Decoder.cpp 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144
  1. /*
  2. * Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include "Decoder.h"
  7. namespace Video::VP9 {
  8. #define RESERVED_ZERO \
  9. if (m_bit_stream->read_bit() != 0) \
  10. return false
  11. #define SAFE_CALL(call) \
  12. if (!(call)) [[unlikely]] \
  13. return false
  14. Decoder::Decoder()
  15. : m_probability_tables(make<ProbabilityTables>())
  16. , m_tree_parser(make<TreeParser>(*this))
  17. {
  18. }
  19. /* (6.1) */
  20. bool Decoder::parse_frame(ByteBuffer const& frame_data)
  21. {
  22. m_bit_stream = make<BitStream>(frame_data.data(), frame_data.size());
  23. m_syntax_element_counter = make<SyntaxElementCounter>();
  24. SAFE_CALL(uncompressed_header());
  25. dbgln("Finished reading uncompressed header");
  26. SAFE_CALL(trailing_bits());
  27. if (m_header_size_in_bytes == 0) {
  28. dbgln("No header");
  29. return true;
  30. }
  31. m_probability_tables->load_probs(m_frame_context_idx);
  32. m_probability_tables->load_probs2(m_frame_context_idx);
  33. m_syntax_element_counter->clear_counts();
  34. SAFE_CALL(m_bit_stream->init_bool(m_header_size_in_bytes));
  35. dbgln("Reading compressed header");
  36. SAFE_CALL(compressed_header());
  37. dbgln("Finished reading compressed header");
  38. SAFE_CALL(m_bit_stream->exit_bool());
  39. dbgln("Finished reading frame!");
  40. SAFE_CALL(decode_tiles());
  41. return true;
  42. }
  43. /* (6.2) */
  44. bool Decoder::uncompressed_header()
  45. {
  46. auto frame_marker = m_bit_stream->read_f(2);
  47. if (frame_marker != 2)
  48. return false;
  49. auto profile_low_bit = m_bit_stream->read_bit();
  50. auto profile_high_bit = m_bit_stream->read_bit();
  51. m_profile = (profile_high_bit << 1u) + profile_low_bit;
  52. if (m_profile == 3)
  53. RESERVED_ZERO;
  54. auto show_existing_frame = m_bit_stream->read_bit();
  55. if (show_existing_frame) {
  56. m_frame_to_show_map_index = m_bit_stream->read_f(3);
  57. m_header_size_in_bytes = 0;
  58. m_refresh_frame_flags = 0;
  59. m_loop_filter_level = 0;
  60. return true;
  61. }
  62. m_last_frame_type = m_frame_type;
  63. m_frame_type = read_frame_type();
  64. m_show_frame = m_bit_stream->read_bit();
  65. m_error_resilient_mode = m_bit_stream->read_bit();
  66. if (m_frame_type == KeyFrame) {
  67. SAFE_CALL(frame_sync_code());
  68. SAFE_CALL(color_config());
  69. SAFE_CALL(frame_size());
  70. SAFE_CALL(render_size());
  71. m_refresh_frame_flags = 0xFF;
  72. m_frame_is_intra = true;
  73. } else {
  74. m_frame_is_intra = !m_show_frame && m_bit_stream->read_bit();
  75. if (!m_error_resilient_mode) {
  76. m_reset_frame_context = m_bit_stream->read_f(2);
  77. } else {
  78. m_reset_frame_context = 0;
  79. }
  80. if (m_frame_is_intra) {
  81. SAFE_CALL(frame_sync_code());
  82. if (m_profile > 0) {
  83. SAFE_CALL(color_config());
  84. } else {
  85. m_color_space = Bt601;
  86. m_subsampling_x = true;
  87. m_subsampling_y = true;
  88. m_bit_depth = 8;
  89. }
  90. m_refresh_frame_flags = m_bit_stream->read_f8();
  91. SAFE_CALL(frame_size());
  92. SAFE_CALL(render_size());
  93. } else {
  94. m_refresh_frame_flags = m_bit_stream->read_f8();
  95. for (auto i = 0; i < 3; i++) {
  96. m_ref_frame_idx[i] = m_bit_stream->read_f(3);
  97. m_ref_frame_sign_bias[LastFrame + i] = m_bit_stream->read_bit();
  98. }
  99. SAFE_CALL(frame_size_with_refs());
  100. m_allow_high_precision_mv = m_bit_stream->read_bit();
  101. SAFE_CALL(read_interpolation_filter());
  102. }
  103. }
  104. if (!m_error_resilient_mode) {
  105. m_refresh_frame_context = m_bit_stream->read_bit();
  106. m_frame_parallel_decoding_mode = m_bit_stream->read_bit();
  107. } else {
  108. m_refresh_frame_context = false;
  109. m_frame_parallel_decoding_mode = true;
  110. }
  111. m_frame_context_idx = m_bit_stream->read_f(2);
  112. if (m_frame_is_intra || m_error_resilient_mode) {
  113. SAFE_CALL(setup_past_independence());
  114. if (m_frame_type == KeyFrame || m_error_resilient_mode || m_reset_frame_context == 3) {
  115. for (auto i = 0; i < 4; i++) {
  116. m_probability_tables->save_probs(i);
  117. }
  118. } else if (m_reset_frame_context == 2) {
  119. m_probability_tables->save_probs(m_frame_context_idx);
  120. }
  121. m_frame_context_idx = 0;
  122. }
  123. SAFE_CALL(loop_filter_params());
  124. SAFE_CALL(quantization_params());
  125. SAFE_CALL(segmentation_params());
  126. SAFE_CALL(tile_info());
  127. m_header_size_in_bytes = m_bit_stream->read_f16();
  128. return true;
  129. }
  130. bool Decoder::frame_sync_code()
  131. {
  132. if (m_bit_stream->read_byte() != 0x49)
  133. return false;
  134. if (m_bit_stream->read_byte() != 0x83)
  135. return false;
  136. return m_bit_stream->read_byte() == 0x42;
  137. }
  138. bool Decoder::color_config()
  139. {
  140. if (m_profile >= 2) {
  141. m_bit_depth = m_bit_stream->read_bit() ? 12 : 10;
  142. } else {
  143. m_bit_depth = 8;
  144. }
  145. auto color_space = m_bit_stream->read_f(3);
  146. if (color_space > RGB)
  147. return false;
  148. m_color_space = static_cast<ColorSpace>(color_space);
  149. if (color_space != RGB) {
  150. m_color_range = read_color_range();
  151. if (m_profile == 1 || m_profile == 3) {
  152. m_subsampling_x = m_bit_stream->read_bit();
  153. m_subsampling_y = m_bit_stream->read_bit();
  154. RESERVED_ZERO;
  155. } else {
  156. m_subsampling_x = true;
  157. m_subsampling_y = true;
  158. }
  159. } else {
  160. m_color_range = FullSwing;
  161. if (m_profile == 1 || m_profile == 3) {
  162. m_subsampling_x = false;
  163. m_subsampling_y = false;
  164. RESERVED_ZERO;
  165. }
  166. }
  167. return true;
  168. }
  169. bool Decoder::frame_size()
  170. {
  171. m_frame_width = m_bit_stream->read_f16() + 1;
  172. m_frame_height = m_bit_stream->read_f16() + 1;
  173. SAFE_CALL(compute_image_size());
  174. return true;
  175. }
  176. bool Decoder::render_size()
  177. {
  178. if (m_bit_stream->read_bit()) {
  179. m_render_width = m_bit_stream->read_f16() + 1;
  180. m_render_height = m_bit_stream->read_f16() + 1;
  181. } else {
  182. m_render_width = m_frame_width;
  183. m_render_height = m_frame_height;
  184. }
  185. return true;
  186. }
  187. bool Decoder::frame_size_with_refs()
  188. {
  189. bool found_ref;
  190. for (auto frame_index : m_ref_frame_idx) {
  191. found_ref = m_bit_stream->read_bit();
  192. if (found_ref) {
  193. m_frame_width = m_ref_frame_width[frame_index];
  194. m_frame_height = m_ref_frame_height[frame_index];
  195. break;
  196. }
  197. }
  198. if (!found_ref) {
  199. SAFE_CALL(frame_size());
  200. } else {
  201. SAFE_CALL(compute_image_size());
  202. }
  203. SAFE_CALL(render_size());
  204. return true;
  205. }
  206. bool Decoder::compute_image_size()
  207. {
  208. m_mi_cols = (m_frame_width + 7u) >> 3u;
  209. m_mi_rows = (m_frame_height + 7u) >> 3u;
  210. m_sb64_cols = (m_mi_cols + 7u) >> 3u;
  211. m_sb64_rows = (m_mi_rows + 7u) >> 3u;
  212. return true;
  213. }
  214. bool Decoder::read_interpolation_filter()
  215. {
  216. if (m_bit_stream->read_bit()) {
  217. m_interpolation_filter = Switchable;
  218. } else {
  219. m_interpolation_filter = literal_to_type[m_bit_stream->read_f(2)];
  220. }
  221. return true;
  222. }
  223. bool Decoder::loop_filter_params()
  224. {
  225. m_loop_filter_level = m_bit_stream->read_f(6);
  226. m_loop_filter_sharpness = m_bit_stream->read_f(3);
  227. m_loop_filter_delta_enabled = m_bit_stream->read_bit();
  228. if (m_loop_filter_delta_enabled) {
  229. if (m_bit_stream->read_bit()) {
  230. for (auto& loop_filter_ref_delta : m_loop_filter_ref_deltas) {
  231. if (m_bit_stream->read_bit())
  232. loop_filter_ref_delta = m_bit_stream->read_s(6);
  233. }
  234. for (auto& loop_filter_mode_delta : m_loop_filter_mode_deltas) {
  235. if (m_bit_stream->read_bit())
  236. loop_filter_mode_delta = m_bit_stream->read_s(6);
  237. }
  238. }
  239. }
  240. return true;
  241. }
  242. bool Decoder::quantization_params()
  243. {
  244. auto base_q_idx = m_bit_stream->read_byte();
  245. auto delta_q_y_dc = read_delta_q();
  246. auto delta_q_uv_dc = read_delta_q();
  247. auto delta_q_uv_ac = read_delta_q();
  248. m_lossless = base_q_idx == 0 && delta_q_y_dc == 0 && delta_q_uv_dc == 0 && delta_q_uv_ac == 0;
  249. return true;
  250. }
  251. i8 Decoder::read_delta_q()
  252. {
  253. if (m_bit_stream->read_bit())
  254. return m_bit_stream->read_s(4);
  255. return 0;
  256. }
  257. bool Decoder::segmentation_params()
  258. {
  259. m_segmentation_enabled = m_bit_stream->read_bit();
  260. if (!m_segmentation_enabled)
  261. return true;
  262. m_segmentation_update_map = m_bit_stream->read_bit();
  263. if (m_segmentation_update_map) {
  264. for (auto& segmentation_tree_prob : m_segmentation_tree_probs)
  265. segmentation_tree_prob = read_prob();
  266. m_segmentation_temporal_update = m_bit_stream->read_bit();
  267. for (auto& segmentation_pred_prob : m_segmentation_pred_prob)
  268. segmentation_pred_prob = m_segmentation_temporal_update ? read_prob() : 255;
  269. }
  270. SAFE_CALL(m_bit_stream->read_bit());
  271. m_segmentation_abs_or_delta_update = m_bit_stream->read_bit();
  272. for (auto i = 0; i < MAX_SEGMENTS; i++) {
  273. for (auto j = 0; j < SEG_LVL_MAX; j++) {
  274. auto feature_value = 0;
  275. auto feature_enabled = m_bit_stream->read_bit();
  276. m_feature_enabled[i][j] = feature_enabled;
  277. if (feature_enabled) {
  278. auto bits_to_read = segmentation_feature_bits[j];
  279. feature_value = m_bit_stream->read_f(bits_to_read);
  280. if (segmentation_feature_signed[j]) {
  281. if (m_bit_stream->read_bit())
  282. feature_value = -feature_value;
  283. }
  284. }
  285. m_feature_data[i][j] = feature_value;
  286. }
  287. }
  288. return true;
  289. }
  290. u8 Decoder::read_prob()
  291. {
  292. if (m_bit_stream->read_bit())
  293. return m_bit_stream->read_byte();
  294. return 255;
  295. }
  296. bool Decoder::tile_info()
  297. {
  298. auto min_log2_tile_cols = calc_min_log2_tile_cols();
  299. auto max_log2_tile_cols = calc_max_log2_tile_cols();
  300. m_tile_cols_log2 = min_log2_tile_cols;
  301. while (m_tile_cols_log2 < max_log2_tile_cols) {
  302. if (m_bit_stream->read_bit())
  303. m_tile_cols_log2++;
  304. else
  305. break;
  306. }
  307. m_tile_rows_log2 = m_bit_stream->read_bit();
  308. if (m_tile_rows_log2) {
  309. m_tile_rows_log2 += m_bit_stream->read_bit();
  310. }
  311. return true;
  312. }
  313. u16 Decoder::calc_min_log2_tile_cols()
  314. {
  315. auto min_log_2 = 0u;
  316. while ((u8)(MAX_TILE_WIDTH_B64 << min_log_2) < m_sb64_cols)
  317. min_log_2++;
  318. return min_log_2;
  319. }
  320. u16 Decoder::calc_max_log2_tile_cols()
  321. {
  322. u16 max_log_2 = 1;
  323. while ((m_sb64_cols >> max_log_2) >= MIN_TILE_WIDTH_B64)
  324. max_log_2++;
  325. return max_log_2 - 1;
  326. }
  327. bool Decoder::setup_past_independence()
  328. {
  329. for (auto i = 0; i < 8; i++) {
  330. for (auto j = 0; j < 4; j++) {
  331. m_feature_data[i][j] = 0;
  332. m_feature_enabled[i][j] = false;
  333. }
  334. }
  335. m_segmentation_abs_or_delta_update = false;
  336. m_prev_segment_ids.clear();
  337. m_prev_segment_ids.ensure_capacity(m_mi_rows);
  338. for (auto row = 0u; row < m_mi_rows; row++) {
  339. Vector<u8> sub_vector = {};
  340. sub_vector.ensure_capacity(m_mi_cols);
  341. for (auto col = 0u; col < m_mi_cols; col++)
  342. sub_vector.append(0);
  343. m_prev_segment_ids.append(sub_vector);
  344. }
  345. m_loop_filter_delta_enabled = true;
  346. m_loop_filter_ref_deltas[IntraFrame] = 1;
  347. m_loop_filter_ref_deltas[LastFrame] = 0;
  348. m_loop_filter_ref_deltas[GoldenFrame] = -1;
  349. m_loop_filter_ref_deltas[AltRefFrame] = -1;
  350. for (auto& loop_filter_mode_delta : m_loop_filter_mode_deltas)
  351. loop_filter_mode_delta = 0;
  352. m_probability_tables->reset_probs();
  353. return true;
  354. }
  355. bool Decoder::trailing_bits()
  356. {
  357. while (m_bit_stream->get_position() & 7u)
  358. RESERVED_ZERO;
  359. return true;
  360. }
  361. bool Decoder::compressed_header()
  362. {
  363. SAFE_CALL(read_tx_mode());
  364. if (m_tx_mode == TXModeSelect)
  365. SAFE_CALL(tx_mode_probs());
  366. SAFE_CALL(read_coef_probs());
  367. SAFE_CALL(read_skip_prob());
  368. if (!m_frame_is_intra) {
  369. SAFE_CALL(read_inter_mode_probs());
  370. if (m_interpolation_filter == Switchable)
  371. SAFE_CALL(read_interp_filter_probs());
  372. SAFE_CALL(read_is_inter_probs());
  373. SAFE_CALL(frame_reference_mode());
  374. SAFE_CALL(frame_reference_mode_probs());
  375. SAFE_CALL(read_y_mode_probs());
  376. SAFE_CALL(read_partition_probs());
  377. SAFE_CALL(mv_probs());
  378. }
  379. return true;
  380. }
  381. bool Decoder::read_tx_mode()
  382. {
  383. if (m_lossless) {
  384. m_tx_mode = Only_4x4;
  385. } else {
  386. auto tx_mode = m_bit_stream->read_literal(2);
  387. if (tx_mode == Allow_32x32)
  388. tx_mode += m_bit_stream->read_literal(1);
  389. m_tx_mode = static_cast<TXMode>(tx_mode);
  390. }
  391. return true;
  392. }
  393. bool Decoder::tx_mode_probs()
  394. {
  395. auto& tx_probs = m_probability_tables->tx_probs();
  396. for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
  397. for (auto j = 0; j < TX_SIZES - 3; j++)
  398. tx_probs[TX_8x8][i][j] = diff_update_prob(tx_probs[TX_8x8][i][j]);
  399. }
  400. for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
  401. for (auto j = 0; j < TX_SIZES - 2; j++)
  402. tx_probs[TX_16x16][i][j] = diff_update_prob(tx_probs[TX_16x16][i][j]);
  403. }
  404. for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
  405. for (auto j = 0; j < TX_SIZES - 1; j++)
  406. tx_probs[TX_32x32][i][j] = diff_update_prob(tx_probs[TX_32x32][i][j]);
  407. }
  408. return true;
  409. }
  410. u8 Decoder::diff_update_prob(u8 prob)
  411. {
  412. if (m_bit_stream->read_bool(252)) {
  413. auto delta_prob = decode_term_subexp();
  414. prob = inv_remap_prob(delta_prob, prob);
  415. }
  416. return prob;
  417. }
  418. u8 Decoder::decode_term_subexp()
  419. {
  420. if (m_bit_stream->read_literal(1) == 0)
  421. return m_bit_stream->read_literal(4);
  422. if (m_bit_stream->read_literal(1) == 0)
  423. return m_bit_stream->read_literal(4) + 16;
  424. if (m_bit_stream->read_literal(1) == 0)
  425. return m_bit_stream->read_literal(4) + 32;
  426. auto v = m_bit_stream->read_literal(7);
  427. if (v < 65)
  428. return v + 64;
  429. return (v << 1u) - 1 + m_bit_stream->read_literal(1);
  430. }
  431. u8 Decoder::inv_remap_prob(u8 delta_prob, u8 prob)
  432. {
  433. u8 m = prob - 1;
  434. auto v = inv_map_table[delta_prob];
  435. if ((m << 1u) <= 255)
  436. return 1 + inv_recenter_nonneg(v, m);
  437. return 255 - inv_recenter_nonneg(v, 254 - m);
  438. }
  439. u8 Decoder::inv_recenter_nonneg(u8 v, u8 m)
  440. {
  441. if (v > 2 * m)
  442. return v;
  443. if (v & 1u)
  444. return m - ((v + 1u) >> 1u);
  445. return m + (v >> 1u);
  446. }
  447. bool Decoder::read_coef_probs()
  448. {
  449. m_max_tx_size = tx_mode_to_biggest_tx_size[m_tx_mode];
  450. for (auto tx_size = TX_4x4; tx_size <= m_max_tx_size; tx_size = static_cast<TXSize>(static_cast<int>(tx_size) + 1)) {
  451. auto update_probs = m_bit_stream->read_literal(1);
  452. if (update_probs == 1) {
  453. for (auto i = 0; i < 2; i++) {
  454. for (auto j = 0; j < 2; j++) {
  455. for (auto k = 0; k < 6; k++) {
  456. auto max_l = (k == 0) ? 3 : 6;
  457. for (auto l = 0; l < max_l; l++) {
  458. for (auto m = 0; m < 3; m++) {
  459. auto& coef_probs = m_probability_tables->coef_probs()[tx_size];
  460. coef_probs[i][j][k][l][m] = diff_update_prob(coef_probs[i][j][k][l][m]);
  461. }
  462. }
  463. }
  464. }
  465. }
  466. }
  467. }
  468. return true;
  469. }
  470. bool Decoder::read_skip_prob()
  471. {
  472. for (auto i = 0; i < SKIP_CONTEXTS; i++)
  473. m_probability_tables->skip_prob()[i] = diff_update_prob(m_probability_tables->skip_prob()[i]);
  474. return true;
  475. }
  476. bool Decoder::read_inter_mode_probs()
  477. {
  478. for (auto i = 0; i < INTER_MODE_CONTEXTS; i++) {
  479. for (auto j = 0; j < INTER_MODES - 1; j++)
  480. m_probability_tables->inter_mode_probs()[i][j] = diff_update_prob(m_probability_tables->inter_mode_probs()[i][j]);
  481. }
  482. return true;
  483. }
  484. bool Decoder::read_interp_filter_probs()
  485. {
  486. for (auto i = 0; i < INTERP_FILTER_CONTEXTS; i++) {
  487. for (auto j = 0; j < SWITCHABLE_FILTERS - 1; j++)
  488. m_probability_tables->interp_filter_probs()[i][j] = diff_update_prob(m_probability_tables->interp_filter_probs()[i][j]);
  489. }
  490. return true;
  491. }
  492. bool Decoder::read_is_inter_probs()
  493. {
  494. for (auto i = 0; i < IS_INTER_CONTEXTS; i++)
  495. m_probability_tables->is_inter_prob()[i] = diff_update_prob(m_probability_tables->is_inter_prob()[i]);
  496. return true;
  497. }
  498. bool Decoder::frame_reference_mode()
  499. {
  500. auto compound_reference_allowed = false;
  501. for (size_t i = 2; i <= REFS_PER_FRAME; i++) {
  502. if (m_ref_frame_sign_bias[i] != m_ref_frame_sign_bias[1])
  503. compound_reference_allowed = true;
  504. }
  505. if (compound_reference_allowed) {
  506. auto non_single_reference = m_bit_stream->read_literal(1);
  507. if (non_single_reference == 0) {
  508. m_reference_mode = SingleReference;
  509. } else {
  510. auto reference_select = m_bit_stream->read_literal(1);
  511. if (reference_select == 0)
  512. m_reference_mode = CompoundReference;
  513. else
  514. m_reference_mode = ReferenceModeSelect;
  515. SAFE_CALL(setup_compound_reference_mode());
  516. }
  517. } else {
  518. m_reference_mode = SingleReference;
  519. }
  520. return true;
  521. }
  522. bool Decoder::frame_reference_mode_probs()
  523. {
  524. if (m_reference_mode == ReferenceModeSelect) {
  525. for (auto i = 0; i < COMP_MODE_CONTEXTS; i++) {
  526. auto& comp_mode_prob = m_probability_tables->comp_mode_prob();
  527. comp_mode_prob[i] = diff_update_prob(comp_mode_prob[i]);
  528. }
  529. }
  530. if (m_reference_mode != CompoundReference) {
  531. for (auto i = 0; i < REF_CONTEXTS; i++) {
  532. auto& single_ref_prob = m_probability_tables->single_ref_prob();
  533. single_ref_prob[i][0] = diff_update_prob(single_ref_prob[i][0]);
  534. single_ref_prob[i][1] = diff_update_prob(single_ref_prob[i][1]);
  535. }
  536. }
  537. if (m_reference_mode != SingleReference) {
  538. for (auto i = 0; i < REF_CONTEXTS; i++) {
  539. auto& comp_ref_prob = m_probability_tables->comp_ref_prob();
  540. comp_ref_prob[i] = diff_update_prob(comp_ref_prob[i]);
  541. }
  542. }
  543. return true;
  544. }
  545. bool Decoder::read_y_mode_probs()
  546. {
  547. for (auto i = 0; i < BLOCK_SIZE_GROUPS; i++) {
  548. for (auto j = 0; j < INTRA_MODES - 1; j++) {
  549. auto& y_mode_probs = m_probability_tables->y_mode_probs();
  550. y_mode_probs[i][j] = diff_update_prob(y_mode_probs[i][j]);
  551. }
  552. }
  553. return true;
  554. }
  555. bool Decoder::read_partition_probs()
  556. {
  557. for (auto i = 0; i < PARTITION_CONTEXTS; i++) {
  558. for (auto j = 0; j < PARTITION_TYPES - 1; j++) {
  559. auto& partition_probs = m_probability_tables->partition_probs();
  560. partition_probs[i][j] = diff_update_prob(partition_probs[i][j]);
  561. }
  562. }
  563. return true;
  564. }
  565. bool Decoder::mv_probs()
  566. {
  567. for (auto j = 0; j < MV_JOINTS - 1; j++) {
  568. auto& mv_joint_probs = m_probability_tables->mv_joint_probs();
  569. mv_joint_probs[j] = update_mv_prob(mv_joint_probs[j]);
  570. }
  571. for (auto i = 0; i < 2; i++) {
  572. auto& mv_sign_prob = m_probability_tables->mv_sign_prob();
  573. mv_sign_prob[i] = update_mv_prob(mv_sign_prob[i]);
  574. for (auto j = 0; j < MV_CLASSES - 1; j++) {
  575. auto& mv_class_probs = m_probability_tables->mv_class_probs();
  576. mv_class_probs[i][j] = update_mv_prob(mv_class_probs[i][j]);
  577. }
  578. auto& mv_class0_bit_prob = m_probability_tables->mv_class0_bit_prob();
  579. mv_class0_bit_prob[i] = update_mv_prob(mv_class0_bit_prob[i]);
  580. for (auto j = 0; j < MV_OFFSET_BITS; j++) {
  581. auto& mv_bits_prob = m_probability_tables->mv_bits_prob();
  582. mv_bits_prob[i][j] = update_mv_prob(mv_bits_prob[i][j]);
  583. }
  584. }
  585. for (auto i = 0; i < 2; i++) {
  586. for (auto j = 0; j < CLASS0_SIZE; j++) {
  587. for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
  588. auto& mv_class0_fr_probs = m_probability_tables->mv_class0_fr_probs();
  589. mv_class0_fr_probs[i][j][k] = update_mv_prob(mv_class0_fr_probs[i][j][k]);
  590. }
  591. }
  592. for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
  593. auto& mv_fr_probs = m_probability_tables->mv_fr_probs();
  594. mv_fr_probs[i][k] = update_mv_prob(mv_fr_probs[i][k]);
  595. }
  596. }
  597. if (m_allow_high_precision_mv) {
  598. for (auto i = 0; i < 2; i++) {
  599. auto& mv_class0_hp_prob = m_probability_tables->mv_class0_hp_prob();
  600. auto& mv_hp_prob = m_probability_tables->mv_hp_prob();
  601. mv_class0_hp_prob[i] = update_mv_prob(mv_class0_hp_prob[i]);
  602. mv_hp_prob[i] = update_mv_prob(mv_hp_prob[i]);
  603. }
  604. }
  605. return true;
  606. }
  607. u8 Decoder::update_mv_prob(u8 prob)
  608. {
  609. if (m_bit_stream->read_bool(252)) {
  610. return (m_bit_stream->read_literal(7) << 1u) | 1u;
  611. }
  612. return prob;
  613. }
  614. bool Decoder::setup_compound_reference_mode()
  615. {
  616. if (m_ref_frame_sign_bias[LastFrame] == m_ref_frame_sign_bias[GoldenFrame]) {
  617. m_comp_fixed_ref = AltRefFrame;
  618. m_comp_var_ref[0] = LastFrame;
  619. m_comp_var_ref[1] = GoldenFrame;
  620. } else if (m_ref_frame_sign_bias[LastFrame] == m_ref_frame_sign_bias[AltRefFrame]) {
  621. m_comp_fixed_ref = GoldenFrame;
  622. m_comp_var_ref[0] = LastFrame;
  623. m_comp_var_ref[1] = AltRefFrame;
  624. } else {
  625. m_comp_fixed_ref = LastFrame;
  626. m_comp_var_ref[0] = GoldenFrame;
  627. m_comp_var_ref[1] = AltRefFrame;
  628. }
  629. return true;
  630. }
  631. bool Decoder::decode_tiles()
  632. {
  633. auto tile_cols = 1 << m_tile_cols_log2;
  634. auto tile_rows = 1 << m_tile_rows_log2;
  635. SAFE_CALL(clear_above_context());
  636. for (auto tile_row = 0; tile_row < tile_rows; tile_row++) {
  637. for (auto tile_col = 0; tile_col < tile_cols; tile_col++) {
  638. auto last_tile = (tile_row == tile_rows - 1) && (tile_col == tile_cols - 1);
  639. auto tile_size = last_tile ? m_bit_stream->bytes_remaining() : m_bit_stream->read_f(32);
  640. m_mi_row_start = get_tile_offset(tile_row, m_mi_rows, m_tile_rows_log2);
  641. m_mi_row_end = get_tile_offset(tile_row + 1, m_mi_rows, m_tile_rows_log2);
  642. m_mi_col_start = get_tile_offset(tile_col, m_mi_cols, m_tile_cols_log2);
  643. m_mi_col_end = get_tile_offset(tile_col + 1, m_mi_cols, m_tile_cols_log2);
  644. SAFE_CALL(m_bit_stream->init_bool(tile_size));
  645. SAFE_CALL(decode_tile());
  646. SAFE_CALL(m_bit_stream->exit_bool());
  647. }
  648. }
  649. return true;
  650. }
  651. template<typename T>
  652. void clear_context(T* context, size_t size)
  653. {
  654. if (!(*context))
  655. *context = static_cast<T>(malloc(size));
  656. else
  657. __builtin_memset(*context, 0, size);
  658. }
  659. bool Decoder::clear_above_context()
  660. {
  661. clear_context(&m_above_nonzero_context, sizeof(u8) * 3 * m_mi_cols * 2);
  662. clear_context(&m_above_seg_pred_context, sizeof(u8) * m_mi_cols);
  663. clear_context(&m_above_partition_context, sizeof(u8) * m_sb64_cols * 8);
  664. return true;
  665. }
  666. u32 Decoder::get_tile_offset(u32 tile_num, u32 mis, u32 tile_size_log2)
  667. {
  668. u32 super_blocks = (mis + 7) >> 3u;
  669. u32 offset = ((tile_num * super_blocks) >> tile_size_log2) << 3u;
  670. return min(offset, mis);
  671. }
  672. bool Decoder::decode_tile()
  673. {
  674. for (auto row = m_mi_row_start; row < m_mi_row_end; row += 8) {
  675. SAFE_CALL(clear_left_context());
  676. m_row = row;
  677. for (auto col = m_mi_col_start; col < m_mi_col_end; col += 8) {
  678. m_col = col;
  679. SAFE_CALL(decode_partition(row, col, Block_64x64));
  680. }
  681. }
  682. return true;
  683. }
  684. bool Decoder::clear_left_context()
  685. {
  686. clear_context(&m_left_nonzero_context, sizeof(u8) * 3 * m_mi_rows * 2);
  687. clear_context(&m_left_seg_pred_context, sizeof(u8) * m_mi_rows);
  688. clear_context(&m_left_partition_context, sizeof(u8) * m_sb64_rows * 8);
  689. return true;
  690. }
  691. bool Decoder::decode_partition(u32 row, u32 col, u8 block_subsize)
  692. {
  693. if (row >= m_mi_rows || col >= m_mi_cols)
  694. return false;
  695. m_block_subsize = block_subsize;
  696. m_num_8x8 = num_8x8_blocks_wide_lookup[block_subsize];
  697. auto half_block_8x8 = m_num_8x8 >> 1;
  698. m_has_rows = (row + half_block_8x8) < m_mi_rows;
  699. m_has_cols = (col + half_block_8x8) < m_mi_cols;
  700. auto partition = m_tree_parser->parse_tree(SyntaxElementType::Partition);
  701. dbgln("Parsed partition value {}", partition);
  702. auto subsize = subsize_lookup[partition][block_subsize];
  703. if (subsize < Block_8x8 || partition == PartitionNone) {
  704. SAFE_CALL(decode_block(row, col, subsize));
  705. } else if (partition == PartitionHorizontal) {
  706. SAFE_CALL(decode_block(row, col, subsize));
  707. if (m_has_rows)
  708. SAFE_CALL(decode_block(row + half_block_8x8, col, subsize));
  709. } else if (partition == PartitionVertical) {
  710. SAFE_CALL(decode_block(row, col, subsize));
  711. if (m_has_cols)
  712. SAFE_CALL(decode_block(row, col + half_block_8x8, subsize));
  713. } else {
  714. SAFE_CALL(decode_partition(row, col, subsize));
  715. SAFE_CALL(decode_partition(row, col + half_block_8x8, subsize));
  716. SAFE_CALL(decode_partition(row + half_block_8x8, col, subsize));
  717. SAFE_CALL(decode_partition(row + half_block_8x8, col + half_block_8x8, subsize));
  718. }
  719. if (block_subsize == Block_8x8 || partition != PartitionSplit) {
  720. for (size_t i = 0; i < m_num_8x8; i++) {
  721. m_above_partition_context[col + i] = 15 >> b_width_log2_lookup[subsize];
  722. m_left_partition_context[row + i] = 15 >> b_width_log2_lookup[subsize];
  723. }
  724. }
  725. return true;
  726. }
  727. bool Decoder::decode_block(u32 row, u32 col, u8 subsize)
  728. {
  729. m_mi_row = row;
  730. m_mi_col = col;
  731. m_mi_size = subsize;
  732. m_available_u = row > 0;
  733. m_available_l = col > m_mi_col_start;
  734. SAFE_CALL(mode_info());
  735. // FIXME: Finish implementing
  736. return true;
  737. }
  738. bool Decoder::mode_info()
  739. {
  740. if (m_frame_is_intra)
  741. return intra_frame_mode_info();
  742. return inter_frame_mode_info();
  743. }
  744. bool Decoder::intra_frame_mode_info()
  745. {
  746. SAFE_CALL(intra_segment_id());
  747. SAFE_CALL(read_skip());
  748. SAFE_CALL(read_tx_size(true));
  749. m_ref_frame[0] = IntraFrame;
  750. m_ref_frame[1] = None;
  751. m_is_inter = false;
  752. if (m_mi_size >= Block_8x8) {
  753. m_default_intra_mode = m_tree_parser->parse_tree<IntraMode>(SyntaxElementType::DefaultIntraMode);
  754. m_y_mode = m_default_intra_mode;
  755. for (auto& block_sub_mode : m_block_sub_modes)
  756. block_sub_mode = m_y_mode;
  757. } else {
  758. m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
  759. m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
  760. for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
  761. for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
  762. m_tree_parser->set_default_intra_mode_variables(idx, idy);
  763. m_default_intra_mode = m_tree_parser->parse_tree<IntraMode>(SyntaxElementType::DefaultIntraMode);
  764. for (auto y = 0; y < m_num_4x4_h; y++) {
  765. for (auto x = 0; x < m_num_4x4_w; x++) {
  766. auto index = (idy + y) * 2 + idx + x;
  767. if (index > 3)
  768. dbgln("Trying to access index {} on m_sub_modes", index);
  769. m_block_sub_modes[index] = m_default_intra_mode;
  770. }
  771. }
  772. }
  773. }
  774. m_y_mode = m_default_intra_mode;
  775. }
  776. m_uv_mode = m_tree_parser->parse_tree<u8>(SyntaxElementType::DefaultUVMode);
  777. return true;
  778. }
  779. bool Decoder::intra_segment_id()
  780. {
  781. if (m_segmentation_enabled && m_segmentation_update_map)
  782. m_segment_id = m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID);
  783. else
  784. m_segment_id = 0;
  785. return true;
  786. }
  787. bool Decoder::read_skip()
  788. {
  789. if (seg_feature_active(SEG_LVL_SKIP))
  790. m_skip = true;
  791. else
  792. m_skip = m_tree_parser->parse_tree<bool>(SyntaxElementType::Skip);
  793. return true;
  794. }
  795. bool Decoder::seg_feature_active(u8 feature)
  796. {
  797. return m_segmentation_enabled && m_feature_enabled[m_segment_id][feature];
  798. }
  799. bool Decoder::read_tx_size(bool allow_select)
  800. {
  801. m_max_tx_size = max_txsize_lookup[m_mi_size];
  802. if (allow_select && m_tx_mode == TXModeSelect && m_mi_size >= Block_8x8)
  803. m_tx_size = m_tree_parser->parse_tree<TXSize>(SyntaxElementType::TXSize);
  804. else
  805. m_tx_size = min(m_max_tx_size, tx_mode_to_biggest_tx_size[m_tx_mode]);
  806. return true;
  807. }
  808. bool Decoder::inter_frame_mode_info()
  809. {
  810. m_left_ref_frame[0] = m_available_l ? m_ref_frames[m_mi_row][m_mi_col - 1][0] : IntraFrame;
  811. m_above_ref_frame[0] = m_available_u ? m_ref_frames[m_mi_row - 1][m_mi_col][0] : IntraFrame;
  812. m_left_ref_frame[1] = m_available_l ? m_ref_frames[m_mi_row][m_mi_col - 1][1] : None;
  813. m_above_ref_frame[1] = m_available_u ? m_ref_frames[m_mi_row - 1][m_mi_col][1] : None;
  814. m_left_intra = m_left_ref_frame[0] <= IntraFrame;
  815. m_above_intra = m_above_ref_frame[0] <= IntraFrame;
  816. m_left_single = m_left_ref_frame[1] <= None;
  817. m_above_single = m_above_ref_frame[1] <= None;
  818. SAFE_CALL(inter_segment_id());
  819. SAFE_CALL(read_skip());
  820. SAFE_CALL(read_is_inter());
  821. SAFE_CALL(read_tx_size(!m_skip || !m_is_inter));
  822. if (m_is_inter) {
  823. SAFE_CALL(inter_block_mode_info());
  824. } else {
  825. SAFE_CALL(intra_block_mode_info());
  826. }
  827. return true;
  828. }
  829. bool Decoder::inter_segment_id()
  830. {
  831. if (!m_segmentation_enabled) {
  832. m_segment_id = 0;
  833. return true;
  834. }
  835. auto predicted_segment_id = get_segment_id();
  836. if (!m_segmentation_update_map) {
  837. m_segment_id = predicted_segment_id;
  838. return true;
  839. }
  840. if (!m_segmentation_temporal_update) {
  841. m_segment_id = m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID);
  842. return true;
  843. }
  844. auto seg_id_predicted = m_tree_parser->parse_tree<bool>(SyntaxElementType::SegIDPredicted);
  845. if (seg_id_predicted)
  846. m_segment_id = predicted_segment_id;
  847. else
  848. m_segment_id = m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID);
  849. for (size_t i = 0; i < num_8x8_blocks_wide_lookup[m_mi_size]; i++)
  850. m_above_seg_pred_context[m_mi_col + i] = seg_id_predicted;
  851. for (size_t i = 0; i < num_8x8_blocks_high_lookup[m_mi_size]; i++)
  852. m_left_seg_pred_context[m_mi_row + i] = seg_id_predicted;
  853. return true;
  854. }
  855. u8 Decoder::get_segment_id()
  856. {
  857. auto bw = num_8x8_blocks_wide_lookup[m_mi_size];
  858. auto bh = num_8x8_blocks_high_lookup[m_mi_size];
  859. auto xmis = min(m_mi_cols - m_mi_col, (u32)bw);
  860. auto ymis = min(m_mi_rows - m_mi_row, (u32)bh);
  861. u8 segment = 7;
  862. for (size_t y = 0; y < ymis; y++) {
  863. for (size_t x = 0; x < xmis; x++) {
  864. segment = min(segment, m_prev_segment_ids[m_mi_row + y][m_mi_col + x]);
  865. }
  866. }
  867. return segment;
  868. }
  869. bool Decoder::read_is_inter()
  870. {
  871. if (seg_feature_active(SEG_LVL_REF_FRAME))
  872. m_is_inter = m_feature_data[m_segment_id][SEG_LVL_REF_FRAME] != IntraFrame;
  873. else
  874. m_is_inter = m_tree_parser->parse_tree<bool>(SyntaxElementType::IsInter);
  875. return true;
  876. }
  877. bool Decoder::intra_block_mode_info()
  878. {
  879. m_ref_frame[0] = IntraFrame;
  880. m_ref_frame[1] = None;
  881. if (m_mi_size >= Block_8x8) {
  882. m_y_mode = m_tree_parser->parse_tree<u8>(SyntaxElementType::IntraMode);
  883. for (auto& block_sub_mode : m_block_sub_modes)
  884. block_sub_mode = m_y_mode;
  885. } else {
  886. m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
  887. m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
  888. u8 sub_intra_mode;
  889. for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
  890. for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
  891. sub_intra_mode = m_tree_parser->parse_tree<u8>(SyntaxElementType::SubIntraMode);
  892. for (auto y = 0; y < m_num_4x4_h; y++) {
  893. for (auto x = 0; x < m_num_4x4_w; x++)
  894. m_block_sub_modes[(idy + y) * 2 + idx + x] = sub_intra_mode;
  895. }
  896. }
  897. }
  898. m_y_mode = sub_intra_mode;
  899. }
  900. m_uv_mode = m_tree_parser->parse_tree<u8>(SyntaxElementType::UVMode);
  901. return true;
  902. }
  903. bool Decoder::inter_block_mode_info()
  904. {
  905. SAFE_CALL(read_ref_frames());
  906. for (auto j = 0; j < 2; j++) {
  907. if (m_ref_frame[j] > IntraFrame) {
  908. SAFE_CALL(find_mv_refs(m_ref_frame[j], -1));
  909. SAFE_CALL(find_best_ref_mvs(j));
  910. }
  911. }
  912. auto is_compound = m_ref_frame[1] > IntraFrame;
  913. if (seg_feature_active(SEG_LVL_SKIP)) {
  914. m_y_mode = ZeroMv;
  915. } else if (m_mi_size >= Block_8x8) {
  916. auto inter_mode = m_tree_parser->parse_tree(SyntaxElementType::InterMode);
  917. m_y_mode = NearestMv + inter_mode;
  918. }
  919. if (m_interpolation_filter == Switchable)
  920. m_interp_filter = m_tree_parser->parse_tree<InterpolationFilter>(SyntaxElementType::InterpFilter);
  921. else
  922. m_interp_filter = m_interpolation_filter;
  923. if (m_mi_size < Block_8x8) {
  924. m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
  925. m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
  926. for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
  927. for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
  928. auto inter_mode = m_tree_parser->parse_tree(SyntaxElementType::InterMode);
  929. m_y_mode = NearestMv + inter_mode;
  930. if (m_y_mode == NearestMv || m_y_mode == NearMv) {
  931. for (auto j = 0; j < 1 + is_compound; j++)
  932. SAFE_CALL(append_sub8x8_mvs(idy * 2 + idx, j));
  933. }
  934. SAFE_CALL(assign_mv(is_compound));
  935. for (auto y = 0; y < m_num_4x4_h; y++) {
  936. for (auto x = 0; x < m_num_4x4_w; x++) {
  937. auto block = (idy + y) * 2 + idx + x;
  938. for (auto ref_list = 0; ref_list < 1 + is_compound; ref_list++) {
  939. (void)block;
  940. // TODO: m_block_mvs[ref_list][block] = m_mv[ref_list];
  941. }
  942. }
  943. }
  944. }
  945. }
  946. return true;
  947. }
  948. SAFE_CALL(assign_mv(is_compound));
  949. for (auto ref_list = 0; ref_list < 1 + is_compound; ref_list++) {
  950. for (auto block = 0; block < 4; block++) {
  951. // TODO: m_block_mvs[ref_list][block] = m_mv[ref_list];
  952. }
  953. }
  954. return true;
  955. }
  956. bool Decoder::read_ref_frames()
  957. {
  958. if (seg_feature_active(SEG_LVL_REF_FRAME)) {
  959. m_ref_frame[0] = static_cast<ReferenceFrame>(m_feature_data[m_segment_id][SEG_LVL_REF_FRAME]);
  960. m_ref_frame[1] = None;
  961. return true;
  962. }
  963. ReferenceMode comp_mode;
  964. if (m_reference_mode == ReferenceModeSelect)
  965. comp_mode = m_tree_parser->parse_tree<ReferenceMode>(SyntaxElementType::CompMode);
  966. else
  967. comp_mode = m_reference_mode;
  968. if (comp_mode == CompoundReference) {
  969. auto idx = m_ref_frame_sign_bias[m_comp_fixed_ref];
  970. auto comp_ref = m_tree_parser->parse_tree(SyntaxElementType::CompRef);
  971. m_ref_frame[idx] = m_comp_fixed_ref;
  972. m_ref_frame[!idx] = m_comp_var_ref[comp_ref];
  973. return true;
  974. }
  975. auto single_ref_p1 = m_tree_parser->parse_tree<bool>(SyntaxElementType::SingleRefP1);
  976. if (single_ref_p1) {
  977. auto single_ref_p2 = m_tree_parser->parse_tree<bool>(SyntaxElementType::SingleRefP2);
  978. m_ref_frame[0] = single_ref_p2 ? AltRefFrame : GoldenFrame;
  979. } else {
  980. m_ref_frame[0] = LastFrame;
  981. }
  982. m_ref_frame[1] = None;
  983. return true;
  984. }
  985. bool Decoder::assign_mv(bool is_compound)
  986. {
  987. m_mv[1] = ZeroMv;
  988. for (auto i = 0; i < 1 + is_compound; i++) {
  989. if (m_y_mode == NewMv) {
  990. SAFE_CALL(read_mv(i));
  991. } else if (m_y_mode == NearestMv) {
  992. m_mv[i] = m_nearest_mv[i];
  993. } else if (m_y_mode == NearMv) {
  994. m_mv[i] = m_near_mv[i];
  995. } else {
  996. m_mv[i] = ZeroMv;
  997. }
  998. }
  999. return true;
  1000. }
  1001. bool Decoder::read_mv(u8)
  1002. {
  1003. // TODO: Implement
  1004. return true;
  1005. }
  1006. bool Decoder::find_mv_refs(ReferenceFrame, int)
  1007. {
  1008. // TODO: Implement
  1009. return true;
  1010. }
  1011. bool Decoder::find_best_ref_mvs(int)
  1012. {
  1013. // TODO: Implement
  1014. return true;
  1015. }
  1016. bool Decoder::append_sub8x8_mvs(u8, u8)
  1017. {
  1018. // TODO: Implement
  1019. return true;
  1020. }
  1021. void Decoder::dump_info()
  1022. {
  1023. dbgln("Frame dimensions: {}x{}", m_frame_width, m_frame_height);
  1024. dbgln("Render dimensions: {}x{}", m_render_width, m_render_height);
  1025. dbgln("Bit depth: {}", m_bit_depth);
  1026. dbgln("Interpolation filter: {}", (u8)m_interpolation_filter);
  1027. }
  1028. Decoder::~Decoder()
  1029. {
  1030. if (m_above_nonzero_context)
  1031. free(m_above_nonzero_context);
  1032. if (m_left_nonzero_context)
  1033. free(m_left_nonzero_context);
  1034. if (m_above_seg_pred_context)
  1035. free(m_above_seg_pred_context);
  1036. if (m_left_seg_pred_context)
  1037. free(m_left_seg_pred_context);
  1038. if (m_above_partition_context)
  1039. free(m_above_partition_context);
  1040. if (m_left_partition_context)
  1041. free(m_left_partition_context);
  1042. }
  1043. }