CanvasPath.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. /*
  2. * Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2022, Sam Atkins <atkinssj@serenityos.org>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <LibWeb/HTML/Canvas/CanvasPath.h>
  8. namespace Web::HTML {
  9. Gfx::AffineTransform CanvasPath::active_transform() const
  10. {
  11. if (m_canvas_state.has_value())
  12. return m_canvas_state->drawing_state().transform;
  13. return {};
  14. }
  15. void CanvasPath::close_path()
  16. {
  17. m_path.close();
  18. }
  19. void CanvasPath::move_to(float x, float y)
  20. {
  21. m_path.move_to(active_transform().map(Gfx::FloatPoint { x, y }));
  22. }
  23. void CanvasPath::line_to(float x, float y)
  24. {
  25. m_path.line_to(active_transform().map(Gfx::FloatPoint { x, y }));
  26. }
  27. void CanvasPath::quadratic_curve_to(float cx, float cy, float x, float y)
  28. {
  29. auto transform = active_transform();
  30. m_path.quadratic_bezier_curve_to(transform.map(Gfx::FloatPoint { cx, cy }), transform.map(Gfx::FloatPoint { x, y }));
  31. }
  32. void CanvasPath::bezier_curve_to(double cp1x, double cp1y, double cp2x, double cp2y, double x, double y)
  33. {
  34. auto transform = active_transform();
  35. m_path.cubic_bezier_curve_to(
  36. transform.map(Gfx::FloatPoint { cp1x, cp1y }), transform.map(Gfx::FloatPoint { cp2x, cp2y }), transform.map(Gfx::FloatPoint { x, y }));
  37. }
  38. WebIDL::ExceptionOr<void> CanvasPath::arc(float x, float y, float radius, float start_angle, float end_angle, bool counter_clockwise)
  39. {
  40. if (radius < 0)
  41. return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The radius provided ({}) is negative.", radius)));
  42. return ellipse(x, y, radius, radius, 0, start_angle, end_angle, counter_clockwise);
  43. }
  44. WebIDL::ExceptionOr<void> CanvasPath::ellipse(float x, float y, float radius_x, float radius_y, float rotation, float start_angle, float end_angle, bool counter_clockwise)
  45. {
  46. if (radius_x < 0)
  47. return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The major-axis radius provided ({}) is negative.", radius_x)));
  48. if (radius_y < 0)
  49. return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The minor-axis radius provided ({}) is negative.", radius_y)));
  50. if (constexpr float tau = M_PI * 2; (!counter_clockwise && (end_angle - start_angle) >= tau)
  51. || (counter_clockwise && (start_angle - end_angle) >= tau)) {
  52. start_angle = 0;
  53. // FIXME: elliptical_arc_to() incorrectly handles the case where the start/end points are very close.
  54. // So we slightly fudge the numbers here to correct for that.
  55. end_angle = tau * 0.9999f;
  56. } else {
  57. start_angle = fmodf(start_angle, tau);
  58. end_angle = fmodf(end_angle, tau);
  59. }
  60. // Then, figure out where the ends of the arc are.
  61. // To do so, we can pretend that the center of this ellipse is at (0, 0),
  62. // and the whole coordinate system is rotated `rotation` radians around the x axis, centered on `center`.
  63. // The sign of the resulting relative positions is just whether our angle is on one of the left quadrants.
  64. float sin_rotation;
  65. float cos_rotation;
  66. AK::sincos(rotation, sin_rotation, cos_rotation);
  67. auto resolve_point_with_angle = [&](float angle) {
  68. auto tan_relative = tanf(angle);
  69. auto tan2 = tan_relative * tan_relative;
  70. auto ab = radius_x * radius_y;
  71. auto a2 = radius_x * radius_x;
  72. auto b2 = radius_y * radius_y;
  73. auto sqrt = sqrtf(b2 + a2 * tan2);
  74. auto relative_x_position = ab / sqrt;
  75. auto relative_y_position = ab * tan_relative / sqrt;
  76. // Make sure to set the correct sign
  77. // -1 if 0 ≤ θ < 90° or 270°< θ ≤ 360°
  78. // 1 if 90° < θ< 270°
  79. float sn = cosf(angle) >= 0 ? 1 : -1;
  80. relative_x_position *= sn;
  81. relative_y_position *= sn;
  82. // Now rotate it (back) around the center point by 'rotation' radians, then move it back to our actual origin.
  83. auto relative_rotated_x_position = relative_x_position * cos_rotation - relative_y_position * sin_rotation;
  84. auto relative_rotated_y_position = relative_x_position * sin_rotation + relative_y_position * cos_rotation;
  85. return Gfx::FloatPoint { relative_rotated_x_position + x, relative_rotated_y_position + y };
  86. };
  87. auto start_point = resolve_point_with_angle(start_angle);
  88. auto end_point = resolve_point_with_angle(end_angle);
  89. auto delta_theta = end_angle - start_angle;
  90. auto transform = active_transform();
  91. m_path.move_to(transform.map(start_point));
  92. m_path.elliptical_arc_to(
  93. transform.map(Gfx::FloatPoint { end_point }),
  94. transform.map(Gfx::FloatSize { radius_x, radius_y }),
  95. rotation + transform.rotation(),
  96. delta_theta > AK::Pi<float>, !counter_clockwise);
  97. return {};
  98. }
  99. // https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-arcto
  100. WebIDL::ExceptionOr<void> CanvasPath::arc_to(double x1, double y1, double x2, double y2, double radius)
  101. {
  102. // 1. If any of the arguments are infinite or NaN, then return.
  103. if (!isfinite(x1) || !isfinite(y1) || !isfinite(x2) || !isfinite(y2) || !isfinite(radius))
  104. return {};
  105. // 2. Ensure there is a subpath for (x1, y1).
  106. auto transform = active_transform();
  107. m_path.ensure_subpath(transform.map(Gfx::FloatPoint { x1, y1 }));
  108. // 3. If radius is negative, then throw an "IndexSizeError" DOMException.
  109. if (radius < 0)
  110. return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The radius provided ({}) is negative.", radius)));
  111. // 4. Let the point (x0, y0) be the last point in the subpath,
  112. // transformed by the inverse of the current transformation matrix
  113. // (so that it is in the same coordinate system as the points passed to the method).
  114. // Point (x0, y0)
  115. auto p0 = m_path.last_point();
  116. // Point (x1, y1)
  117. auto p1 = transform.map(Gfx::FloatPoint { x1, y1 });
  118. // Point (x2, y2)
  119. auto p2 = transform.map(Gfx::FloatPoint { x2, y2 });
  120. // 5. If the point (x0, y0) is equal to the point (x1, y1),
  121. // or if the point (x1, y1) is equal to the point (x2, y2),
  122. // or if radius is zero, then add the point (x1, y1) to the subpath,
  123. // and connect that point to the previous point (x0, y0) by a straight line.
  124. if (p0 == p1 || p1 == p2 || radius == 0) {
  125. m_path.line_to(p1);
  126. return {};
  127. }
  128. auto v1 = Gfx::FloatVector2 { p0.x() - p1.x(), p0.y() - p1.y() };
  129. auto v2 = Gfx::FloatVector2 { p2.x() - p1.x(), p2.y() - p1.y() };
  130. auto cos_theta = v1.dot(v2) / (v1.length() * v2.length());
  131. // 6. Otherwise, if the points (x0, y0), (x1, y1), and (x2, y2) all lie on a single straight line,
  132. // then add the point (x1, y1) to the subpath,
  133. // and connect that point to the previous point (x0, y0) by a straight line.
  134. if (-1 == cos_theta || 1 == cos_theta) {
  135. m_path.line_to(p1);
  136. return {};
  137. }
  138. // 7. Otherwise, let The Arc be the shortest arc given by circumference of the circle that has radius radius,
  139. // and that has one point tangent to the half-infinite line that crosses the point (x0, y0) and ends at the point (x1, y1),
  140. // and that has a different point tangent to the half-infinite line that ends at the point (x1, y1) and crosses the point (x2, y2).
  141. // The points at which this circle touches these two lines are called the start and end tangent points respectively.
  142. auto adjacent = radius / static_cast<double>(tan(acos(cos_theta) / 2));
  143. auto factor1 = adjacent / static_cast<double>(v1.length());
  144. auto x3 = static_cast<double>(p1.x()) + factor1 * static_cast<double>(p0.x() - p1.x());
  145. auto y3 = static_cast<double>(p1.y()) + factor1 * static_cast<double>(p0.y() - p1.y());
  146. auto start_tangent = Gfx::FloatPoint { x3, y3 };
  147. auto factor2 = adjacent / static_cast<double>(v2.length());
  148. auto x4 = static_cast<double>(p1.x()) + factor2 * static_cast<double>(p2.x() - p1.x());
  149. auto y4 = static_cast<double>(p1.y()) + factor2 * static_cast<double>(p2.y() - p1.y());
  150. auto end_tangent = Gfx::FloatPoint { x4, y4 };
  151. // Connect the point (x0, y0) to the start tangent point by a straight line, adding the start tangent point to the subpath.
  152. m_path.line_to(start_tangent);
  153. bool const large_arc = false; // always small since tangent points define arc endpoints and lines meet at (x1, y1)
  154. auto cross_product = v1.x() * v2.y() - v1.y() * v2.x();
  155. bool const sweep = cross_product < 0; // right-hand rule, true means clockwise
  156. // and then connect the start tangent point to the end tangent point by The Arc, adding the end tangent point to the subpath.
  157. m_path.arc_to(end_tangent, radius, large_arc, sweep);
  158. return {};
  159. }
  160. // https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-rect
  161. void CanvasPath::rect(double x, double y, double w, double h)
  162. {
  163. // 1. If any of the arguments are infinite or NaN, then return.
  164. if (!isfinite(x) || !isfinite(y) || !isfinite(w) || !isfinite(h))
  165. return;
  166. // 2. Create a new subpath containing just the four points (x, y), (x+w, y), (x+w, y+h), (x, y+h), in that order, with those four points connected by straight lines.
  167. auto transform = active_transform();
  168. m_path.move_to(transform.map(Gfx::FloatPoint { x, y }));
  169. m_path.line_to(transform.map(Gfx::FloatPoint { x + w, y }));
  170. m_path.line_to(transform.map(Gfx::FloatPoint { x + w, y + h }));
  171. m_path.line_to(transform.map(Gfx::FloatPoint { x, y + h }));
  172. // 3. Mark the subpath as closed.
  173. m_path.close();
  174. // 4. Create a new subpath with the point (x, y) as the only point in the subpath.
  175. m_path.move_to(transform.map(Gfx::FloatPoint { x, y }));
  176. }
  177. // https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-roundrect
  178. WebIDL::ExceptionOr<void> CanvasPath::round_rect(double x, double y, double w, double h, Variant<double, Geometry::DOMPointInit, Vector<Variant<double, Geometry::DOMPointInit>>> radii)
  179. {
  180. using Radius = Variant<double, Geometry::DOMPointInit>;
  181. // 1. If any of x, y, w, or h are infinite or NaN, then return.
  182. if (!isfinite(x) || !isfinite(y) || !isfinite(w) || !isfinite(h))
  183. return {};
  184. // 2. If radii is an unrestricted double or DOMPointInit, then set radii to « radii ».
  185. if (radii.has<double>() || radii.has<Geometry::DOMPointInit>()) {
  186. Vector<Radius> radii_list;
  187. if (radii.has<double>())
  188. radii_list.append(radii.get<double>());
  189. else
  190. radii_list.append(radii.get<Geometry::DOMPointInit>());
  191. radii = radii_list;
  192. }
  193. // 3. If radii is not a list of size one, two, three, or four, then throw a RangeError.
  194. if (radii.get<Vector<Radius>>().is_empty() || radii.get<Vector<Radius>>().size() > 4)
  195. return WebIDL::SimpleException { WebIDL::SimpleExceptionType::RangeError, "roundRect: Can have between 1 and 4 radii"sv };
  196. // 4. Let normalizedRadii be an empty list.
  197. Vector<Geometry::DOMPointInit> normalized_radii;
  198. // 5. For each radius of radii:
  199. for (auto const& radius : radii.get<Vector<Radius>>()) {
  200. // 5.1. If radius is a DOMPointInit:
  201. if (radius.has<Geometry::DOMPointInit>()) {
  202. auto const& radius_as_dom_point = radius.get<Geometry::DOMPointInit>();
  203. // 5.1.1. If radius["x"] or radius["y"] is infinite or NaN, then return.
  204. if (!isfinite(radius_as_dom_point.x) || !isfinite(radius_as_dom_point.y))
  205. return {};
  206. // 5.1.2. If radius["x"] or radius["y"] is negative, then throw a RangeError.
  207. if (radius_as_dom_point.x < 0 || radius_as_dom_point.y < 0)
  208. return WebIDL::SimpleException { WebIDL::SimpleExceptionType::RangeError, "roundRect: Radius can't be negative"sv };
  209. // 5.1.3. Otherwise, append radius to normalizedRadii.
  210. normalized_radii.append(radius_as_dom_point);
  211. }
  212. // 5.2. If radius is a unrestricted double:
  213. if (radius.has<double>()) {
  214. auto radius_as_double = radius.get<double>();
  215. // 5.2.1. If radius is infinite or NaN, then return.
  216. if (!isfinite(radius_as_double))
  217. return {};
  218. // 5.2.2. If radius is negative, then throw a RangeError.
  219. if (radius_as_double < 0)
  220. return WebIDL::SimpleException { WebIDL::SimpleExceptionType::RangeError, "roundRect: Radius can't be negative"sv };
  221. // 5.2.3. Otherwise append «[ "x" → radius, "y" → radius ]» to normalizedRadii.
  222. normalized_radii.append(Geometry::DOMPointInit { radius_as_double, radius_as_double });
  223. }
  224. }
  225. // 6. Let upperLeft, upperRight, lowerRight, and lowerLeft be null.
  226. Geometry::DOMPointInit upper_left {};
  227. Geometry::DOMPointInit upper_right {};
  228. Geometry::DOMPointInit lower_right {};
  229. Geometry::DOMPointInit lower_left {};
  230. // 7. If normalizedRadii's size is 4, then set upperLeft to normalizedRadii[0], set upperRight to normalizedRadii[1], set lowerRight to normalizedRadii[2], and set lowerLeft to normalizedRadii[3].
  231. if (normalized_radii.size() == 4) {
  232. upper_left = normalized_radii.at(0);
  233. upper_right = normalized_radii.at(1);
  234. lower_right = normalized_radii.at(2);
  235. lower_left = normalized_radii.at(3);
  236. }
  237. // 8. If normalizedRadii's size is 3, then set upperLeft to normalizedRadii[0], set upperRight and lowerLeft to normalizedRadii[1], and set lowerRight to normalizedRadii[2].
  238. if (normalized_radii.size() == 3) {
  239. upper_left = normalized_radii.at(0);
  240. upper_right = lower_left = normalized_radii.at(1);
  241. lower_right = normalized_radii.at(2);
  242. }
  243. // 9. If normalizedRadii's size is 2, then set upperLeft and lowerRight to normalizedRadii[0] and set upperRight and lowerLeft to normalizedRadii[1].
  244. if (normalized_radii.size() == 2) {
  245. upper_left = lower_right = normalized_radii.at(0);
  246. upper_right = lower_left = normalized_radii.at(1);
  247. }
  248. // 10. If normalizedRadii's size is 1, then set upperLeft, upperRight, lowerRight, and lowerLeft to normalizedRadii[0].
  249. if (normalized_radii.size() == 1)
  250. upper_left = upper_right = lower_right = lower_left = normalized_radii.at(0);
  251. // 11. Corner curves must not overlap. Scale all radii to prevent this:
  252. // 11.1. Let top be upperLeft["x"] + upperRight["x"].
  253. double top = upper_left.x + upper_right.x;
  254. // 11.2. Let right be upperRight["y"] + lowerRight["y"].
  255. double right = upper_right.y + lower_right.y;
  256. // 11.3. Let bottom be lowerRight["x"] + lowerLeft["x"].
  257. double bottom = lower_right.x + lower_left.x;
  258. // 11.4. Let left be upperLeft["y"] + lowerLeft["y"].
  259. double left = upper_left.y + lower_left.y;
  260. // 11.5. Let scale be the minimum value of the ratios w / top, h / right, w / bottom, h / left.
  261. double scale = AK::min(AK::min(w / top, h / right), AK::min(w / bottom, h / left));
  262. // 11.6. If scale is less than 1, then set the x and y members of upperLeft, upperRight, lowerLeft, and lowerRight to their current values multiplied by scale.
  263. if (scale < 1) {
  264. upper_left.x *= scale;
  265. upper_left.y *= scale;
  266. upper_right.x *= scale;
  267. upper_right.y *= scale;
  268. lower_left.x *= scale;
  269. lower_left.y *= scale;
  270. lower_right.x *= scale;
  271. lower_right.y *= scale;
  272. }
  273. // 12. Create a new subpath:
  274. auto transform = active_transform();
  275. bool large_arc = false;
  276. bool sweep = true;
  277. // 12.1. Move to the point (x + upperLeft["x"], y).
  278. m_path.move_to(transform.map(Gfx::FloatPoint { x + upper_left.x, y }));
  279. // 12.2. Draw a straight line to the point (x + w − upperRight["x"], y).
  280. m_path.line_to(transform.map(Gfx::FloatPoint { x + w - upper_right.x, y }));
  281. // 12.3. Draw an arc to the point (x + w, y + upperRight["y"]).
  282. m_path.elliptical_arc_to(transform.map(Gfx::FloatPoint { x + w, y + upper_right.y }), { upper_right.x, upper_right.y }, transform.rotation(), large_arc, sweep);
  283. // 12.4. Draw a straight line to the point (x + w, y + h − lowerRight["y"]).
  284. m_path.line_to(transform.map(Gfx::FloatPoint { x + w, y + h - lower_right.y }));
  285. // 12.5. Draw an arc to the point (x + w − lowerRight["x"], y + h).
  286. m_path.elliptical_arc_to(transform.map(Gfx::FloatPoint { x + w - lower_right.x, y + h }), { lower_right.x, lower_right.y }, transform.rotation(), large_arc, sweep);
  287. // 12.6. Draw a straight line to the point (x + lowerLeft["x"], y + h).
  288. m_path.line_to(transform.map(Gfx::FloatPoint { x + lower_left.x, y + h }));
  289. // 12.7. Draw an arc to the point (x, y + h − lowerLeft["y"]).
  290. m_path.elliptical_arc_to(transform.map(Gfx::FloatPoint { x, y + h - lower_left.y }), { lower_left.x, lower_left.y }, transform.rotation(), large_arc, sweep);
  291. // 12.8. Draw a straight line to the point (x, y + upperLeft["y"]).
  292. m_path.line_to(transform.map(Gfx::FloatPoint { x, y + upper_left.y }));
  293. // 12.9. Draw an arc to the point (x + upperLeft["x"], y).
  294. m_path.elliptical_arc_to(transform.map(Gfx::FloatPoint { x + upper_left.x, y }), { upper_left.x, upper_left.y }, transform.rotation(), large_arc, sweep);
  295. // 13. Mark the subpath as closed.
  296. m_path.close();
  297. // 14. Create a new subpath with the point (x, y) as the only point in the subpath.
  298. m_path.move_to(transform.map(Gfx::FloatPoint { x, y }));
  299. return {};
  300. }
  301. }