Process.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/StringBuilder.h>
  9. #include <AK/Time.h>
  10. #include <AK/Types.h>
  11. #include <Kernel/API/Syscall.h>
  12. #include <Kernel/Arch/x86/InterruptDisabler.h>
  13. #include <Kernel/Coredump.h>
  14. #include <Kernel/Debug.h>
  15. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  16. # include <Kernel/Devices/KCOVDevice.h>
  17. #endif
  18. #include <Kernel/Devices/NullDevice.h>
  19. #include <Kernel/FileSystem/Custody.h>
  20. #include <Kernel/FileSystem/OpenFileDescription.h>
  21. #include <Kernel/FileSystem/VirtualFileSystem.h>
  22. #include <Kernel/KBufferBuilder.h>
  23. #include <Kernel/KSyms.h>
  24. #include <Kernel/Memory/AnonymousVMObject.h>
  25. #include <Kernel/Memory/PageDirectory.h>
  26. #include <Kernel/Memory/SharedInodeVMObject.h>
  27. #include <Kernel/Module.h>
  28. #include <Kernel/PerformanceEventBuffer.h>
  29. #include <Kernel/PerformanceManager.h>
  30. #include <Kernel/Process.h>
  31. #include <Kernel/ProcessExposed.h>
  32. #include <Kernel/Sections.h>
  33. #include <Kernel/StdLib.h>
  34. #include <Kernel/TTY/TTY.h>
  35. #include <Kernel/Thread.h>
  36. #include <Kernel/ThreadTracer.h>
  37. #include <LibC/errno_numbers.h>
  38. #include <LibC/limits.h>
  39. namespace Kernel {
  40. static void create_signal_trampoline();
  41. RecursiveSpinlock g_profiling_lock;
  42. static Atomic<pid_t> next_pid;
  43. static Singleton<SpinlockProtected<Process::List>> s_processes;
  44. READONLY_AFTER_INIT HashMap<String, OwnPtr<Module>>* g_modules;
  45. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  46. static Singleton<MutexProtected<String>> s_hostname;
  47. MutexProtected<String>& hostname()
  48. {
  49. return *s_hostname;
  50. }
  51. SpinlockProtected<Process::List>& processes()
  52. {
  53. return *s_processes;
  54. }
  55. ProcessID Process::allocate_pid()
  56. {
  57. // Overflow is UB, and negative PIDs wreck havoc.
  58. // TODO: Handle PID overflow
  59. // For example: Use an Atomic<u32>, mask the most significant bit,
  60. // retry if PID is already taken as a PID, taken as a TID,
  61. // takes as a PGID, taken as a SID, or zero.
  62. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  63. }
  64. UNMAP_AFTER_INIT void Process::initialize()
  65. {
  66. g_modules = new HashMap<String, OwnPtr<Module>>;
  67. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  68. // Note: This is called before scheduling is initialized, and before APs are booted.
  69. // So we can "safely" bypass the lock here.
  70. reinterpret_cast<String&>(hostname()) = "courage";
  71. create_signal_trampoline();
  72. }
  73. NonnullRefPtrVector<Process> Process::all_processes()
  74. {
  75. NonnullRefPtrVector<Process> output;
  76. processes().with([&](const auto& list) {
  77. output.ensure_capacity(list.size_slow());
  78. for (const auto& process : list)
  79. output.append(NonnullRefPtr<Process>(process));
  80. });
  81. return output;
  82. }
  83. bool Process::in_group(GroupID gid) const
  84. {
  85. return this->gid() == gid || extra_gids().contains_slow(gid);
  86. }
  87. void Process::kill_threads_except_self()
  88. {
  89. InterruptDisabler disabler;
  90. if (thread_count() <= 1)
  91. return;
  92. auto current_thread = Thread::current();
  93. for_each_thread([&](Thread& thread) {
  94. if (&thread == current_thread)
  95. return;
  96. if (auto state = thread.state(); state == Thread::State::Dead
  97. || state == Thread::State::Dying)
  98. return;
  99. // We need to detach this thread in case it hasn't been joined
  100. thread.detach();
  101. thread.set_should_die();
  102. });
  103. u32 dropped_lock_count = 0;
  104. if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
  105. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  106. }
  107. void Process::kill_all_threads()
  108. {
  109. for_each_thread([&](Thread& thread) {
  110. // We need to detach this thread in case it hasn't been joined
  111. thread.detach();
  112. thread.set_should_die();
  113. });
  114. }
  115. void Process::register_new(Process& process)
  116. {
  117. // Note: this is essentially the same like process->ref()
  118. RefPtr<Process> new_process = process;
  119. processes().with([&](auto& list) {
  120. list.prepend(process);
  121. });
  122. }
  123. KResultOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, StringView path, UserID uid, GroupID gid, Vector<String> arguments, Vector<String> environment, TTY* tty)
  124. {
  125. auto parts = path.split_view('/');
  126. if (arguments.is_empty()) {
  127. arguments.append(parts.last());
  128. }
  129. auto path_string = TRY(KString::try_create(path));
  130. auto name = TRY(KString::try_create(parts.last()));
  131. auto process = TRY(Process::try_create(first_thread, move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
  132. if (!process->m_fds.try_resize(process->m_fds.max_open())) {
  133. first_thread = nullptr;
  134. return ENOMEM;
  135. }
  136. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
  137. auto description = TRY(device_to_use_as_tty.open(O_RDWR));
  138. auto setup_description = [&process, &description](int fd) {
  139. process->m_fds.m_fds_metadatas[fd].allocate();
  140. process->m_fds[fd].set(*description);
  141. };
  142. setup_description(0);
  143. setup_description(1);
  144. setup_description(2);
  145. if (auto result = process->exec(move(path_string), move(arguments), move(environment)); result.is_error()) {
  146. dbgln("Failed to exec {}: {}", path, result);
  147. first_thread = nullptr;
  148. return result;
  149. }
  150. register_new(*process);
  151. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
  152. process->ref();
  153. return process;
  154. }
  155. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  156. {
  157. auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
  158. if (process_or_error.is_error())
  159. return {};
  160. auto process = process_or_error.release_value();
  161. first_thread->regs().set_ip((FlatPtr)entry);
  162. #if ARCH(I386)
  163. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  164. #else
  165. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  166. #endif
  167. if (do_register == RegisterProcess::Yes)
  168. register_new(*process);
  169. SpinlockLocker lock(g_scheduler_lock);
  170. first_thread->set_affinity(affinity);
  171. first_thread->set_state(Thread::State::Runnable);
  172. return process;
  173. }
  174. void Process::protect_data()
  175. {
  176. m_protected_data_refs.unref([&]() {
  177. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
  178. });
  179. }
  180. void Process::unprotect_data()
  181. {
  182. m_protected_data_refs.ref([&]() {
  183. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
  184. });
  185. }
  186. KResultOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  187. {
  188. auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
  189. auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(move(name), uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty)));
  190. TRY(process->attach_resources(move(space), first_thread, fork_parent));
  191. return process;
  192. }
  193. Process::Process(NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
  194. : m_name(move(name))
  195. , m_is_kernel_process(is_kernel_process)
  196. , m_executable(move(executable))
  197. , m_cwd(move(cwd))
  198. , m_tty(tty)
  199. , m_wait_blocker_set(*this)
  200. {
  201. // Ensure that we protect the process data when exiting the constructor.
  202. ProtectedDataMutationScope scope { *this };
  203. m_protected_values.pid = allocate_pid();
  204. m_protected_values.ppid = ppid;
  205. m_protected_values.uid = uid;
  206. m_protected_values.gid = gid;
  207. m_protected_values.euid = uid;
  208. m_protected_values.egid = gid;
  209. m_protected_values.suid = uid;
  210. m_protected_values.sgid = gid;
  211. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  212. }
  213. KResult Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
  214. {
  215. m_space = move(preallocated_space);
  216. auto create_first_thread = [&] {
  217. if (fork_parent) {
  218. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  219. return Thread::current()->try_clone(*this);
  220. }
  221. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  222. return Thread::try_create(*this);
  223. };
  224. first_thread = TRY(create_first_thread());
  225. if (!fork_parent) {
  226. // FIXME: Figure out if this is really necessary.
  227. first_thread->detach();
  228. }
  229. m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, *this));
  230. return KSuccess;
  231. }
  232. Process::~Process()
  233. {
  234. unprotect_data();
  235. VERIFY(thread_count() == 0); // all threads should have been finalized
  236. VERIFY(!m_alarm_timer);
  237. PerformanceManager::add_process_exit_event(*this);
  238. }
  239. bool Process::unref() const
  240. {
  241. // NOTE: We need to obtain the process list lock before doing anything,
  242. // because otherwise someone might get in between us lowering the
  243. // refcount and acquiring the lock.
  244. auto did_hit_zero = processes().with([&](auto& list) {
  245. auto new_ref_count = deref_base();
  246. if (new_ref_count > 0)
  247. return false;
  248. if (m_list_node.is_in_list())
  249. list.remove(*const_cast<Process*>(this));
  250. return true;
  251. });
  252. if (did_hit_zero)
  253. delete this;
  254. return did_hit_zero;
  255. }
  256. // Make sure the compiler doesn't "optimize away" this function:
  257. extern void signal_trampoline_dummy() __attribute__((used));
  258. void signal_trampoline_dummy()
  259. {
  260. #if ARCH(I386)
  261. // The trampoline preserves the current eax, pushes the signal code and
  262. // then calls the signal handler. We do this because, when interrupting a
  263. // blocking syscall, that syscall may return some special error code in eax;
  264. // This error code would likely be overwritten by the signal handler, so it's
  265. // necessary to preserve it here.
  266. asm(
  267. ".intel_syntax noprefix\n"
  268. ".globl asm_signal_trampoline\n"
  269. "asm_signal_trampoline:\n"
  270. "push ebp\n"
  271. "mov ebp, esp\n"
  272. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  273. "sub esp, 4\n" // align the stack to 16 bytes
  274. "mov eax, [ebp+12]\n" // push the signal code
  275. "push eax\n"
  276. "call [ebp+8]\n" // call the signal handler
  277. "add esp, 8\n"
  278. "mov eax, %P0\n"
  279. "int 0x82\n" // sigreturn syscall
  280. ".globl asm_signal_trampoline_end\n"
  281. "asm_signal_trampoline_end:\n"
  282. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  283. #elif ARCH(X86_64)
  284. // The trampoline preserves the current rax, pushes the signal code and
  285. // then calls the signal handler. We do this because, when interrupting a
  286. // blocking syscall, that syscall may return some special error code in eax;
  287. // This error code would likely be overwritten by the signal handler, so it's
  288. // necessary to preserve it here.
  289. asm(
  290. ".intel_syntax noprefix\n"
  291. ".globl asm_signal_trampoline\n"
  292. "asm_signal_trampoline:\n"
  293. "push rbp\n"
  294. "mov rbp, rsp\n"
  295. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  296. "sub rsp, 8\n" // align the stack to 16 bytes
  297. "mov rdi, [rbp+24]\n" // push the signal code
  298. "call [rbp+16]\n" // call the signal handler
  299. "add rsp, 8\n"
  300. "mov rax, %P0\n"
  301. "int 0x82\n" // sigreturn syscall
  302. ".globl asm_signal_trampoline_end\n"
  303. "asm_signal_trampoline_end:\n"
  304. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  305. #endif
  306. }
  307. extern "C" char const asm_signal_trampoline[];
  308. extern "C" char const asm_signal_trampoline_end[];
  309. void create_signal_trampoline()
  310. {
  311. // NOTE: We leak this region.
  312. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).release_value().leak_ptr();
  313. g_signal_trampoline_region->set_syscall_region(true);
  314. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  315. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  316. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  317. g_signal_trampoline_region->set_writable(false);
  318. g_signal_trampoline_region->remap();
  319. }
  320. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  321. {
  322. VERIFY(!is_dead());
  323. VERIFY(&Process::current() == this);
  324. if (out_of_memory) {
  325. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  326. } else {
  327. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  328. auto* symbol = symbolicate_kernel_address(ip);
  329. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  330. } else {
  331. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  332. }
  333. dump_backtrace();
  334. }
  335. {
  336. ProtectedDataMutationScope scope { *this };
  337. m_protected_values.termination_signal = signal;
  338. }
  339. set_should_generate_coredump(!out_of_memory);
  340. address_space().dump_regions();
  341. VERIFY(is_user_process());
  342. die();
  343. // We can not return from here, as there is nowhere
  344. // to unwind to, so die right away.
  345. Thread::current()->die_if_needed();
  346. VERIFY_NOT_REACHED();
  347. }
  348. RefPtr<Process> Process::from_pid(ProcessID pid)
  349. {
  350. return processes().with([&](const auto& list) -> RefPtr<Process> {
  351. for (auto& process : list) {
  352. if (process.pid() == pid)
  353. return &process;
  354. }
  355. return {};
  356. });
  357. }
  358. const Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i) const
  359. {
  360. SpinlockLocker lock(m_fds_lock);
  361. if (m_fds_metadatas.size() <= i)
  362. return nullptr;
  363. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  364. return &metadata;
  365. return nullptr;
  366. }
  367. Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i)
  368. {
  369. SpinlockLocker lock(m_fds_lock);
  370. if (m_fds_metadatas.size() <= i)
  371. return nullptr;
  372. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  373. return &metadata;
  374. return nullptr;
  375. }
  376. const Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i) const
  377. {
  378. SpinlockLocker lock(m_fds_lock);
  379. VERIFY(m_fds_metadatas[i].is_allocated());
  380. return m_fds_metadatas[i];
  381. }
  382. Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i)
  383. {
  384. SpinlockLocker lock(m_fds_lock);
  385. VERIFY(m_fds_metadatas[i].is_allocated());
  386. return m_fds_metadatas[i];
  387. }
  388. KResultOr<NonnullRefPtr<OpenFileDescription>> Process::OpenFileDescriptions::open_file_description(int fd) const
  389. {
  390. SpinlockLocker lock(m_fds_lock);
  391. if (fd < 0)
  392. return EBADF;
  393. if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
  394. return EBADF;
  395. RefPtr description = m_fds_metadatas[fd].description();
  396. if (!description)
  397. return EBADF;
  398. return description.release_nonnull();
  399. }
  400. void Process::OpenFileDescriptions::enumerate(Function<void(const OpenFileDescriptionAndFlags&)> callback) const
  401. {
  402. SpinlockLocker lock(m_fds_lock);
  403. for (auto& file_description_metadata : m_fds_metadatas) {
  404. callback(file_description_metadata);
  405. }
  406. }
  407. void Process::OpenFileDescriptions::change_each(Function<void(OpenFileDescriptionAndFlags&)> callback)
  408. {
  409. SpinlockLocker lock(m_fds_lock);
  410. for (auto& file_description_metadata : m_fds_metadatas) {
  411. callback(file_description_metadata);
  412. }
  413. }
  414. size_t Process::OpenFileDescriptions::open_count() const
  415. {
  416. size_t count = 0;
  417. enumerate([&](auto& file_description_metadata) {
  418. if (file_description_metadata.is_valid())
  419. ++count;
  420. });
  421. return count;
  422. }
  423. KResultOr<Process::ScopedDescriptionAllocation> Process::OpenFileDescriptions::allocate(int first_candidate_fd)
  424. {
  425. SpinlockLocker lock(m_fds_lock);
  426. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  427. if (!m_fds_metadatas[i].is_allocated()) {
  428. m_fds_metadatas[i].allocate();
  429. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  430. }
  431. }
  432. return EMFILE;
  433. }
  434. Time kgettimeofday()
  435. {
  436. return TimeManagement::now();
  437. }
  438. siginfo_t Process::wait_info()
  439. {
  440. siginfo_t siginfo {};
  441. siginfo.si_signo = SIGCHLD;
  442. siginfo.si_pid = pid().value();
  443. siginfo.si_uid = uid().value();
  444. if (m_protected_values.termination_signal) {
  445. siginfo.si_status = m_protected_values.termination_signal;
  446. siginfo.si_code = CLD_KILLED;
  447. } else {
  448. siginfo.si_status = m_protected_values.termination_status;
  449. siginfo.si_code = CLD_EXITED;
  450. }
  451. return siginfo;
  452. }
  453. Custody& Process::current_directory()
  454. {
  455. if (!m_cwd)
  456. m_cwd = VirtualFileSystem::the().root_custody();
  457. return *m_cwd;
  458. }
  459. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length) const
  460. {
  461. if (path_length == 0)
  462. return EINVAL;
  463. if (path_length > PATH_MAX)
  464. return ENAMETOOLONG;
  465. return try_copy_kstring_from_user(user_path, path_length);
  466. }
  467. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path) const
  468. {
  469. Userspace<char const*> path_characters((FlatPtr)path.characters);
  470. return get_syscall_path_argument(path_characters, path.length);
  471. }
  472. bool Process::dump_core()
  473. {
  474. VERIFY(is_dumpable());
  475. VERIFY(should_generate_coredump());
  476. dbgln("Generating coredump for pid: {}", pid().value());
  477. auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds());
  478. auto coredump_or_error = Coredump::try_create(*this, coredump_path);
  479. if (coredump_or_error.is_error())
  480. return false;
  481. return !coredump_or_error.value()->write().is_error();
  482. }
  483. bool Process::dump_perfcore()
  484. {
  485. VERIFY(is_dumpable());
  486. VERIFY(m_perf_event_buffer);
  487. dbgln("Generating perfcore for pid: {}", pid().value());
  488. // Try to generate a filename which isn't already used.
  489. auto base_filename = String::formatted("{}_{}", name(), pid().value());
  490. auto description_or_error = VirtualFileSystem::the().open(String::formatted("{}.profile", base_filename), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  491. for (size_t attempt = 1; attempt < 10 && description_or_error.is_error(); ++attempt)
  492. description_or_error = VirtualFileSystem::the().open(String::formatted("{}.{}.profile", base_filename, attempt), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  493. if (description_or_error.is_error()) {
  494. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  495. return false;
  496. }
  497. auto& description = *description_or_error.value();
  498. auto builder_or_error = KBufferBuilder::try_create();
  499. if (builder_or_error.is_error()) {
  500. dbgln("Failed to generate perfcore for pid {}: Could not allocate KBufferBuilder.", pid());
  501. return false;
  502. }
  503. auto builder = builder_or_error.release_value();
  504. if (m_perf_event_buffer->to_json(builder).is_error()) {
  505. dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
  506. return false;
  507. }
  508. auto json = builder.build();
  509. if (!json) {
  510. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  511. return false;
  512. }
  513. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  514. if (description.write(json_buffer, json->size()).is_error()) {
  515. return false;
  516. dbgln("Failed to generate perfcore for pid {}: Cound not write to perfcore file.", pid().value());
  517. }
  518. dbgln("Wrote perfcore for pid {} to {}", pid().value(), description.absolute_path());
  519. return true;
  520. }
  521. void Process::finalize()
  522. {
  523. VERIFY(Thread::current() == g_finalizer);
  524. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  525. if (is_dumpable()) {
  526. if (m_should_generate_coredump)
  527. dump_core();
  528. if (m_perf_event_buffer) {
  529. dump_perfcore();
  530. TimeManagement::the().disable_profile_timer();
  531. }
  532. }
  533. m_threads_for_coredump.clear();
  534. if (m_alarm_timer)
  535. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  536. m_fds.clear();
  537. m_tty = nullptr;
  538. m_executable = nullptr;
  539. m_cwd = nullptr;
  540. m_arguments.clear();
  541. m_environment.clear();
  542. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  543. {
  544. // FIXME: PID/TID BUG
  545. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  546. if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
  547. parent_thread->send_signal(SIGCHLD, this);
  548. }
  549. }
  550. if (!!ppid()) {
  551. if (auto parent = Process::from_pid(ppid())) {
  552. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  553. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  554. }
  555. }
  556. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  557. m_space->remove_all_regions({});
  558. VERIFY(ref_count() > 0);
  559. // WaitBlockerSet::finalize will be in charge of dropping the last
  560. // reference if there are still waiters around, or whenever the last
  561. // waitable states are consumed. Unless there is no parent around
  562. // anymore, in which case we'll just drop it right away.
  563. m_wait_blocker_set.finalize();
  564. }
  565. void Process::disowned_by_waiter(Process& process)
  566. {
  567. m_wait_blocker_set.disowned_by_waiter(process);
  568. }
  569. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  570. {
  571. if (auto parent = Process::from_pid(ppid()))
  572. parent->m_wait_blocker_set.unblock(*this, flags, signal);
  573. }
  574. void Process::die()
  575. {
  576. auto expected = State::Running;
  577. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  578. // It's possible that another thread calls this at almost the same time
  579. // as we can't always instantly kill other threads (they may be blocked)
  580. // So if we already were called then other threads should stop running
  581. // momentarily and we only really need to service the first thread
  582. return;
  583. }
  584. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  585. // getting an EOF when the last process using the slave PTY dies.
  586. // If the master PTY owner relies on an EOF to know when to wait() on a
  587. // slave owner, we have to allow the PTY pair to be torn down.
  588. m_tty = nullptr;
  589. VERIFY(m_threads_for_coredump.is_empty());
  590. for_each_thread([&](auto& thread) {
  591. m_threads_for_coredump.append(thread);
  592. });
  593. processes().with([&](const auto& list) {
  594. for (auto it = list.begin(); it != list.end();) {
  595. auto& process = *it;
  596. ++it;
  597. if (process.has_tracee_thread(pid())) {
  598. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  599. process.stop_tracing();
  600. auto err = process.send_signal(SIGSTOP, this);
  601. if (err.is_error())
  602. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  603. }
  604. }
  605. });
  606. kill_all_threads();
  607. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  608. KCOVDevice::free_process();
  609. #endif
  610. }
  611. void Process::terminate_due_to_signal(u8 signal)
  612. {
  613. VERIFY_INTERRUPTS_DISABLED();
  614. VERIFY(signal < 32);
  615. VERIFY(&Process::current() == this);
  616. dbgln("Terminating {} due to signal {}", *this, signal);
  617. {
  618. ProtectedDataMutationScope scope { *this };
  619. m_protected_values.termination_status = 0;
  620. m_protected_values.termination_signal = signal;
  621. }
  622. die();
  623. }
  624. KResult Process::send_signal(u8 signal, Process* sender)
  625. {
  626. // Try to send it to the "obvious" main thread:
  627. auto receiver_thread = Thread::from_tid(pid().value());
  628. // If the main thread has died, there may still be other threads:
  629. if (!receiver_thread) {
  630. // The first one should be good enough.
  631. // Neither kill(2) nor kill(3) specify any selection precedure.
  632. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  633. receiver_thread = &thread;
  634. return IterationDecision::Break;
  635. });
  636. }
  637. if (receiver_thread) {
  638. receiver_thread->send_signal(signal, sender);
  639. return KSuccess;
  640. }
  641. return ESRCH;
  642. }
  643. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
  644. {
  645. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  646. // FIXME: Do something with guard pages?
  647. auto thread_or_error = Thread::try_create(*this);
  648. if (thread_or_error.is_error())
  649. return {};
  650. auto thread = thread_or_error.release_value();
  651. thread->set_name(move(name));
  652. thread->set_affinity(affinity);
  653. thread->set_priority(priority);
  654. if (!joinable)
  655. thread->detach();
  656. auto& regs = thread->regs();
  657. regs.set_ip((FlatPtr)entry);
  658. regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
  659. SpinlockLocker lock(g_scheduler_lock);
  660. thread->set_state(Thread::State::Runnable);
  661. return thread;
  662. }
  663. void Process::OpenFileDescriptionAndFlags::clear()
  664. {
  665. // FIXME: Verify Process::m_fds_lock is locked!
  666. m_description = nullptr;
  667. m_flags = 0;
  668. }
  669. void Process::OpenFileDescriptionAndFlags::set(NonnullRefPtr<OpenFileDescription>&& description, u32 flags)
  670. {
  671. // FIXME: Verify Process::m_fds_lock is locked!
  672. m_description = move(description);
  673. m_flags = flags;
  674. }
  675. void Process::set_tty(TTY* tty)
  676. {
  677. m_tty = tty;
  678. }
  679. KResult Process::start_tracing_from(ProcessID tracer)
  680. {
  681. m_tracer = TRY(ThreadTracer::try_create(tracer));
  682. return KSuccess;
  683. }
  684. void Process::stop_tracing()
  685. {
  686. m_tracer = nullptr;
  687. }
  688. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  689. {
  690. VERIFY(m_tracer.ptr());
  691. m_tracer->set_regs(regs);
  692. thread.send_urgent_signal_to_self(SIGTRAP);
  693. }
  694. bool Process::create_perf_events_buffer_if_needed()
  695. {
  696. if (!m_perf_event_buffer) {
  697. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  698. m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
  699. }
  700. return !!m_perf_event_buffer;
  701. }
  702. void Process::delete_perf_events_buffer()
  703. {
  704. if (m_perf_event_buffer)
  705. m_perf_event_buffer = nullptr;
  706. }
  707. bool Process::remove_thread(Thread& thread)
  708. {
  709. ProtectedDataMutationScope scope { *this };
  710. auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  711. VERIFY(thread_cnt_before != 0);
  712. thread_list().with([&](auto& thread_list) {
  713. thread_list.remove(thread);
  714. });
  715. return thread_cnt_before == 1;
  716. }
  717. bool Process::add_thread(Thread& thread)
  718. {
  719. ProtectedDataMutationScope scope { *this };
  720. bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  721. thread_list().with([&](auto& thread_list) {
  722. thread_list.append(thread);
  723. });
  724. return is_first;
  725. }
  726. void Process::set_dumpable(bool dumpable)
  727. {
  728. if (dumpable == m_protected_values.dumpable)
  729. return;
  730. ProtectedDataMutationScope scope { *this };
  731. m_protected_values.dumpable = dumpable;
  732. }
  733. KResult Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  734. {
  735. // Write it into the first available property slot.
  736. for (auto& slot : m_coredump_properties) {
  737. if (slot.key)
  738. continue;
  739. slot.key = move(key);
  740. slot.value = move(value);
  741. return KSuccess;
  742. }
  743. return ENOBUFS;
  744. }
  745. KResult Process::try_set_coredump_property(StringView key, StringView value)
  746. {
  747. auto key_kstring = TRY(KString::try_create(key));
  748. auto value_kstring = TRY(KString::try_create(value));
  749. return set_coredump_property(move(key_kstring), move(value_kstring));
  750. };
  751. static constexpr StringView to_string(Pledge promise)
  752. {
  753. #define __ENUMERATE_PLEDGE_PROMISE(x) \
  754. case Pledge::x: \
  755. return #x;
  756. switch (promise) {
  757. ENUMERATE_PLEDGE_PROMISES
  758. }
  759. #undef __ENUMERATE_PLEDGE_PROMISE
  760. VERIFY_NOT_REACHED();
  761. }
  762. void Process::require_no_promises()
  763. {
  764. if (!has_promises())
  765. return;
  766. dbgln("Has made a promise");
  767. Process::current().crash(SIGABRT, 0);
  768. VERIFY_NOT_REACHED();
  769. }
  770. void Process::require_promise(Pledge promise)
  771. {
  772. if (!has_promises())
  773. return;
  774. if (has_promised(promise))
  775. return;
  776. dbgln("Has not pledged {}", to_string(promise));
  777. (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
  778. crash(SIGABRT, 0);
  779. }
  780. }