BlockBasedFileSystem.cpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/IntrusiveList.h>
  7. #include <Kernel/Debug.h>
  8. #include <Kernel/FileSystem/BlockBasedFileSystem.h>
  9. #include <Kernel/Process.h>
  10. namespace Kernel {
  11. struct CacheEntry {
  12. IntrusiveListNode<CacheEntry> list_node;
  13. BlockBasedFileSystem::BlockIndex block_index { 0 };
  14. u8* data { nullptr };
  15. bool has_data { false };
  16. };
  17. class DiskCache {
  18. public:
  19. static constexpr size_t EntryCount = 10000;
  20. explicit DiskCache(BlockBasedFileSystem& fs, NonnullOwnPtr<KBuffer> cached_block_data, NonnullOwnPtr<KBuffer> entries_buffer)
  21. : m_fs(fs)
  22. , m_cached_block_data(move(cached_block_data))
  23. , m_entries(move(entries_buffer))
  24. {
  25. for (size_t i = 0; i < EntryCount; ++i) {
  26. entries()[i].data = m_cached_block_data->data() + i * m_fs.block_size();
  27. m_clean_list.append(entries()[i]);
  28. }
  29. }
  30. ~DiskCache() = default;
  31. bool is_dirty() const { return m_dirty; }
  32. void set_dirty(bool b) { m_dirty = b; }
  33. void mark_all_clean()
  34. {
  35. while (auto* entry = m_dirty_list.first())
  36. m_clean_list.prepend(*entry);
  37. m_dirty = false;
  38. }
  39. void mark_dirty(CacheEntry& entry)
  40. {
  41. m_dirty_list.prepend(entry);
  42. m_dirty = true;
  43. }
  44. void mark_clean(CacheEntry& entry)
  45. {
  46. m_clean_list.prepend(entry);
  47. }
  48. CacheEntry& get(BlockBasedFileSystem::BlockIndex block_index) const
  49. {
  50. if (auto it = m_hash.find(block_index); it != m_hash.end()) {
  51. auto& entry = const_cast<CacheEntry&>(*it->value);
  52. VERIFY(entry.block_index == block_index);
  53. return entry;
  54. }
  55. if (m_clean_list.is_empty()) {
  56. // Not a single clean entry! Flush writes and try again.
  57. // NOTE: We want to make sure we only call FileBackedFileSystem flush here,
  58. // not some FileBackedFileSystem subclass flush!
  59. m_fs.flush_writes_impl();
  60. return get(block_index);
  61. }
  62. VERIFY(m_clean_list.last());
  63. auto& new_entry = *m_clean_list.last();
  64. m_clean_list.prepend(new_entry);
  65. m_hash.remove(new_entry.block_index);
  66. m_hash.set(block_index, &new_entry);
  67. new_entry.block_index = block_index;
  68. new_entry.has_data = false;
  69. return new_entry;
  70. }
  71. const CacheEntry* entries() const { return (const CacheEntry*)m_entries->data(); }
  72. CacheEntry* entries() { return (CacheEntry*)m_entries->data(); }
  73. template<typename Callback>
  74. void for_each_dirty_entry(Callback callback)
  75. {
  76. for (auto& entry : m_dirty_list)
  77. callback(entry);
  78. }
  79. private:
  80. BlockBasedFileSystem& m_fs;
  81. mutable HashMap<BlockBasedFileSystem::BlockIndex, CacheEntry*> m_hash;
  82. mutable IntrusiveList<CacheEntry, RawPtr<CacheEntry>, &CacheEntry::list_node> m_clean_list;
  83. mutable IntrusiveList<CacheEntry, RawPtr<CacheEntry>, &CacheEntry::list_node> m_dirty_list;
  84. NonnullOwnPtr<KBuffer> m_cached_block_data;
  85. NonnullOwnPtr<KBuffer> m_entries;
  86. bool m_dirty { false };
  87. };
  88. BlockBasedFileSystem::BlockBasedFileSystem(OpenFileDescription& file_description)
  89. : FileBackedFileSystem(file_description)
  90. {
  91. VERIFY(file_description.file().is_seekable());
  92. }
  93. BlockBasedFileSystem::~BlockBasedFileSystem()
  94. {
  95. }
  96. KResult BlockBasedFileSystem::initialize()
  97. {
  98. VERIFY(block_size() != 0);
  99. auto cached_block_data = TRY(KBuffer::try_create_with_size(DiskCache::EntryCount * block_size()));
  100. auto entries_data = TRY(KBuffer::try_create_with_size(DiskCache::EntryCount * sizeof(CacheEntry)));
  101. auto disk_cache = TRY(adopt_nonnull_own_or_enomem(new (nothrow) DiskCache(*this, move(cached_block_data), move(entries_data))));
  102. m_cache.with_exclusive([&](auto& cache) {
  103. cache = move(disk_cache);
  104. });
  105. return KSuccess;
  106. }
  107. KResult BlockBasedFileSystem::write_block(BlockIndex index, const UserOrKernelBuffer& data, size_t count, size_t offset, bool allow_cache)
  108. {
  109. VERIFY(m_logical_block_size);
  110. VERIFY(offset + count <= block_size());
  111. dbgln_if(BBFS_DEBUG, "BlockBasedFileSystem::write_block {}, size={}", index, count);
  112. return m_cache.with_exclusive([&](auto& cache) -> KResult {
  113. if (!allow_cache) {
  114. flush_specific_block_if_needed(index);
  115. auto base_offset = index.value() * block_size() + offset;
  116. auto nwritten = TRY(file_description().write(base_offset, data, count));
  117. VERIFY(nwritten == count);
  118. return KSuccess;
  119. }
  120. auto& entry = cache->get(index);
  121. if (count < block_size()) {
  122. // Fill the cache first.
  123. TRY(read_block(index, nullptr, block_size()));
  124. }
  125. TRY(data.read(entry.data + offset, count));
  126. cache->mark_dirty(entry);
  127. entry.has_data = true;
  128. return KSuccess;
  129. });
  130. }
  131. bool BlockBasedFileSystem::raw_read(BlockIndex index, UserOrKernelBuffer& buffer)
  132. {
  133. auto base_offset = index.value() * m_logical_block_size;
  134. auto nread = file_description().read(buffer, base_offset, m_logical_block_size);
  135. VERIFY(!nread.is_error());
  136. VERIFY(nread.value() == m_logical_block_size);
  137. return true;
  138. }
  139. bool BlockBasedFileSystem::raw_write(BlockIndex index, const UserOrKernelBuffer& buffer)
  140. {
  141. auto base_offset = index.value() * m_logical_block_size;
  142. auto nwritten = file_description().write(base_offset, buffer, m_logical_block_size);
  143. VERIFY(!nwritten.is_error());
  144. VERIFY(nwritten.value() == m_logical_block_size);
  145. return true;
  146. }
  147. bool BlockBasedFileSystem::raw_read_blocks(BlockIndex index, size_t count, UserOrKernelBuffer& buffer)
  148. {
  149. auto current = buffer;
  150. for (auto block = index.value(); block < (index.value() + count); block++) {
  151. if (!raw_read(BlockIndex { block }, current))
  152. return false;
  153. current = current.offset(logical_block_size());
  154. }
  155. return true;
  156. }
  157. bool BlockBasedFileSystem::raw_write_blocks(BlockIndex index, size_t count, const UserOrKernelBuffer& buffer)
  158. {
  159. auto current = buffer;
  160. for (auto block = index.value(); block < (index.value() + count); block++) {
  161. if (!raw_write(block, current))
  162. return false;
  163. current = current.offset(logical_block_size());
  164. }
  165. return true;
  166. }
  167. KResult BlockBasedFileSystem::write_blocks(BlockIndex index, unsigned count, const UserOrKernelBuffer& data, bool allow_cache)
  168. {
  169. VERIFY(m_logical_block_size);
  170. dbgln_if(BBFS_DEBUG, "BlockBasedFileSystem::write_blocks {}, count={}", index, count);
  171. for (unsigned i = 0; i < count; ++i) {
  172. TRY(write_block(BlockIndex { index.value() + i }, data.offset(i * block_size()), block_size(), 0, allow_cache));
  173. }
  174. return KSuccess;
  175. }
  176. KResult BlockBasedFileSystem::read_block(BlockIndex index, UserOrKernelBuffer* buffer, size_t count, size_t offset, bool allow_cache) const
  177. {
  178. VERIFY(m_logical_block_size);
  179. VERIFY(offset + count <= block_size());
  180. dbgln_if(BBFS_DEBUG, "BlockBasedFileSystem::read_block {}", index);
  181. return m_cache.with_exclusive([&](auto& cache) -> KResult {
  182. if (!allow_cache) {
  183. const_cast<BlockBasedFileSystem*>(this)->flush_specific_block_if_needed(index);
  184. auto base_offset = index.value() * block_size() + offset;
  185. auto nread = TRY(file_description().read(*buffer, base_offset, count));
  186. VERIFY(nread == count);
  187. return KSuccess;
  188. }
  189. auto& entry = cache->get(index);
  190. if (!entry.has_data) {
  191. auto base_offset = index.value() * block_size();
  192. auto entry_data_buffer = UserOrKernelBuffer::for_kernel_buffer(entry.data);
  193. auto nread = TRY(file_description().read(entry_data_buffer, base_offset, block_size()));
  194. VERIFY(nread == block_size());
  195. entry.has_data = true;
  196. }
  197. if (buffer)
  198. TRY(buffer->write(entry.data + offset, count));
  199. return KSuccess;
  200. });
  201. }
  202. KResult BlockBasedFileSystem::read_blocks(BlockIndex index, unsigned count, UserOrKernelBuffer& buffer, bool allow_cache) const
  203. {
  204. VERIFY(m_logical_block_size);
  205. if (!count)
  206. return EINVAL;
  207. if (count == 1)
  208. return read_block(index, &buffer, block_size(), 0, allow_cache);
  209. auto out = buffer;
  210. for (unsigned i = 0; i < count; ++i) {
  211. TRY(read_block(BlockIndex { index.value() + i }, &out, block_size(), 0, allow_cache));
  212. out = out.offset(block_size());
  213. }
  214. return KSuccess;
  215. }
  216. void BlockBasedFileSystem::flush_specific_block_if_needed(BlockIndex index)
  217. {
  218. m_cache.with_exclusive([&](auto& cache) {
  219. if (!cache->is_dirty())
  220. return;
  221. Vector<CacheEntry*, 32> cleaned_entries;
  222. cache->for_each_dirty_entry([&](CacheEntry& entry) {
  223. if (entry.block_index != index) {
  224. size_t base_offset = entry.block_index.value() * block_size();
  225. auto entry_data_buffer = UserOrKernelBuffer::for_kernel_buffer(entry.data);
  226. [[maybe_unused]] auto rc = file_description().write(base_offset, entry_data_buffer, block_size());
  227. cleaned_entries.append(&entry);
  228. }
  229. });
  230. // NOTE: We make a separate pass to mark entries clean since marking them clean
  231. // moves them out of the dirty list which would disturb the iteration above.
  232. for (auto* entry : cleaned_entries)
  233. cache->mark_clean(*entry);
  234. });
  235. }
  236. void BlockBasedFileSystem::flush_writes_impl()
  237. {
  238. size_t count = 0;
  239. m_cache.with_exclusive([&](auto& cache) {
  240. if (!cache->is_dirty())
  241. return;
  242. cache->for_each_dirty_entry([&](CacheEntry& entry) {
  243. auto base_offset = entry.block_index.value() * block_size();
  244. auto entry_data_buffer = UserOrKernelBuffer::for_kernel_buffer(entry.data);
  245. [[maybe_unused]] auto rc = file_description().write(base_offset, entry_data_buffer, block_size());
  246. ++count;
  247. });
  248. cache->mark_all_clean();
  249. dbgln("{}: Flushed {} blocks to disk", class_name(), count);
  250. });
  251. }
  252. void BlockBasedFileSystem::flush_writes()
  253. {
  254. flush_writes_impl();
  255. }
  256. }