Process.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Demangle.h>
  27. #include <AK/StdLibExtras.h>
  28. #include <AK/StringBuilder.h>
  29. #include <AK/Time.h>
  30. #include <AK/Types.h>
  31. #include <Kernel/API/Syscall.h>
  32. #include <Kernel/Arch/i386/CPU.h>
  33. #include <Kernel/CoreDump.h>
  34. #include <Kernel/Debug.h>
  35. #include <Kernel/Devices/NullDevice.h>
  36. #include <Kernel/FileSystem/Custody.h>
  37. #include <Kernel/FileSystem/FileDescription.h>
  38. #include <Kernel/FileSystem/VirtualFileSystem.h>
  39. #include <Kernel/KBufferBuilder.h>
  40. #include <Kernel/KSyms.h>
  41. #include <Kernel/Module.h>
  42. #include <Kernel/PerformanceEventBuffer.h>
  43. #include <Kernel/Process.h>
  44. #include <Kernel/RTC.h>
  45. #include <Kernel/StdLib.h>
  46. #include <Kernel/TTY/TTY.h>
  47. #include <Kernel/Thread.h>
  48. #include <Kernel/VM/AnonymousVMObject.h>
  49. #include <Kernel/VM/PageDirectory.h>
  50. #include <Kernel/VM/PrivateInodeVMObject.h>
  51. #include <Kernel/VM/SharedInodeVMObject.h>
  52. #include <LibC/errno_numbers.h>
  53. #include <LibC/limits.h>
  54. namespace Kernel {
  55. static void create_signal_trampoline();
  56. RecursiveSpinLock g_processes_lock;
  57. static Atomic<pid_t> next_pid;
  58. READONLY_AFTER_INIT InlineLinkedList<Process>* g_processes;
  59. READONLY_AFTER_INIT String* g_hostname;
  60. READONLY_AFTER_INIT Lock* g_hostname_lock;
  61. READONLY_AFTER_INIT HashMap<String, OwnPtr<Module>>* g_modules;
  62. READONLY_AFTER_INIT Region* g_signal_trampoline_region;
  63. ProcessID Process::allocate_pid()
  64. {
  65. // Overflow is UB, and negative PIDs wreck havoc.
  66. // TODO: Handle PID overflow
  67. // For example: Use an Atomic<u32>, mask the most significant bit,
  68. // retry if PID is already taken as a PID, taken as a TID,
  69. // takes as a PGID, taken as a SID, or zero.
  70. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  71. }
  72. UNMAP_AFTER_INIT void Process::initialize()
  73. {
  74. g_modules = new HashMap<String, OwnPtr<Module>>;
  75. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  76. g_processes = new InlineLinkedList<Process>;
  77. g_process_groups = new InlineLinkedList<ProcessGroup>;
  78. g_hostname = new String("courage");
  79. g_hostname_lock = new Lock;
  80. create_signal_trampoline();
  81. }
  82. Vector<ProcessID> Process::all_pids()
  83. {
  84. Vector<ProcessID> pids;
  85. ScopedSpinLock lock(g_processes_lock);
  86. pids.ensure_capacity((int)g_processes->size_slow());
  87. for (auto& process : *g_processes)
  88. pids.append(process.pid());
  89. return pids;
  90. }
  91. NonnullRefPtrVector<Process> Process::all_processes()
  92. {
  93. NonnullRefPtrVector<Process> processes;
  94. ScopedSpinLock lock(g_processes_lock);
  95. processes.ensure_capacity((int)g_processes->size_slow());
  96. for (auto& process : *g_processes)
  97. processes.append(NonnullRefPtr<Process>(process));
  98. return processes;
  99. }
  100. bool Process::in_group(gid_t gid) const
  101. {
  102. return this->gid() == gid || extra_gids().contains_slow(gid);
  103. }
  104. void Process::kill_threads_except_self()
  105. {
  106. InterruptDisabler disabler;
  107. if (thread_count() <= 1)
  108. return;
  109. auto current_thread = Thread::current();
  110. for_each_thread([&](Thread& thread) {
  111. if (&thread == current_thread
  112. || thread.state() == Thread::State::Dead
  113. || thread.state() == Thread::State::Dying)
  114. return IterationDecision::Continue;
  115. // We need to detach this thread in case it hasn't been joined
  116. thread.detach();
  117. thread.set_should_die();
  118. return IterationDecision::Continue;
  119. });
  120. big_lock().clear_waiters();
  121. }
  122. void Process::kill_all_threads()
  123. {
  124. for_each_thread([&](Thread& thread) {
  125. // We need to detach this thread in case it hasn't been joined
  126. thread.detach();
  127. thread.set_should_die();
  128. return IterationDecision::Continue;
  129. });
  130. }
  131. RefPtr<Process> Process::create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t uid, gid_t gid, ProcessID parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
  132. {
  133. auto parts = path.split('/');
  134. if (arguments.is_empty()) {
  135. arguments.append(parts.last());
  136. }
  137. RefPtr<Custody> cwd;
  138. {
  139. ScopedSpinLock lock(g_processes_lock);
  140. if (auto parent = Process::from_pid(parent_pid)) {
  141. cwd = parent->m_cwd;
  142. }
  143. }
  144. if (!cwd)
  145. cwd = VFS::the().root_custody();
  146. auto process = adopt(*new Process(first_thread, parts.take_last(), uid, gid, parent_pid, false, move(cwd), nullptr, tty));
  147. if (!first_thread)
  148. return {};
  149. process->m_fds.resize(m_max_open_file_descriptors);
  150. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
  151. auto description = device_to_use_as_tty.open(O_RDWR).value();
  152. process->m_fds[0].set(*description);
  153. process->m_fds[1].set(*description);
  154. process->m_fds[2].set(*description);
  155. error = process->exec(path, move(arguments), move(environment));
  156. if (error != 0) {
  157. dbgln("Failed to exec {}: {}", path, error);
  158. first_thread = nullptr;
  159. return {};
  160. }
  161. {
  162. ScopedSpinLock lock(g_processes_lock);
  163. g_processes->prepend(process);
  164. process->ref();
  165. }
  166. error = 0;
  167. return process;
  168. }
  169. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data, u32 affinity)
  170. {
  171. auto process = adopt(*new Process(first_thread, move(name), (uid_t)0, (gid_t)0, ProcessID(0), true));
  172. if (!first_thread)
  173. return {};
  174. first_thread->tss().eip = (FlatPtr)entry;
  175. first_thread->tss().esp = FlatPtr(entry_data); // entry function argument is expected to be in tss.esp
  176. if (process->pid() != 0) {
  177. ScopedSpinLock lock(g_processes_lock);
  178. g_processes->prepend(process);
  179. process->ref();
  180. }
  181. ScopedSpinLock lock(g_scheduler_lock);
  182. first_thread->set_affinity(affinity);
  183. first_thread->set_state(Thread::State::Runnable);
  184. return process;
  185. }
  186. void Process::protect_data()
  187. {
  188. MM.set_page_writable_direct(VirtualAddress { this }, false);
  189. }
  190. void Process::unprotect_data()
  191. {
  192. MM.set_page_writable_direct(VirtualAddress { this }, true);
  193. }
  194. Process::Process(RefPtr<Thread>& first_thread, const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  195. : m_name(move(name))
  196. , m_is_kernel_process(is_kernel_process)
  197. , m_executable(move(executable))
  198. , m_cwd(move(cwd))
  199. , m_tty(tty)
  200. , m_wait_block_condition(*this)
  201. {
  202. m_pid = allocate_pid();
  203. m_ppid = ppid;
  204. m_uid = uid;
  205. m_gid = gid;
  206. m_euid = uid;
  207. m_egid = gid;
  208. m_suid = uid;
  209. m_sgid = gid;
  210. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  211. m_space = Space::create(*this, fork_parent ? &fork_parent->space() : nullptr);
  212. if (fork_parent) {
  213. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  214. first_thread = Thread::current()->clone(*this);
  215. } else {
  216. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  217. auto thread_or_error = Thread::try_create(*this);
  218. VERIFY(!thread_or_error.is_error());
  219. first_thread = thread_or_error.release_value();
  220. first_thread->detach();
  221. }
  222. }
  223. Process::~Process()
  224. {
  225. unprotect_data();
  226. VERIFY(thread_count() == 0); // all threads should have been finalized
  227. VERIFY(!m_alarm_timer);
  228. {
  229. ScopedSpinLock processses_lock(g_processes_lock);
  230. if (prev() || next())
  231. g_processes->remove(this);
  232. }
  233. }
  234. // Make sure the compiler doesn't "optimize away" this function:
  235. extern void signal_trampoline_dummy();
  236. void signal_trampoline_dummy()
  237. {
  238. #if ARCH(I386)
  239. // The trampoline preserves the current eax, pushes the signal code and
  240. // then calls the signal handler. We do this because, when interrupting a
  241. // blocking syscall, that syscall may return some special error code in eax;
  242. // This error code would likely be overwritten by the signal handler, so it's
  243. // necessary to preserve it here.
  244. asm(
  245. ".intel_syntax noprefix\n"
  246. "asm_signal_trampoline:\n"
  247. "push ebp\n"
  248. "mov ebp, esp\n"
  249. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  250. "sub esp, 4\n" // align the stack to 16 bytes
  251. "mov eax, [ebp+12]\n" // push the signal code
  252. "push eax\n"
  253. "call [ebp+8]\n" // call the signal handler
  254. "add esp, 8\n"
  255. "mov eax, %P0\n"
  256. "int 0x82\n" // sigreturn syscall
  257. "asm_signal_trampoline_end:\n"
  258. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  259. #elif ARCH(X86_64)
  260. asm("asm_signal_trampoline:\n"
  261. "cli;hlt\n"
  262. "asm_signal_trampoline_end:\n");
  263. #endif
  264. }
  265. extern "C" void asm_signal_trampoline(void);
  266. extern "C" void asm_signal_trampoline_end(void);
  267. void create_signal_trampoline()
  268. {
  269. // NOTE: We leak this region.
  270. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Region::Access::Read | Region::Access::Write).leak_ptr();
  271. g_signal_trampoline_region->set_syscall_region(true);
  272. u8* trampoline = (u8*)asm_signal_trampoline;
  273. u8* trampoline_end = (u8*)asm_signal_trampoline_end;
  274. size_t trampoline_size = trampoline_end - trampoline;
  275. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  276. memcpy(code_ptr, trampoline, trampoline_size);
  277. g_signal_trampoline_region->set_writable(false);
  278. g_signal_trampoline_region->remap();
  279. }
  280. void Process::crash(int signal, u32 eip, bool out_of_memory)
  281. {
  282. VERIFY(!is_dead());
  283. VERIFY(Process::current() == this);
  284. if (out_of_memory) {
  285. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  286. } else {
  287. if (eip >= 0xc0000000 && g_kernel_symbols_available) {
  288. auto* symbol = symbolicate_kernel_address(eip);
  289. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", eip, (symbol ? demangle(symbol->name) : "(k?)"), (symbol ? eip - symbol->address : 0));
  290. } else {
  291. dbgln("\033[31;1m{:p} (?)\033[0m\n", eip);
  292. }
  293. dump_backtrace();
  294. }
  295. m_termination_signal = signal;
  296. set_dump_core(!out_of_memory);
  297. space().dump_regions();
  298. VERIFY(is_user_process());
  299. die();
  300. // We can not return from here, as there is nowhere
  301. // to unwind to, so die right away.
  302. Thread::current()->die_if_needed();
  303. VERIFY_NOT_REACHED();
  304. }
  305. RefPtr<Process> Process::from_pid(ProcessID pid)
  306. {
  307. ScopedSpinLock lock(g_processes_lock);
  308. for (auto& process : *g_processes) {
  309. process.pid();
  310. if (process.pid() == pid)
  311. return &process;
  312. }
  313. return {};
  314. }
  315. RefPtr<FileDescription> Process::file_description(int fd) const
  316. {
  317. if (fd < 0)
  318. return nullptr;
  319. if (static_cast<size_t>(fd) < m_fds.size())
  320. return m_fds[fd].description();
  321. return nullptr;
  322. }
  323. int Process::fd_flags(int fd) const
  324. {
  325. if (fd < 0)
  326. return -1;
  327. if (static_cast<size_t>(fd) < m_fds.size())
  328. return m_fds[fd].flags();
  329. return -1;
  330. }
  331. int Process::number_of_open_file_descriptors() const
  332. {
  333. int count = 0;
  334. for (auto& description : m_fds) {
  335. if (description)
  336. ++count;
  337. }
  338. return count;
  339. }
  340. int Process::alloc_fd(int first_candidate_fd)
  341. {
  342. for (int i = first_candidate_fd; i < (int)m_max_open_file_descriptors; ++i) {
  343. if (!m_fds[i])
  344. return i;
  345. }
  346. return -EMFILE;
  347. }
  348. Time kgettimeofday()
  349. {
  350. return TimeManagement::now();
  351. }
  352. siginfo_t Process::wait_info()
  353. {
  354. siginfo_t siginfo {};
  355. siginfo.si_signo = SIGCHLD;
  356. siginfo.si_pid = pid().value();
  357. siginfo.si_uid = uid();
  358. if (m_termination_signal) {
  359. siginfo.si_status = m_termination_signal;
  360. siginfo.si_code = CLD_KILLED;
  361. } else {
  362. siginfo.si_status = m_termination_status;
  363. siginfo.si_code = CLD_EXITED;
  364. }
  365. return siginfo;
  366. }
  367. Custody& Process::current_directory()
  368. {
  369. if (!m_cwd)
  370. m_cwd = VFS::the().root_custody();
  371. return *m_cwd;
  372. }
  373. KResultOr<String> Process::get_syscall_path_argument(const char* user_path, size_t path_length) const
  374. {
  375. if (path_length == 0)
  376. return EINVAL;
  377. if (path_length > PATH_MAX)
  378. return ENAMETOOLONG;
  379. auto copied_string = copy_string_from_user(user_path, path_length);
  380. if (copied_string.is_null())
  381. return EFAULT;
  382. return copied_string;
  383. }
  384. KResultOr<String> Process::get_syscall_path_argument(const Syscall::StringArgument& path) const
  385. {
  386. return get_syscall_path_argument(path.characters, path.length);
  387. }
  388. bool Process::dump_core()
  389. {
  390. VERIFY(is_dumpable());
  391. VERIFY(should_core_dump());
  392. dbgln("Generating coredump for pid: {}", pid().value());
  393. auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), RTC::now());
  394. auto coredump = CoreDump::create(*this, coredump_path);
  395. if (!coredump)
  396. return false;
  397. return !coredump->write().is_error();
  398. }
  399. bool Process::dump_perfcore()
  400. {
  401. VERIFY(is_dumpable());
  402. VERIFY(m_perf_event_buffer);
  403. dbgln("Generating perfcore for pid: {}", pid().value());
  404. auto description_or_error = VFS::the().open(String::formatted("perfcore.{}", pid().value()), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  405. if (description_or_error.is_error())
  406. return false;
  407. auto& description = description_or_error.value();
  408. KBufferBuilder builder;
  409. if (!m_perf_event_buffer->to_json(builder))
  410. return false;
  411. auto json = builder.build();
  412. if (!json)
  413. return false;
  414. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  415. return !description->write(json_buffer, json->size()).is_error();
  416. }
  417. void Process::finalize()
  418. {
  419. VERIFY(Thread::current() == g_finalizer);
  420. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  421. if (is_dumpable()) {
  422. if (m_should_dump_core)
  423. dump_core();
  424. if (m_perf_event_buffer)
  425. dump_perfcore();
  426. }
  427. m_threads_for_coredump.clear();
  428. if (m_alarm_timer)
  429. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  430. m_fds.clear();
  431. m_tty = nullptr;
  432. m_executable = nullptr;
  433. m_cwd = nullptr;
  434. m_root_directory = nullptr;
  435. m_root_directory_relative_to_global_root = nullptr;
  436. m_arguments.clear();
  437. m_environment.clear();
  438. m_dead = true;
  439. {
  440. // FIXME: PID/TID BUG
  441. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  442. if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
  443. parent_thread->send_signal(SIGCHLD, this);
  444. }
  445. }
  446. {
  447. ScopedSpinLock processses_lock(g_processes_lock);
  448. if (!!ppid()) {
  449. if (auto parent = Process::from_pid(ppid())) {
  450. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  451. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  452. }
  453. }
  454. }
  455. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  456. m_space->remove_all_regions({});
  457. VERIFY(ref_count() > 0);
  458. // WaitBlockCondition::finalize will be in charge of dropping the last
  459. // reference if there are still waiters around, or whenever the last
  460. // waitable states are consumed. Unless there is no parent around
  461. // anymore, in which case we'll just drop it right away.
  462. m_wait_block_condition.finalize();
  463. }
  464. void Process::disowned_by_waiter(Process& process)
  465. {
  466. m_wait_block_condition.disowned_by_waiter(process);
  467. }
  468. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  469. {
  470. if (auto parent = Process::from_pid(ppid()))
  471. parent->m_wait_block_condition.unblock(*this, flags, signal);
  472. }
  473. void Process::die()
  474. {
  475. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  476. // getting an EOF when the last process using the slave PTY dies.
  477. // If the master PTY owner relies on an EOF to know when to wait() on a
  478. // slave owner, we have to allow the PTY pair to be torn down.
  479. m_tty = nullptr;
  480. for_each_thread([&](auto& thread) {
  481. m_threads_for_coredump.append(thread);
  482. return IterationDecision::Continue;
  483. });
  484. {
  485. ScopedSpinLock lock(g_processes_lock);
  486. for (auto* process = g_processes->head(); process;) {
  487. auto* next_process = process->next();
  488. if (process->has_tracee_thread(pid())) {
  489. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process->name(), process->pid(), name(), pid());
  490. process->stop_tracing();
  491. auto err = process->send_signal(SIGSTOP, this);
  492. if (err.is_error())
  493. dbgln("Failed to send the SIGSTOP signal to {} ({})", process->name(), process->pid());
  494. }
  495. process = next_process;
  496. }
  497. }
  498. kill_all_threads();
  499. }
  500. void Process::terminate_due_to_signal(u8 signal)
  501. {
  502. VERIFY_INTERRUPTS_DISABLED();
  503. VERIFY(signal < 32);
  504. VERIFY(Process::current() == this);
  505. dbgln("Terminating {} due to signal {}", *this, signal);
  506. m_termination_status = 0;
  507. m_termination_signal = signal;
  508. die();
  509. }
  510. KResult Process::send_signal(u8 signal, Process* sender)
  511. {
  512. // Try to send it to the "obvious" main thread:
  513. auto receiver_thread = Thread::from_tid(pid().value());
  514. // If the main thread has died, there may still be other threads:
  515. if (!receiver_thread) {
  516. // The first one should be good enough.
  517. // Neither kill(2) nor kill(3) specify any selection precedure.
  518. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  519. receiver_thread = &thread;
  520. return IterationDecision::Break;
  521. });
  522. }
  523. if (receiver_thread) {
  524. receiver_thread->send_signal(signal, sender);
  525. return KSuccess;
  526. }
  527. return ESRCH;
  528. }
  529. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, const String& name, u32 affinity, bool joinable)
  530. {
  531. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  532. // FIXME: Do something with guard pages?
  533. auto thread_or_error = Thread::try_create(*this);
  534. if (thread_or_error.is_error())
  535. return {};
  536. auto thread = thread_or_error.release_value();
  537. thread->set_name(name);
  538. thread->set_affinity(affinity);
  539. thread->set_priority(priority);
  540. if (!joinable)
  541. thread->detach();
  542. auto& tss = thread->tss();
  543. tss.eip = (FlatPtr)entry;
  544. tss.esp = FlatPtr(entry_data); // entry function argument is expected to be in tss.esp
  545. ScopedSpinLock lock(g_scheduler_lock);
  546. thread->set_state(Thread::State::Runnable);
  547. return thread;
  548. }
  549. void Process::FileDescriptionAndFlags::clear()
  550. {
  551. m_description = nullptr;
  552. m_flags = 0;
  553. }
  554. void Process::FileDescriptionAndFlags::set(NonnullRefPtr<FileDescription>&& description, u32 flags)
  555. {
  556. m_description = move(description);
  557. m_flags = flags;
  558. }
  559. Custody& Process::root_directory()
  560. {
  561. if (!m_root_directory)
  562. m_root_directory = VFS::the().root_custody();
  563. return *m_root_directory;
  564. }
  565. Custody& Process::root_directory_relative_to_global_root()
  566. {
  567. if (!m_root_directory_relative_to_global_root)
  568. m_root_directory_relative_to_global_root = root_directory();
  569. return *m_root_directory_relative_to_global_root;
  570. }
  571. void Process::set_root_directory(const Custody& root)
  572. {
  573. m_root_directory = root;
  574. }
  575. void Process::set_tty(TTY* tty)
  576. {
  577. m_tty = tty;
  578. }
  579. void Process::start_tracing_from(ProcessID tracer)
  580. {
  581. m_tracer = ThreadTracer::create(tracer);
  582. }
  583. void Process::stop_tracing()
  584. {
  585. m_tracer = nullptr;
  586. }
  587. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  588. {
  589. VERIFY(m_tracer.ptr());
  590. m_tracer->set_regs(regs);
  591. thread.send_urgent_signal_to_self(SIGTRAP);
  592. }
  593. bool Process::create_perf_events_buffer_if_needed()
  594. {
  595. if (!m_perf_event_buffer) {
  596. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  597. m_perf_event_buffer->add_process(*this);
  598. }
  599. return !!m_perf_event_buffer;
  600. }
  601. bool Process::remove_thread(Thread& thread)
  602. {
  603. auto thread_cnt_before = m_thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  604. VERIFY(thread_cnt_before != 0);
  605. ScopedSpinLock thread_list_lock(m_thread_list_lock);
  606. m_thread_list.remove(thread);
  607. return thread_cnt_before == 1;
  608. }
  609. bool Process::add_thread(Thread& thread)
  610. {
  611. bool is_first = m_thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  612. ScopedSpinLock thread_list_lock(m_thread_list_lock);
  613. m_thread_list.append(thread);
  614. return is_first;
  615. }
  616. void Process::set_dumpable(bool dumpable)
  617. {
  618. if (dumpable == m_dumpable)
  619. return;
  620. ProtectedDataMutationScope scope { *this };
  621. m_dumpable = dumpable;
  622. }
  623. }