Process.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Demangle.h>
  27. #include <AK/QuickSort.h>
  28. #include <AK/StdLibExtras.h>
  29. #include <AK/StringBuilder.h>
  30. #include <AK/Time.h>
  31. #include <AK/Types.h>
  32. #include <Kernel/API/Syscall.h>
  33. #include <Kernel/Arch/i386/CPU.h>
  34. #include <Kernel/CoreDump.h>
  35. #include <Kernel/Debug.h>
  36. #include <Kernel/Devices/NullDevice.h>
  37. #include <Kernel/FileSystem/Custody.h>
  38. #include <Kernel/FileSystem/FileDescription.h>
  39. #include <Kernel/FileSystem/VirtualFileSystem.h>
  40. #include <Kernel/Heap/kmalloc.h>
  41. #include <Kernel/KBufferBuilder.h>
  42. #include <Kernel/KSyms.h>
  43. #include <Kernel/Module.h>
  44. #include <Kernel/PerformanceEventBuffer.h>
  45. #include <Kernel/Process.h>
  46. #include <Kernel/RTC.h>
  47. #include <Kernel/StdLib.h>
  48. #include <Kernel/TTY/TTY.h>
  49. #include <Kernel/Thread.h>
  50. #include <Kernel/VM/AnonymousVMObject.h>
  51. #include <Kernel/VM/PageDirectory.h>
  52. #include <Kernel/VM/PrivateInodeVMObject.h>
  53. #include <Kernel/VM/ProcessPagingScope.h>
  54. #include <Kernel/VM/SharedInodeVMObject.h>
  55. #include <LibC/errno_numbers.h>
  56. #include <LibC/limits.h>
  57. namespace Kernel {
  58. static void create_signal_trampolines();
  59. RecursiveSpinLock g_processes_lock;
  60. static Atomic<pid_t> next_pid;
  61. InlineLinkedList<Process>* g_processes;
  62. String* g_hostname;
  63. Lock* g_hostname_lock;
  64. VirtualAddress g_return_to_ring3_from_signal_trampoline;
  65. HashMap<String, OwnPtr<Module>>* g_modules;
  66. ProcessID Process::allocate_pid()
  67. {
  68. // Overflow is UB, and negative PIDs wreck havoc.
  69. // TODO: Handle PID overflow
  70. // For example: Use an Atomic<u32>, mask the most significant bit,
  71. // retry if PID is already taken as a PID, taken as a TID,
  72. // takes as a PGID, taken as a SID, or zero.
  73. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  74. }
  75. void Process::initialize()
  76. {
  77. g_modules = new HashMap<String, OwnPtr<Module>>;
  78. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  79. g_processes = new InlineLinkedList<Process>;
  80. g_process_groups = new InlineLinkedList<ProcessGroup>;
  81. g_hostname = new String("courage");
  82. g_hostname_lock = new Lock;
  83. create_signal_trampolines();
  84. }
  85. Vector<ProcessID> Process::all_pids()
  86. {
  87. Vector<ProcessID> pids;
  88. ScopedSpinLock lock(g_processes_lock);
  89. pids.ensure_capacity((int)g_processes->size_slow());
  90. for (auto& process : *g_processes)
  91. pids.append(process.pid());
  92. return pids;
  93. }
  94. NonnullRefPtrVector<Process> Process::all_processes()
  95. {
  96. NonnullRefPtrVector<Process> processes;
  97. ScopedSpinLock lock(g_processes_lock);
  98. processes.ensure_capacity((int)g_processes->size_slow());
  99. for (auto& process : *g_processes)
  100. processes.append(NonnullRefPtr<Process>(process));
  101. return processes;
  102. }
  103. bool Process::in_group(gid_t gid) const
  104. {
  105. return m_gid == gid || m_extra_gids.contains_slow(gid);
  106. }
  107. void Process::kill_threads_except_self()
  108. {
  109. InterruptDisabler disabler;
  110. if (thread_count() <= 1)
  111. return;
  112. auto current_thread = Thread::current();
  113. for_each_thread([&](Thread& thread) {
  114. if (&thread == current_thread
  115. || thread.state() == Thread::State::Dead
  116. || thread.state() == Thread::State::Dying)
  117. return IterationDecision::Continue;
  118. // We need to detach this thread in case it hasn't been joined
  119. thread.detach();
  120. thread.set_should_die();
  121. return IterationDecision::Continue;
  122. });
  123. big_lock().clear_waiters();
  124. }
  125. void Process::kill_all_threads()
  126. {
  127. for_each_thread([&](Thread& thread) {
  128. // We need to detach this thread in case it hasn't been joined
  129. thread.detach();
  130. thread.set_should_die();
  131. return IterationDecision::Continue;
  132. });
  133. }
  134. RefPtr<Process> Process::create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t uid, gid_t gid, ProcessID parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
  135. {
  136. auto parts = path.split('/');
  137. if (arguments.is_empty()) {
  138. arguments.append(parts.last());
  139. }
  140. RefPtr<Custody> cwd;
  141. RefPtr<Custody> root;
  142. {
  143. ScopedSpinLock lock(g_processes_lock);
  144. if (auto parent = Process::from_pid(parent_pid)) {
  145. cwd = parent->m_cwd;
  146. root = parent->m_root_directory;
  147. }
  148. }
  149. if (!cwd)
  150. cwd = VFS::the().root_custody();
  151. if (!root)
  152. root = VFS::the().root_custody();
  153. auto process = adopt(*new Process(first_thread, parts.take_last(), uid, gid, parent_pid, false, move(cwd), nullptr, tty));
  154. if (!first_thread)
  155. return {};
  156. process->m_fds.resize(m_max_open_file_descriptors);
  157. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
  158. auto description = device_to_use_as_tty.open(O_RDWR).value();
  159. process->m_fds[0].set(*description);
  160. process->m_fds[1].set(*description);
  161. process->m_fds[2].set(*description);
  162. error = process->exec(path, move(arguments), move(environment));
  163. if (error != 0) {
  164. dbgln("Failed to exec {}: {}", path, error);
  165. first_thread = nullptr;
  166. return {};
  167. }
  168. {
  169. ScopedSpinLock lock(g_processes_lock);
  170. g_processes->prepend(process);
  171. process->ref();
  172. }
  173. error = 0;
  174. return process;
  175. }
  176. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data, u32 affinity)
  177. {
  178. auto process = adopt(*new Process(first_thread, move(name), (uid_t)0, (gid_t)0, ProcessID(0), true));
  179. if (!first_thread)
  180. return {};
  181. first_thread->tss().eip = (FlatPtr)entry;
  182. first_thread->tss().esp = FlatPtr(entry_data); // entry function argument is expected to be in tss.esp
  183. if (process->pid() != 0) {
  184. ScopedSpinLock lock(g_processes_lock);
  185. g_processes->prepend(process);
  186. process->ref();
  187. }
  188. ScopedSpinLock lock(g_scheduler_lock);
  189. first_thread->set_affinity(affinity);
  190. first_thread->set_state(Thread::State::Runnable);
  191. return process;
  192. }
  193. Process::Process(RefPtr<Thread>& first_thread, const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  194. : m_name(move(name))
  195. , m_pid(allocate_pid())
  196. , m_euid(uid)
  197. , m_egid(gid)
  198. , m_uid(uid)
  199. , m_gid(gid)
  200. , m_suid(uid)
  201. , m_sgid(gid)
  202. , m_is_kernel_process(is_kernel_process)
  203. , m_executable(move(executable))
  204. , m_cwd(move(cwd))
  205. , m_tty(tty)
  206. , m_ppid(ppid)
  207. , m_wait_block_condition(*this)
  208. {
  209. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, m_pid.value());
  210. m_space = Space::create(*this, fork_parent ? &fork_parent->space() : nullptr);
  211. if (fork_parent) {
  212. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  213. first_thread = Thread::current()->clone(*this);
  214. } else {
  215. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  216. auto thread_or_error = Thread::try_create(*this);
  217. ASSERT(!thread_or_error.is_error());
  218. first_thread = thread_or_error.release_value();
  219. first_thread->detach();
  220. }
  221. }
  222. Process::~Process()
  223. {
  224. ASSERT(thread_count() == 0); // all threads should have been finalized
  225. ASSERT(!m_alarm_timer);
  226. {
  227. ScopedSpinLock processses_lock(g_processes_lock);
  228. if (prev() || next())
  229. g_processes->remove(this);
  230. }
  231. }
  232. // Make sure the compiler doesn't "optimize away" this function:
  233. extern void signal_trampoline_dummy();
  234. void signal_trampoline_dummy()
  235. {
  236. // The trampoline preserves the current eax, pushes the signal code and
  237. // then calls the signal handler. We do this because, when interrupting a
  238. // blocking syscall, that syscall may return some special error code in eax;
  239. // This error code would likely be overwritten by the signal handler, so it's
  240. // necessary to preserve it here.
  241. asm(
  242. ".intel_syntax noprefix\n"
  243. "asm_signal_trampoline:\n"
  244. "push ebp\n"
  245. "mov ebp, esp\n"
  246. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  247. "sub esp, 4\n" // align the stack to 16 bytes
  248. "mov eax, [ebp+12]\n" // push the signal code
  249. "push eax\n"
  250. "call [ebp+8]\n" // call the signal handler
  251. "add esp, 8\n"
  252. "mov eax, %P0\n"
  253. "int 0x82\n" // sigreturn syscall
  254. "asm_signal_trampoline_end:\n"
  255. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  256. }
  257. extern "C" void asm_signal_trampoline(void);
  258. extern "C" void asm_signal_trampoline_end(void);
  259. void create_signal_trampolines()
  260. {
  261. InterruptDisabler disabler;
  262. // NOTE: We leak this region.
  263. auto* trampoline_region = MM.allocate_user_accessible_kernel_region(PAGE_SIZE, "Signal trampolines", Region::Access::Read | Region::Access::Write | Region::Access::Execute, false).leak_ptr();
  264. trampoline_region->set_syscall_region(true);
  265. g_return_to_ring3_from_signal_trampoline = trampoline_region->vaddr();
  266. u8* trampoline = (u8*)asm_signal_trampoline;
  267. u8* trampoline_end = (u8*)asm_signal_trampoline_end;
  268. size_t trampoline_size = trampoline_end - trampoline;
  269. {
  270. SmapDisabler disabler;
  271. u8* code_ptr = (u8*)trampoline_region->vaddr().as_ptr();
  272. memcpy(code_ptr, trampoline, trampoline_size);
  273. }
  274. trampoline_region->set_writable(false);
  275. trampoline_region->remap();
  276. }
  277. void Process::crash(int signal, u32 eip, bool out_of_memory)
  278. {
  279. ASSERT_INTERRUPTS_DISABLED();
  280. ASSERT(!is_dead());
  281. ASSERT(Process::current() == this);
  282. if (out_of_memory) {
  283. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  284. } else {
  285. if (eip >= 0xc0000000 && g_kernel_symbols_available) {
  286. auto* symbol = symbolicate_kernel_address(eip);
  287. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", eip, (symbol ? demangle(symbol->name) : "(k?)"), (symbol ? eip - symbol->address : 0));
  288. } else {
  289. dbgln("\033[31;1m{:p} (?)\033[0m\n", eip);
  290. }
  291. dump_backtrace();
  292. }
  293. m_termination_signal = signal;
  294. set_dump_core(!out_of_memory);
  295. space().dump_regions();
  296. ASSERT(is_user_process());
  297. die();
  298. // We can not return from here, as there is nowhere
  299. // to unwind to, so die right away.
  300. Thread::current()->die_if_needed();
  301. ASSERT_NOT_REACHED();
  302. }
  303. RefPtr<Process> Process::from_pid(ProcessID pid)
  304. {
  305. ScopedSpinLock lock(g_processes_lock);
  306. for (auto& process : *g_processes) {
  307. process.pid();
  308. if (process.pid() == pid)
  309. return &process;
  310. }
  311. return {};
  312. }
  313. RefPtr<FileDescription> Process::file_description(int fd) const
  314. {
  315. if (fd < 0)
  316. return nullptr;
  317. if (static_cast<size_t>(fd) < m_fds.size())
  318. return m_fds[fd].description();
  319. return nullptr;
  320. }
  321. int Process::fd_flags(int fd) const
  322. {
  323. if (fd < 0)
  324. return -1;
  325. if (static_cast<size_t>(fd) < m_fds.size())
  326. return m_fds[fd].flags();
  327. return -1;
  328. }
  329. int Process::number_of_open_file_descriptors() const
  330. {
  331. int count = 0;
  332. for (auto& description : m_fds) {
  333. if (description)
  334. ++count;
  335. }
  336. return count;
  337. }
  338. int Process::alloc_fd(int first_candidate_fd)
  339. {
  340. for (int i = first_candidate_fd; i < (int)m_max_open_file_descriptors; ++i) {
  341. if (!m_fds[i])
  342. return i;
  343. }
  344. return -EMFILE;
  345. }
  346. timeval kgettimeofday()
  347. {
  348. return TimeManagement::now_as_timeval();
  349. }
  350. void kgettimeofday(timeval& tv)
  351. {
  352. tv = kgettimeofday();
  353. }
  354. siginfo_t Process::wait_info()
  355. {
  356. siginfo_t siginfo;
  357. memset(&siginfo, 0, sizeof(siginfo));
  358. siginfo.si_signo = SIGCHLD;
  359. siginfo.si_pid = pid().value();
  360. siginfo.si_uid = uid();
  361. if (m_termination_signal) {
  362. siginfo.si_status = m_termination_signal;
  363. siginfo.si_code = CLD_KILLED;
  364. } else {
  365. siginfo.si_status = m_termination_status;
  366. siginfo.si_code = CLD_EXITED;
  367. }
  368. return siginfo;
  369. }
  370. Custody& Process::current_directory()
  371. {
  372. if (!m_cwd)
  373. m_cwd = VFS::the().root_custody();
  374. return *m_cwd;
  375. }
  376. KResultOr<String> Process::get_syscall_path_argument(const char* user_path, size_t path_length) const
  377. {
  378. if (path_length == 0)
  379. return EINVAL;
  380. if (path_length > PATH_MAX)
  381. return ENAMETOOLONG;
  382. auto copied_string = copy_string_from_user(user_path, path_length);
  383. if (copied_string.is_null())
  384. return EFAULT;
  385. return copied_string;
  386. }
  387. KResultOr<String> Process::get_syscall_path_argument(const Syscall::StringArgument& path) const
  388. {
  389. return get_syscall_path_argument(path.characters, path.length);
  390. }
  391. bool Process::dump_core()
  392. {
  393. ASSERT(is_dumpable());
  394. ASSERT(should_core_dump());
  395. dbgln("Generating coredump for pid: {}", m_pid.value());
  396. auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), m_pid.value(), RTC::now());
  397. auto coredump = CoreDump::create(*this, coredump_path);
  398. if (!coredump)
  399. return false;
  400. return !coredump->write().is_error();
  401. }
  402. bool Process::dump_perfcore()
  403. {
  404. ASSERT(is_dumpable());
  405. ASSERT(m_perf_event_buffer);
  406. dbgln("Generating perfcore for pid: {}", m_pid.value());
  407. auto description_or_error = VFS::the().open(String::formatted("perfcore.{}", m_pid.value()), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { m_uid, m_gid });
  408. if (description_or_error.is_error())
  409. return false;
  410. auto& description = description_or_error.value();
  411. auto json = m_perf_event_buffer->to_json(m_pid, m_executable ? m_executable->absolute_path() : "");
  412. if (!json)
  413. return false;
  414. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  415. return !description->write(json_buffer, json->size()).is_error();
  416. }
  417. void Process::finalize()
  418. {
  419. ASSERT(Thread::current() == g_finalizer);
  420. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  421. if (is_dumpable()) {
  422. if (m_should_dump_core)
  423. dump_core();
  424. if (m_perf_event_buffer)
  425. dump_perfcore();
  426. }
  427. m_threads_for_coredump.clear();
  428. if (m_alarm_timer)
  429. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  430. m_fds.clear();
  431. m_tty = nullptr;
  432. m_executable = nullptr;
  433. m_cwd = nullptr;
  434. m_root_directory = nullptr;
  435. m_root_directory_relative_to_global_root = nullptr;
  436. m_arguments.clear();
  437. m_environment.clear();
  438. m_dead = true;
  439. {
  440. // FIXME: PID/TID BUG
  441. if (auto parent_thread = Thread::from_tid(m_ppid.value())) {
  442. if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
  443. parent_thread->send_signal(SIGCHLD, this);
  444. }
  445. }
  446. {
  447. ScopedSpinLock processses_lock(g_processes_lock);
  448. if (!!ppid()) {
  449. if (auto parent = Process::from_pid(ppid())) {
  450. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  451. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  452. }
  453. }
  454. }
  455. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  456. m_space->remove_all_regions({});
  457. ASSERT(ref_count() > 0);
  458. // WaitBlockCondition::finalize will be in charge of dropping the last
  459. // reference if there are still waiters around, or whenever the last
  460. // waitable states are consumed. Unless there is no parent around
  461. // anymore, in which case we'll just drop it right away.
  462. m_wait_block_condition.finalize();
  463. }
  464. void Process::disowned_by_waiter(Process& process)
  465. {
  466. m_wait_block_condition.disowned_by_waiter(process);
  467. }
  468. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  469. {
  470. if (auto parent = Process::from_pid(ppid()))
  471. parent->m_wait_block_condition.unblock(*this, flags, signal);
  472. }
  473. void Process::die()
  474. {
  475. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  476. // getting an EOF when the last process using the slave PTY dies.
  477. // If the master PTY owner relies on an EOF to know when to wait() on a
  478. // slave owner, we have to allow the PTY pair to be torn down.
  479. m_tty = nullptr;
  480. for_each_thread([&](auto& thread) {
  481. m_threads_for_coredump.append(thread);
  482. return IterationDecision::Continue;
  483. });
  484. kill_all_threads();
  485. }
  486. void Process::terminate_due_to_signal(u8 signal)
  487. {
  488. ASSERT_INTERRUPTS_DISABLED();
  489. ASSERT(signal < 32);
  490. ASSERT(Process::current() == this);
  491. dbgln("Terminating {} due to signal {}", *this, signal);
  492. m_termination_status = 0;
  493. m_termination_signal = signal;
  494. die();
  495. }
  496. KResult Process::send_signal(u8 signal, Process* sender)
  497. {
  498. // Try to send it to the "obvious" main thread:
  499. auto receiver_thread = Thread::from_tid(m_pid.value());
  500. // If the main thread has died, there may still be other threads:
  501. if (!receiver_thread) {
  502. // The first one should be good enough.
  503. // Neither kill(2) nor kill(3) specify any selection precedure.
  504. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  505. receiver_thread = &thread;
  506. return IterationDecision::Break;
  507. });
  508. }
  509. if (receiver_thread) {
  510. receiver_thread->send_signal(signal, sender);
  511. return KSuccess;
  512. }
  513. return ESRCH;
  514. }
  515. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, const String& name, u32 affinity, bool joinable)
  516. {
  517. ASSERT((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  518. // FIXME: Do something with guard pages?
  519. auto thread_or_error = Thread::try_create(*this);
  520. if (thread_or_error.is_error())
  521. return {};
  522. auto thread = thread_or_error.release_value();
  523. thread->set_name(name);
  524. thread->set_affinity(affinity);
  525. thread->set_priority(priority);
  526. if (!joinable)
  527. thread->detach();
  528. auto& tss = thread->tss();
  529. tss.eip = (FlatPtr)entry;
  530. tss.esp = FlatPtr(entry_data); // entry function argument is expected to be in tss.esp
  531. ScopedSpinLock lock(g_scheduler_lock);
  532. thread->set_state(Thread::State::Runnable);
  533. return thread;
  534. }
  535. void Process::FileDescriptionAndFlags::clear()
  536. {
  537. m_description = nullptr;
  538. m_flags = 0;
  539. }
  540. void Process::FileDescriptionAndFlags::set(NonnullRefPtr<FileDescription>&& description, u32 flags)
  541. {
  542. m_description = move(description);
  543. m_flags = flags;
  544. }
  545. Custody& Process::root_directory()
  546. {
  547. if (!m_root_directory)
  548. m_root_directory = VFS::the().root_custody();
  549. return *m_root_directory;
  550. }
  551. Custody& Process::root_directory_relative_to_global_root()
  552. {
  553. if (!m_root_directory_relative_to_global_root)
  554. m_root_directory_relative_to_global_root = root_directory();
  555. return *m_root_directory_relative_to_global_root;
  556. }
  557. void Process::set_root_directory(const Custody& root)
  558. {
  559. m_root_directory = root;
  560. }
  561. void Process::set_tty(TTY* tty)
  562. {
  563. m_tty = tty;
  564. }
  565. void Process::start_tracing_from(ProcessID tracer)
  566. {
  567. m_tracer = ThreadTracer::create(tracer);
  568. }
  569. void Process::stop_tracing()
  570. {
  571. m_tracer = nullptr;
  572. }
  573. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  574. {
  575. ASSERT(m_tracer.ptr());
  576. m_tracer->set_regs(regs);
  577. thread.send_urgent_signal_to_self(SIGTRAP);
  578. }
  579. PerformanceEventBuffer& Process::ensure_perf_events()
  580. {
  581. if (!m_perf_event_buffer)
  582. m_perf_event_buffer = make<PerformanceEventBuffer>();
  583. return *m_perf_event_buffer;
  584. }
  585. bool Process::remove_thread(Thread& thread)
  586. {
  587. auto thread_cnt_before = m_thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  588. ASSERT(thread_cnt_before != 0);
  589. ScopedSpinLock thread_list_lock(m_thread_list_lock);
  590. m_thread_list.remove(thread);
  591. return thread_cnt_before == 1;
  592. }
  593. bool Process::add_thread(Thread& thread)
  594. {
  595. bool is_first = m_thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  596. ScopedSpinLock thread_list_lock(m_thread_list_lock);
  597. m_thread_list.append(thread);
  598. return is_first;
  599. }
  600. }