit to the new executable at this point. There is no turning back!
  386. // Prevent other processes from attaching to us with ptrace while we're doing this.
  387. MutexLocker ptrace_locker(ptrace_lock());
  388. // Disable profiling temporarily in case it's running on this process.
  389. auto was_profiling = m_profiling;
  390. TemporaryChange profiling_disabler(m_profiling, false);
  391. kill_threads_except_self();
  392. bool executable_is_setid = false;
  393. if (!(main_program_description->custody()->mount_flags() & MS_NOSUID)) {
  394. auto main_program_metadata = main_program_description->metadata();
  395. if (main_program_metadata.is_setuid()) {
  396. executable_is_setid = true;
  397. ProtectedDataMutationScope scope { *this };
  398. m_protected_values.euid = main_program_metadata.uid;
  399. m_protected_values.suid = main_program_metadata.uid;
  400. }
  401. if (main_program_metadata.is_setgid()) {
  402. executable_is_setid = true;
  403. ProtectedDataMutationScope scope { *this };
  404. m_protected_values.egid = main_program_metadata.gid;
  405. m_protected_values.sgid = main_program_metadata.gid;
  406. }
  407. }
  408. set_dumpable(!executable_is_setid);
  409. // We make sure to enter the new address space before destroying the old one.
  410. // This ensures that the process always has a valid page directory.
  411. Memory::MemoryManager::enter_address_space(*load_result.space);
  412. m_space = load_result.space.release_nonnull();
  413. m_executable = main_program_description->custody();
  414. m_arguments = move(arguments);
  415. m_environment = move(environment);
  416. TRY(m_unveil_data.with([&](auto& unveil_data) -> ErrorOr<void> {
  417. unveil_data.state = VeilState::None;
  418. unveil_data.paths.clear();
  419. unveil_data.paths.set_metadata({ TRY(KString::try_create("/"sv)), UnveilAccess::None, false });
  420. return {};
  421. }));
  422. for (auto& property : m_coredump_properties)
  423. property = {};
  424. auto* current_thread = Thread::current();
  425. current_thread->reset_signals_for_exec();
  426. clear_futex_queues_on_exec();
  427. m_fds.with_exclusive([&](auto& fds) {
  428. fds.change_each([&](auto& file_description_metadata) {
  429. if (file_description_metadata.is_valid() && file_description_metadata.flags() & FD_CLOEXEC)
  430. file_description_metadata = {};
  431. });
  432. });
  433. if (main_program_fd_allocation.has_value()) {
  434. main_program_description->set_readable(true);
  435. m_fds.with_exclusive([&](auto& fds) { fds[main_program_fd_allocation->fd].set(move(main_program_description), FD_CLOEXEC); });
  436. }
  437. new_main_thread = nullptr;
  438. if (&current_thread->process() == this) {
  439. new_main_thread = current_thread;
  440. } else {
  441. for_each_thread([&](auto& thread) {
  442. new_main_thread = &thread;
  443. return IterationDecision::Break;
  444. });
  445. }
  446. VERIFY(new_main_thread);
  447. auto auxv = generate_auxiliary_vector(load_result.load_base, load_result.entry_eip, uid(), euid(), gid(), egid(), path->view(), main_program_fd_allocation);
  448. // NOTE: We create the new stack before disabling interrupts since it will zero-fault
  449. // and we don't want to deal with faults after this point.
  450. auto new_userspace_sp = TRY(make_userspace_context_for_main_thread(new_main_thread->regs(), *load_result.stack_region.unsafe_ptr(), m_arguments, m_environment, move(auxv)));
  451. m_name = move(new_process_name);
  452. new_main_thread->set_name(move(new_main_thread_name));
  453. if (wait_for_tracer_at_next_execve()) {
  454. // Make sure we release the ptrace lock here or the tracer will block forever.
  455. ptrace_locker.unlock();
  456. Thread::current()->send_urgent_signal_to_self(SIGSTOP);
  457. } else {
  458. // Unlock regardless before disabling interrupts.
  459. // Ensure we always unlock after checking ptrace status to avoid TOCTOU ptrace issues
  460. ptrace_locker.unlock();
  461. }
  462. // We enter a critical section here because we don't want to get interrupted between do_exec()
  463. // and Processor::assume_context() or the next context switch.
  464. // If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec().
  465. Processor::enter_critical();
  466. prev_flags = cpu_flags();
  467. cli();
  468. // NOTE: Be careful to not trigger any page faults below!
  469. {
  470. ProtectedDataMutationScope scope { *this };
  471. m_protected_values.promises = m_protected_values.execpromises.load();
  472. m_protected_values.has_promises = m_protected_values.has_execpromises.load();
  473. m_protected_values.execpromises = 0;
  474. m_protected_values.has_execpromises = false;
  475. m_protected_values.signal_trampoline = signal_trampoline_region->vaddr();
  476. // FIXME: PID/TID ISSUE
  477. m_protected_values.pid = new_main_thread->tid().value();
  478. }
  479. auto tsr_result = new_main_thread->make_thread_specific_region({});
  480. if (tsr_result.is_error()) {
  481. // FIXME: We cannot fail this late. Refactor this so the allocation happens before we commit to the new executable.
  482. VERIFY_NOT_REACHED();
  483. }
  484. new_main_thread->reset_fpu_state();
  485. auto& regs = new_main_thread->m_regs;
  486. regs.cs = GDT_SELECTOR_CODE3 | 3;
  487. #if ARCH(I386)
  488. regs.ds = GDT_SELECTOR_DATA3 | 3;
  489. regs.es = GDT_SELECTOR_DATA3 | 3;
  490. regs.ss = GDT_SELECTOR_DATA3 | 3;
  491. regs.fs = GDT_SELECTOR_DATA3 | 3;
  492. regs.gs = GDT_SELECTOR_TLS | 3;
  493. regs.eip = load_result.entry_eip;
  494. regs.esp = new_userspace_sp;
  495. #else
  496. regs.rip = load_result.entry_eip;
  497. regs.rsp = new_userspace_sp;
  498. #endif
  499. regs.cr3 = address_space().page_directory().cr3();
  500. {
  501. TemporaryChange profiling_disabler(m_profiling, was_profiling);
  502. PerformanceManager::add_process_exec_event(*this);
  503. }
  504. u32 lock_count_to_restore;
  505. [[maybe_unused]] auto rc = big_lock().force_unlock_exclusive_if_locked(lock_count_to_restore);
  506. VERIFY_INTERRUPTS_DISABLED();
  507. VERIFY(Processor::in_critical());
  508. return {};
  509. }
  510. static Array<ELF::AuxiliaryValue, auxiliary_vector_size> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, UserID uid, UserID euid, GroupID gid, GroupID egid, StringView executable_path, Optional<Process::ScopedDescriptionAllocation> const& main_program_fd_allocation)
  511. {
  512. return { {
  513. // PHDR/EXECFD
  514. // PH*
  515. { ELF::AuxiliaryValue::PageSize, PAGE_SIZE },
  516. { ELF::AuxiliaryValue::BaseAddress, (void*)load_base },
  517. { ELF::AuxiliaryValue::Entry, (void*)entry_eip },
  518. // NOTELF
  519. { ELF::AuxiliaryValue::Uid, (long)uid.value() },
  520. { ELF::AuxiliaryValue::EUid, (long)euid.value() },
  521. { ELF::AuxiliaryValue::Gid, (long)gid.value() },
  522. { ELF::AuxiliaryValue::EGid, (long)egid.value() },
  523. { ELF::AuxiliaryValue::Platform, Processor::platform_string() },
  524. // FIXME: This is platform specific
  525. { ELF::AuxiliaryValue::HwCap, (long)CPUID(1).edx() },
  526. { ELF::AuxiliaryValue::ClockTick, (long)TimeManagement::the().ticks_per_second() },
  527. // FIXME: Also take into account things like extended filesystem permissions? That's what linux does...
  528. { ELF::AuxiliaryValue::Secure, ((uid != euid) || (gid != egid)) ? 1 : 0 },
  529. { ELF::AuxiliaryValue::Random, nullptr },
  530. { ELF::AuxiliaryValue::ExecFilename, executable_path },
  531. main_program_fd_allocation.has_value() ? ELF::AuxiliaryValue { ELF::AuxiliaryValue::ExecFileDescriptor, main_program_fd_allocation->fd } : ELF::AuxiliaryValue { ELF::AuxiliaryValue::Ignore, 0L },
  532. { ELF::AuxiliaryValue::Null, 0L },
  533. } };
  534. }
  535. static ErrorOr<NonnullOwnPtrVector<KString>> find_shebang_interpreter_for_executable(char const first_page[], size_t nread)
  536. {
  537. int word_start = 2;
  538. size_t word_length = 0;
  539. if (nread > 2 && first_page[0] == '#' && first_page[1] == '!') {
  540. NonnullOwnPtrVector<KString> interpreter_words;
  541. for (size_t i = 2; i < nread; ++i) {
  542. if (first_page[i] == '\n') {
  543. break;
  544. }
  545. if (first_page[i] != ' ') {
  546. ++word_length;
  547. }
  548. if (first_page[i] == ' ') {
  549. if (word_length > 0) {
  550. auto word = TRY(KString::try_create(StringView { &first_page[word_start], word_length }));
  551. TRY(interpreter_words.try_append(move(word)));
  552. }
  553. word_length = 0;
  554. word_start = i + 1;
  555. }
  556. }
  557. if (word_length > 0) {
  558. auto word = TRY(KString::try_create(StringView { &first_page[word_start], word_length }));
  559. TRY(interpreter_words.try_append(move(word)));
  560. }
  561. if (!interpreter_words.is_empty())
  562. return interpreter_words;
  563. }
  564. return ENOEXEC;
  565. }
  566. ErrorOr<RefPtr<OpenFileDescription>> Process::find_elf_interpreter_for_executable(StringView path, ElfW(Ehdr) const& main_executable_header, size_t main_executable_header_size, size_t file_size)
  567. {
  568. // Not using ErrorOr here because we'll want to do the same thing in userspace in the RTLD
  569. StringBuilder interpreter_path_builder;
  570. if (!TRY(ELF::validate_program_headers(main_executable_header, file_size, { &main_executable_header, main_executable_header_size }, &interpreter_path_builder))) {
  571. dbgln("exec({}): File has invalid ELF Program headers", path);
  572. return ENOEXEC;
  573. }
  574. auto interpreter_path = interpreter_path_builder.string_view();
  575. if (!interpreter_path.is_empty()) {
  576. dbgln_if(EXEC_DEBUG, "exec({}): Using program interpreter {}", path, interpreter_path);
  577. auto interpreter_description = TRY(VirtualFileSystem::the().open(interpreter_path, O_EXEC, 0, current_directory()));
  578. auto interp_metadata = interpreter_description->metadata();
  579. VERIFY(interpreter_description->inode());
  580. // Validate the program interpreter as a valid elf binary.
  581. // If your program interpreter is a #! file or something, it's time to stop playing games :)
  582. if (interp_metadata.size < (int)sizeof(ElfW(Ehdr)))
  583. return ENOEXEC;
  584. char first_page[PAGE_SIZE] = {};
  585. auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
  586. auto nread = TRY(interpreter_description->read(first_page_buffer, sizeof(first_page)));
  587. if (nread < sizeof(ElfW(Ehdr)))
  588. return ENOEXEC;
  589. auto* elf_header = (ElfW(Ehdr)*)first_page;
  590. if (!ELF::validate_elf_header(*elf_header, interp_metadata.size)) {
  591. dbgln("exec({}): Interpreter ({}) has invalid ELF header", path, interpreter_path);
  592. return ENOEXEC;
  593. }
  594. // Not using ErrorOr here because we'll want to do the same thing in userspace in the RTLD
  595. StringBuilder interpreter_interpreter_path_builder;
  596. if (!TRY(ELF::validate_program_headers(*elf_header, interp_metadata.size, { first_page, nread }, &interpreter_interpreter_path_builder))) {
  597. dbgln("exec({}): Interpreter ({}) has invalid ELF Program headers", path, interpreter_path);
  598. return ENOEXEC;
  599. }
  600. auto interpreter_interpreter_path = interpreter_interpreter_path_builder.string_view();
  601. if (!interpreter_interpreter_path.is_empty()) {
  602. dbgln("exec({}): Interpreter ({}) has its own interpreter ({})! No thank you!", path, interpreter_path, interpreter_interpreter_path);
  603. return ELOOP;
  604. }
  605. return interpreter_description;
  606. }
  607. if (main_executable_header.e_type == ET_REL) {
  608. // We can't exec an ET_REL, that's just an object file from the compiler
  609. return ENOEXEC;
  610. }
  611. if (main_executable_header.e_type == ET_DYN) {
  612. // If it's ET_DYN with no PT_INTERP, then it's a dynamic executable responsible
  613. // for its own relocation (i.e. it's /usr/lib/Loader.so)
  614. if (path != "/usr/lib/Loader.so")
  615. dbgln("exec({}): WARNING - Dynamic ELF executable without a PT_INTERP header, and isn't /usr/lib/Loader.so", path);
  616. return nullptr;
  617. }
  618. // No interpreter, but, path refers to a valid elf image
  619. return nullptr;
  620. }
  621. ErrorOr<void> Process::exec(NonnullOwnPtr<KString> path, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, Thread*& new_main_thread, u32& prev_flags, int recursion_depth)
  622. {
  623. if (recursion_depth > 2) {
  624. dbgln("exec({}): SHENANIGANS! recursed too far trying to find #! interpreter", path);
  625. return ELOOP;
  626. }
  627. // Open the file to check what kind of binary format it is
  628. // Currently supported formats:
  629. // - #! interpreted file
  630. // - ELF32
  631. // * ET_EXEC binary that just gets loaded
  632. // * ET_DYN binary that requires a program interpreter
  633. //
  634. auto description = TRY(VirtualFileSystem::the().open(path->view(), O_EXEC, 0, current_directory()));
  635. auto metadata = description->metadata();
  636. if (!metadata.is_regular_file())
  637. return EACCES;
  638. // Always gonna need at least 3 bytes. these are for #!X
  639. if (metadata.size < 3)
  640. return ENOEXEC;
  641. VERIFY(description->inode());
  642. // Read the first page of the program into memory so we can validate the binfmt of it
  643. char first_page[PAGE_SIZE];
  644. auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
  645. auto nread = TRY(description->read(first_page_buffer, sizeof(first_page)));
  646. // 1) #! interpreted file
  647. auto shebang_result = find_shebang_interpreter_for_executable(first_page, nread);
  648. if (!shebang_result.is_error()) {
  649. auto shebang_words = shebang_result.release_value();
  650. auto shebang_path = TRY(shebang_words.first().try_clone());
  651. arguments.ptr_at(0) = move(path);
  652. TRY(arguments.try_prepend(move(shebang_words)));
  653. return exec(move(shebang_path), move(arguments), move(environment), new_main_thread, prev_flags, ++recursion_depth);
  654. }
  655. // #2) ELF32 for i386
  656. if (nread < sizeof(ElfW(Ehdr)))
  657. return ENOEXEC;
  658. auto const* main_program_header = (ElfW(Ehdr)*)first_page;
  659. if (!ELF::validate_elf_header(*main_program_header, metadata.size)) {
  660. dbgln("exec({}): File has invalid ELF header", path);
  661. return ENOEXEC;
  662. }
  663. auto interpreter_description = TRY(find_elf_interpreter_for_executable(path->view(), *main_program_header, nread, metadata.size));
  664. return do_exec(move(description), move(arguments), move(environment), move(interpreter_description), new_main_thread, prev_flags, *main_program_header);
  665. }
  666. ErrorOr<FlatPtr> Process::sys$execve(Userspace<Syscall::SC_execve_params const*> user_params)
  667. {
  668. VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
  669. TRY(require_promise(Pledge::exec));
  670. Thread* new_main_thread = nullptr;
  671. u32 prev_flags = 0;
  672. // NOTE: Be extremely careful with allocating any kernel memory in this function.
  673. // On success, the kernel stack will be lost.
  674. // The explicit block scope below is specifically placed to minimize the number
  675. // of stack locals in this function.
  676. {
  677. auto params = TRY(copy_typed_from_user(user_params));
  678. if (params.arguments.length > ARG_MAX || params.environment.length > ARG_MAX)
  679. return E2BIG;
  680. // NOTE: The caller is expected to always pass at least one argument by convention,
  681. // the program path that was passed as params.path.
  682. if (params.arguments.length == 0)
  683. return EINVAL;
  684. auto path = TRY(get_syscall_path_argument(params.path));
  685. auto copy_user_strings = [](auto const& list, auto& output) -> ErrorOr<void> {
  686. if (!list.length)
  687. return {};
  688. Checked<size_t> size = sizeof(*list.strings);
  689. size *= list.length;
  690. if (size.has_overflow())
  691. return EOVERFLOW;
  692. Vector<Syscall::StringArgument, 32> strings;
  693. TRY(strings.try_resize(list.length));
  694. TRY(copy_from_user(strings.data(), list.strings, size.value()));
  695. for (size_t i = 0; i < list.length; ++i) {
  696. auto string = TRY(try_copy_kstring_from_user(strings[i]));
  697. TRY(output.try_append(move(string)));
  698. }
  699. return {};
  700. };
  701. NonnullOwnPtrVector<KString> arguments;
  702. TRY(copy_user_strings(params.arguments, arguments));
  703. NonnullOwnPtrVector<KString> environment;
  704. TRY(copy_user_strings(params.environment, environment));
  705. TRY(exec(move(path), move(arguments), move(environment), new_main_thread, prev_flags));
  706. }
  707. // NOTE: If we're here, the exec has succeeded and we've got a new executable image!
  708. // We will not return normally from this function. Instead, the next time we
  709. // get scheduled, it'll be at the entry point of the new executable.
  710. VERIFY_INTERRUPTS_DISABLED();
  711. VERIFY(Processor::in_critical());
  712. auto* current_thread = Thread::current();
  713. if (current_thread == new_main_thread) {
  714. // We need to enter the scheduler lock before changing the state
  715. // and it will be released after the context switch into that
  716. // thread. We should also still be in our critical section
  717. VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
  718. VERIFY(Processor::in_critical() == 1);
  719. g_scheduler_lock.lock();
  720. current_thread->set_state(Thread::State::Running);
  721. Processor::assume_context(*current_thread, prev_flags);
  722. VERIFY_NOT_REACHED();
  723. }
  724. // NOTE: This code path is taken in the non-syscall case, i.e when the kernel spawns
  725. // a userspace process directly (such as /bin/SystemServer on startup)
  726. if (prev_flags & 0x200)
  727. sti();
  728. Processor::leave_critical();
  729. return 0;
  730. }
  731. }