MemoryManager.cpp 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Assertions.h>
  7. #include <AK/Memory.h>
  8. #include <AK/StringView.h>
  9. #include <Kernel/BootInfo.h>
  10. #include <Kernel/CMOS.h>
  11. #include <Kernel/FileSystem/Inode.h>
  12. #include <Kernel/Heap/kmalloc.h>
  13. #include <Kernel/Memory/AnonymousVMObject.h>
  14. #include <Kernel/Memory/MemoryManager.h>
  15. #include <Kernel/Memory/PageDirectory.h>
  16. #include <Kernel/Memory/PhysicalRegion.h>
  17. #include <Kernel/Memory/SharedInodeVMObject.h>
  18. #include <Kernel/Multiboot.h>
  19. #include <Kernel/Panic.h>
  20. #include <Kernel/Process.h>
  21. #include <Kernel/Sections.h>
  22. #include <Kernel/StdLib.h>
  23. extern u8 start_of_kernel_image[];
  24. extern u8 end_of_kernel_image[];
  25. extern u8 start_of_kernel_text[];
  26. extern u8 start_of_kernel_data[];
  27. extern u8 end_of_kernel_bss[];
  28. extern u8 start_of_ro_after_init[];
  29. extern u8 end_of_ro_after_init[];
  30. extern u8 start_of_unmap_after_init[];
  31. extern u8 end_of_unmap_after_init[];
  32. extern u8 start_of_kernel_ksyms[];
  33. extern u8 end_of_kernel_ksyms[];
  34. extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  35. extern size_t multiboot_copy_boot_modules_count;
  36. // Treat the super pages as logically separate from .bss
  37. // FIXME: Find a solution so we don't need to expand this range each time
  38. // we are in a situation too many drivers try to allocate super pages.
  39. __attribute__((section(".super_pages"))) static u8 super_pages[4 * MiB];
  40. namespace Kernel::Memory {
  41. // NOTE: We can NOT use Singleton for this class, because
  42. // MemoryManager::initialize is called *before* global constructors are
  43. // run. If we do, then Singleton would get re-initialized, causing
  44. // the memory manager to be initialized twice!
  45. static MemoryManager* s_the;
  46. RecursiveSpinlock s_mm_lock { LockRank::MemoryManager };
  47. MemoryManager& MemoryManager::the()
  48. {
  49. return *s_the;
  50. }
  51. bool MemoryManager::is_initialized()
  52. {
  53. return s_the != nullptr;
  54. }
  55. UNMAP_AFTER_INIT MemoryManager::MemoryManager()
  56. {
  57. s_the = this;
  58. SpinlockLocker lock(s_mm_lock);
  59. parse_memory_map();
  60. write_cr3(kernel_page_directory().cr3());
  61. protect_kernel_image();
  62. // We're temporarily "committing" to two pages that we need to allocate below
  63. auto committed_pages = commit_user_physical_pages(2).release_value();
  64. m_shared_zero_page = committed_pages.take_one();
  65. // We're wasting a page here, we just need a special tag (physical
  66. // address) so that we know when we need to lazily allocate a page
  67. // that we should be drawing this page from the committed pool rather
  68. // than potentially failing if no pages are available anymore.
  69. // By using a tag we don't have to query the VMObject for every page
  70. // whether it was committed or not
  71. m_lazy_committed_page = committed_pages.take_one();
  72. }
  73. UNMAP_AFTER_INIT MemoryManager::~MemoryManager()
  74. {
  75. }
  76. UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image()
  77. {
  78. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  79. // Disable writing to the kernel text and rodata segments.
  80. for (auto i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) {
  81. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  82. pte.set_writable(false);
  83. }
  84. if (Processor::current().has_feature(CPUFeature::NX)) {
  85. // Disable execution of the kernel data, bss and heap segments.
  86. for (auto i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) {
  87. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  88. pte.set_execute_disabled(true);
  89. }
  90. }
  91. }
  92. UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory()
  93. {
  94. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  95. SpinlockLocker mm_lock(s_mm_lock);
  96. // Disable writing to the .ro_after_init section
  97. for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) {
  98. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  99. pte.set_writable(false);
  100. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  101. }
  102. }
  103. void MemoryManager::unmap_text_after_init()
  104. {
  105. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  106. SpinlockLocker mm_lock(s_mm_lock);
  107. auto start = page_round_down((FlatPtr)&start_of_unmap_after_init);
  108. auto end = page_round_up((FlatPtr)&end_of_unmap_after_init);
  109. // Unmap the entire .unmap_after_init section
  110. for (auto i = start; i < end; i += PAGE_SIZE) {
  111. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  112. pte.clear();
  113. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  114. }
  115. dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB);
  116. }
  117. void MemoryManager::unmap_ksyms_after_init()
  118. {
  119. SpinlockLocker mm_lock(s_mm_lock);
  120. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  121. auto start = page_round_down((FlatPtr)start_of_kernel_ksyms);
  122. auto end = page_round_up((FlatPtr)end_of_kernel_ksyms);
  123. // Unmap the entire .ksyms section
  124. for (auto i = start; i < end; i += PAGE_SIZE) {
  125. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  126. pte.clear();
  127. flush_tlb(&kernel_page_directory(), VirtualAddress(i));
  128. }
  129. dmesgln("Unmapped {} KiB of kernel symbols after init! :^)", (end - start) / KiB);
  130. }
  131. UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges()
  132. {
  133. VERIFY(!m_physical_memory_ranges.is_empty());
  134. ContiguousReservedMemoryRange range;
  135. for (auto& current_range : m_physical_memory_ranges) {
  136. if (current_range.type != PhysicalMemoryRangeType::Reserved) {
  137. if (range.start.is_null())
  138. continue;
  139. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() });
  140. range.start.set((FlatPtr) nullptr);
  141. continue;
  142. }
  143. if (!range.start.is_null()) {
  144. continue;
  145. }
  146. range.start = current_range.start;
  147. }
  148. if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved)
  149. return;
  150. if (range.start.is_null())
  151. return;
  152. m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() });
  153. }
  154. bool MemoryManager::is_allowed_to_mmap_to_userspace(PhysicalAddress start_address, VirtualRange const& range) const
  155. {
  156. VERIFY(!m_reserved_memory_ranges.is_empty());
  157. for (auto& current_range : m_reserved_memory_ranges) {
  158. if (!(current_range.start <= start_address))
  159. continue;
  160. if (!(current_range.start.offset(current_range.length) > start_address))
  161. continue;
  162. if (current_range.length < range.size())
  163. return false;
  164. return true;
  165. }
  166. return false;
  167. }
  168. UNMAP_AFTER_INIT void MemoryManager::parse_memory_map()
  169. {
  170. // Register used memory regions that we know of.
  171. m_used_memory_ranges.ensure_capacity(4);
  172. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) });
  173. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Prekernel, start_of_prekernel_image, end_of_prekernel_image });
  174. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image))) });
  175. if (multiboot_flags & 0x4) {
  176. auto* bootmods_start = multiboot_copy_boot_modules_array;
  177. auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count;
  178. for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) {
  179. m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) });
  180. }
  181. }
  182. auto* mmap_begin = multiboot_memory_map;
  183. auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count;
  184. struct ContiguousPhysicalVirtualRange {
  185. PhysicalAddress lower;
  186. PhysicalAddress upper;
  187. };
  188. Vector<ContiguousPhysicalVirtualRange> contiguous_physical_ranges;
  189. for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) {
  190. // We have to copy these onto the stack, because we take a reference to these when printing them out,
  191. // and doing so on a packed struct field is UB.
  192. auto address = mmap->addr;
  193. auto length = mmap->len;
  194. ArmedScopeGuard write_back_guard = [&]() {
  195. mmap->addr = address;
  196. mmap->len = length;
  197. };
  198. dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", address, length, mmap->type);
  199. auto start_address = PhysicalAddress(address);
  200. switch (mmap->type) {
  201. case (MULTIBOOT_MEMORY_AVAILABLE):
  202. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length });
  203. break;
  204. case (MULTIBOOT_MEMORY_RESERVED):
  205. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length });
  206. break;
  207. case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE):
  208. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length });
  209. break;
  210. case (MULTIBOOT_MEMORY_NVS):
  211. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length });
  212. break;
  213. case (MULTIBOOT_MEMORY_BADRAM):
  214. dmesgln("MM: Warning, detected bad memory range!");
  215. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length });
  216. break;
  217. default:
  218. dbgln("MM: Unknown range!");
  219. m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length });
  220. break;
  221. }
  222. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  223. continue;
  224. // Fix up unaligned memory regions.
  225. auto diff = (FlatPtr)address % PAGE_SIZE;
  226. if (diff != 0) {
  227. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", address, diff);
  228. diff = PAGE_SIZE - diff;
  229. address += diff;
  230. length -= diff;
  231. }
  232. if ((length % PAGE_SIZE) != 0) {
  233. dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", length, length % PAGE_SIZE);
  234. length -= length % PAGE_SIZE;
  235. }
  236. if (length < PAGE_SIZE) {
  237. dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, length);
  238. continue;
  239. }
  240. for (PhysicalSize page_base = address; page_base <= (address + length); page_base += PAGE_SIZE) {
  241. auto addr = PhysicalAddress(page_base);
  242. // Skip used memory ranges.
  243. bool should_skip = false;
  244. for (auto& used_range : m_used_memory_ranges) {
  245. if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
  246. should_skip = true;
  247. break;
  248. }
  249. }
  250. if (should_skip)
  251. continue;
  252. if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) {
  253. contiguous_physical_ranges.append(ContiguousPhysicalVirtualRange {
  254. .lower = addr,
  255. .upper = addr,
  256. });
  257. } else {
  258. contiguous_physical_ranges.last().upper = addr;
  259. }
  260. }
  261. }
  262. for (auto& range : contiguous_physical_ranges) {
  263. m_user_physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull());
  264. }
  265. // Super pages are guaranteed to be in the first 16MB of physical memory
  266. VERIFY(virtual_to_low_physical((FlatPtr)super_pages) + sizeof(super_pages) < 0x1000000);
  267. // Append statically-allocated super physical physical_region.
  268. m_super_physical_region = PhysicalRegion::try_create(
  269. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))),
  270. PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages)))));
  271. VERIFY(m_super_physical_region);
  272. m_system_memory_info.super_physical_pages += m_super_physical_region->size();
  273. for (auto& region : m_user_physical_regions)
  274. m_system_memory_info.user_physical_pages += region.size();
  275. register_reserved_ranges();
  276. for (auto& range : m_reserved_memory_ranges) {
  277. dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length);
  278. }
  279. initialize_physical_pages();
  280. VERIFY(m_system_memory_info.super_physical_pages > 0);
  281. VERIFY(m_system_memory_info.user_physical_pages > 0);
  282. // We start out with no committed pages
  283. m_system_memory_info.user_physical_pages_uncommitted = m_system_memory_info.user_physical_pages;
  284. for (auto& used_range : m_used_memory_ranges) {
  285. dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr());
  286. }
  287. dmesgln("MM: Super physical region: {} - {} (size {:#x})", m_super_physical_region->lower(), m_super_physical_region->upper().offset(-1), PAGE_SIZE * m_super_physical_region->size());
  288. m_super_physical_region->initialize_zones();
  289. for (auto& region : m_user_physical_regions) {
  290. dmesgln("MM: User physical region: {} - {} (size {:#x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size());
  291. region.initialize_zones();
  292. }
  293. }
  294. UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages()
  295. {
  296. // We assume that the physical page range is contiguous and doesn't contain huge gaps!
  297. PhysicalAddress highest_physical_address;
  298. for (auto& range : m_used_memory_ranges) {
  299. if (range.end.get() > highest_physical_address.get())
  300. highest_physical_address = range.end;
  301. }
  302. for (auto& region : m_physical_memory_ranges) {
  303. auto range_end = PhysicalAddress(region.start).offset(region.length);
  304. if (range_end.get() > highest_physical_address.get())
  305. highest_physical_address = range_end;
  306. }
  307. // Calculate how many total physical pages the array will have
  308. m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1;
  309. VERIFY(m_physical_page_entries_count != 0);
  310. VERIFY(!Checked<decltype(m_physical_page_entries_count)>::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry)));
  311. // Calculate how many bytes the array will consume
  312. auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry);
  313. auto physical_page_array_pages = page_round_up(physical_page_array_size) / PAGE_SIZE;
  314. VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size);
  315. // Calculate how many page tables we will need to be able to map them all
  316. auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512;
  317. auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count;
  318. // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it
  319. PhysicalRegion* found_region { nullptr };
  320. Optional<size_t> found_region_index;
  321. for (size_t i = 0; i < m_user_physical_regions.size(); ++i) {
  322. auto& region = m_user_physical_regions[i];
  323. if (region.size() >= physical_page_array_pages_and_page_tables_count) {
  324. found_region = &region;
  325. found_region_index = i;
  326. break;
  327. }
  328. }
  329. if (!found_region) {
  330. dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count);
  331. VERIFY_NOT_REACHED();
  332. }
  333. VERIFY(m_system_memory_info.user_physical_pages >= physical_page_array_pages_and_page_tables_count);
  334. m_system_memory_info.user_physical_pages -= physical_page_array_pages_and_page_tables_count;
  335. if (found_region->size() == physical_page_array_pages_and_page_tables_count) {
  336. // We're stealing the entire region
  337. m_physical_pages_region = m_user_physical_regions.take(*found_region_index);
  338. } else {
  339. m_physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count);
  340. }
  341. m_used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, m_physical_pages_region->lower(), m_physical_pages_region->upper() });
  342. // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators!
  343. m_kernel_page_directory = PageDirectory::must_create_kernel_page_directory();
  344. // Allocate a virtual address range for our array
  345. auto range_or_error = m_kernel_page_directory->range_allocator().try_allocate_anywhere(physical_page_array_pages * PAGE_SIZE);
  346. if (range_or_error.is_error()) {
  347. dmesgln("MM: Could not allocate {} bytes to map physical page array!", physical_page_array_pages * PAGE_SIZE);
  348. VERIFY_NOT_REACHED();
  349. }
  350. auto range = range_or_error.release_value();
  351. // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array
  352. // try to map the entire region into kernel space so we always have it
  353. // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array
  354. // mapped yet so we can't create them
  355. SpinlockLocker lock(s_mm_lock);
  356. // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array
  357. auto page_tables_base = m_physical_pages_region->lower();
  358. auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE);
  359. auto physical_page_array_current_page = physical_page_array_base.get();
  360. auto virtual_page_array_base = range.base().get();
  361. auto virtual_page_array_current_page = virtual_page_array_base;
  362. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  363. auto virtual_page_base_for_this_pt = virtual_page_array_current_page;
  364. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  365. auto* pt = reinterpret_cast<PageTableEntry*>(quickmap_page(pt_paddr));
  366. __builtin_memset(pt, 0, PAGE_SIZE);
  367. for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) {
  368. auto& pte = pt[pte_index];
  369. pte.set_physical_page_base(physical_page_array_current_page);
  370. pte.set_user_allowed(false);
  371. pte.set_writable(true);
  372. if (Processor::current().has_feature(CPUFeature::NX))
  373. pte.set_execute_disabled(false);
  374. pte.set_global(true);
  375. pte.set_present(true);
  376. physical_page_array_current_page += PAGE_SIZE;
  377. virtual_page_array_current_page += PAGE_SIZE;
  378. }
  379. unquickmap_page();
  380. // Hook the page table into the kernel page directory
  381. u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff;
  382. auto* pd = reinterpret_cast<PageDirectoryEntry*>(quickmap_page(boot_pd_kernel));
  383. PageDirectoryEntry& pde = pd[page_directory_index];
  384. VERIFY(!pde.is_present()); // Nothing should be using this PD yet
  385. // We can't use ensure_pte quite yet!
  386. pde.set_page_table_base(pt_paddr.get());
  387. pde.set_user_allowed(false);
  388. pde.set_present(true);
  389. pde.set_writable(true);
  390. pde.set_global(true);
  391. unquickmap_page();
  392. flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt));
  393. }
  394. // We now have the entire PhysicalPageEntry array mapped!
  395. m_physical_page_entries = (PhysicalPageEntry*)range.base().get();
  396. for (size_t i = 0; i < m_physical_page_entries_count; i++)
  397. new (&m_physical_page_entries[i]) PageTableEntry();
  398. // Now we should be able to allocate PhysicalPage instances,
  399. // so finish setting up the kernel page directory
  400. m_kernel_page_directory->allocate_kernel_directory();
  401. // Now create legit PhysicalPage objects for the page tables we created, so that
  402. // we can put them into kernel_page_directory().m_page_tables
  403. auto& kernel_page_tables = kernel_page_directory().m_page_tables;
  404. virtual_page_array_current_page = virtual_page_array_base;
  405. for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) {
  406. VERIFY(virtual_page_array_current_page <= range.end().get());
  407. auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE);
  408. auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get());
  409. auto& physical_page_entry = m_physical_page_entries[physical_page_index];
  410. auto physical_page = adopt_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No));
  411. auto result = kernel_page_tables.set(virtual_page_array_current_page & ~0x1fffff, move(physical_page));
  412. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  413. virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE;
  414. }
  415. dmesgln("MM: Physical page entries: {}", range);
  416. }
  417. PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address)
  418. {
  419. VERIFY(m_physical_page_entries);
  420. auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get());
  421. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  422. return m_physical_page_entries[physical_page_entry_index];
  423. }
  424. PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page)
  425. {
  426. PhysicalPageEntry const& physical_page_entry = *reinterpret_cast<PhysicalPageEntry const*>((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page));
  427. VERIFY(m_physical_page_entries);
  428. size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries;
  429. VERIFY(physical_page_entry_index < m_physical_page_entries_count);
  430. return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE);
  431. }
  432. PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr)
  433. {
  434. VERIFY_INTERRUPTS_DISABLED();
  435. VERIFY(s_mm_lock.is_locked_by_current_processor());
  436. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  437. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  438. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  439. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  440. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  441. PageDirectoryEntry const& pde = pd[page_directory_index];
  442. if (!pde.is_present())
  443. return nullptr;
  444. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  445. }
  446. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  447. {
  448. VERIFY_INTERRUPTS_DISABLED();
  449. VERIFY(s_mm_lock.is_locked_by_current_processor());
  450. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  451. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  452. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  453. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  454. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  455. PageDirectoryEntry& pde = pd[page_directory_index];
  456. if (!pde.is_present()) {
  457. bool did_purge = false;
  458. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
  459. if (!page_table) {
  460. dbgln("MM: Unable to allocate page table to map {}", vaddr);
  461. return nullptr;
  462. }
  463. if (did_purge) {
  464. // If any memory had to be purged, ensure_pte may have been called as part
  465. // of the purging process. So we need to re-map the pd in this case to ensure
  466. // we're writing to the correct underlying physical page
  467. pd = quickmap_pd(page_directory, page_directory_table_index);
  468. VERIFY(&pde == &pd[page_directory_index]); // Sanity check
  469. VERIFY(!pde.is_present()); // Should have not changed
  470. }
  471. pde.set_page_table_base(page_table->paddr().get());
  472. pde.set_user_allowed(true);
  473. pde.set_present(true);
  474. pde.set_writable(true);
  475. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  476. // Use page_directory_table_index and page_directory_index as key
  477. // This allows us to release the page table entry when no longer needed
  478. auto result = page_directory.m_page_tables.set(vaddr.get() & ~(FlatPtr)0x1fffff, page_table.release_nonnull());
  479. // If you're hitting this VERIFY on x86_64 chances are a 64-bit pointer was truncated somewhere
  480. VERIFY(result == AK::HashSetResult::InsertedNewEntry);
  481. }
  482. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  483. }
  484. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
  485. {
  486. VERIFY_INTERRUPTS_DISABLED();
  487. VERIFY(s_mm_lock.is_locked_by_current_processor());
  488. VERIFY(page_directory.get_lock().is_locked_by_current_processor());
  489. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff;
  490. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  491. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  492. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  493. PageDirectoryEntry& pde = pd[page_directory_index];
  494. if (pde.is_present()) {
  495. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  496. auto& pte = page_table[page_table_index];
  497. pte.clear();
  498. if (is_last_release || page_table_index == 0x1ff) {
  499. // If this is the last PTE in a region or the last PTE in a page table then
  500. // check if we can also release the page table
  501. bool all_clear = true;
  502. for (u32 i = 0; i <= 0x1ff; i++) {
  503. if (!page_table[i].is_null()) {
  504. all_clear = false;
  505. break;
  506. }
  507. }
  508. if (all_clear) {
  509. pde.clear();
  510. auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
  511. VERIFY(result);
  512. }
  513. }
  514. }
  515. }
  516. UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu)
  517. {
  518. ProcessorSpecific<MemoryManagerData>::initialize();
  519. if (cpu == 0) {
  520. new MemoryManager;
  521. kmalloc_enable_expand();
  522. }
  523. }
  524. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  525. {
  526. SpinlockLocker lock(s_mm_lock);
  527. for (auto& region : MM.m_kernel_regions) {
  528. if (region.contains(vaddr))
  529. return &region;
  530. }
  531. return nullptr;
  532. }
  533. Region* MemoryManager::find_user_region_from_vaddr_no_lock(AddressSpace& space, VirtualAddress vaddr)
  534. {
  535. VERIFY(space.get_lock().is_locked_by_current_processor());
  536. return space.find_region_containing({ vaddr, 1 });
  537. }
  538. Region* MemoryManager::find_user_region_from_vaddr(AddressSpace& space, VirtualAddress vaddr)
  539. {
  540. SpinlockLocker lock(space.get_lock());
  541. return find_user_region_from_vaddr_no_lock(space, vaddr);
  542. }
  543. void MemoryManager::validate_syscall_preconditions(AddressSpace& space, RegisterState const& regs)
  544. {
  545. // We take the space lock once here and then use the no_lock variants
  546. // to avoid excessive spinlock recursion in this extemely common path.
  547. SpinlockLocker lock(space.get_lock());
  548. auto unlock_and_handle_crash = [&lock, &regs](const char* description, int signal) {
  549. lock.unlock();
  550. handle_crash(regs, description, signal);
  551. };
  552. {
  553. VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() };
  554. if (!MM.validate_user_stack_no_lock(space, userspace_sp)) {
  555. dbgln("Invalid stack pointer: {}", userspace_sp);
  556. unlock_and_handle_crash("Bad stack on syscall entry", SIGSTKFLT);
  557. }
  558. }
  559. {
  560. VirtualAddress ip = VirtualAddress { regs.ip() };
  561. auto* calling_region = MM.find_user_region_from_vaddr_no_lock(space, ip);
  562. if (!calling_region) {
  563. dbgln("Syscall from {:p} which has no associated region", ip);
  564. unlock_and_handle_crash("Syscall from unknown region", SIGSEGV);
  565. }
  566. if (calling_region->is_writable()) {
  567. dbgln("Syscall from writable memory at {:p}", ip);
  568. unlock_and_handle_crash("Syscall from writable memory", SIGSEGV);
  569. }
  570. if (space.enforces_syscall_regions() && !calling_region->is_syscall_region()) {
  571. dbgln("Syscall from non-syscall region");
  572. unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV);
  573. }
  574. }
  575. }
  576. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  577. {
  578. if (auto* region = kernel_region_from_vaddr(vaddr))
  579. return region;
  580. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  581. if (!page_directory)
  582. return nullptr;
  583. VERIFY(page_directory->address_space());
  584. return find_user_region_from_vaddr(*page_directory->address_space(), vaddr);
  585. }
  586. PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault)
  587. {
  588. VERIFY_INTERRUPTS_DISABLED();
  589. if (Processor::current_in_irq()) {
  590. dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}",
  591. Processor::current_id(), fault.code(), fault.vaddr(), Processor::current_in_irq());
  592. dump_kernel_regions();
  593. return PageFaultResponse::ShouldCrash;
  594. }
  595. dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current_id(), fault.code(), fault.vaddr());
  596. auto* region = find_region_from_vaddr(fault.vaddr());
  597. if (!region) {
  598. return PageFaultResponse::ShouldCrash;
  599. }
  600. return region->handle_fault(fault);
  601. }
  602. KResultOr<NonnullOwnPtr<Region>> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  603. {
  604. VERIFY(!(size % PAGE_SIZE));
  605. SpinlockLocker lock(kernel_page_directory().get_lock());
  606. auto vmobject = TRY(AnonymousVMObject::try_create_physically_contiguous_with_size(size));
  607. auto range = TRY(kernel_page_directory().range_allocator().try_allocate_anywhere(size));
  608. return allocate_kernel_region_with_vmobject(range, move(vmobject), name, access, cacheable);
  609. }
  610. KResultOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable)
  611. {
  612. VERIFY(!(size % PAGE_SIZE));
  613. auto vmobject = TRY(AnonymousVMObject::try_create_with_size(size, strategy));
  614. SpinlockLocker lock(kernel_page_directory().get_lock());
  615. auto range = TRY(kernel_page_directory().range_allocator().try_allocate_anywhere(size));
  616. return allocate_kernel_region_with_vmobject(range, move(vmobject), name, access, cacheable);
  617. }
  618. KResultOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  619. {
  620. VERIFY(!(size % PAGE_SIZE));
  621. auto vmobject = TRY(AnonymousVMObject::try_create_for_physical_range(paddr, size));
  622. SpinlockLocker lock(kernel_page_directory().get_lock());
  623. auto range = TRY(kernel_page_directory().range_allocator().try_allocate_anywhere(size));
  624. return allocate_kernel_region_with_vmobject(range, move(vmobject), name, access, cacheable);
  625. }
  626. KResultOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VirtualRange const& range, VMObject& vmobject, StringView name, Region::Access access, Region::Cacheable cacheable)
  627. {
  628. OwnPtr<KString> name_kstring;
  629. if (!name.is_null())
  630. name_kstring = TRY(KString::try_create(name));
  631. auto region = TRY(Region::try_create_kernel_only(range, vmobject, 0, move(name_kstring), access, cacheable));
  632. TRY(region->map(kernel_page_directory()));
  633. return region;
  634. }
  635. KResultOr<NonnullOwnPtr<Region>> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable)
  636. {
  637. VERIFY(!(size % PAGE_SIZE));
  638. SpinlockLocker lock(kernel_page_directory().get_lock());
  639. auto range = TRY(kernel_page_directory().range_allocator().try_allocate_anywhere(size));
  640. return allocate_kernel_region_with_vmobject(range, vmobject, name, access, cacheable);
  641. }
  642. KResultOr<CommittedPhysicalPageSet> MemoryManager::commit_user_physical_pages(size_t page_count)
  643. {
  644. VERIFY(page_count > 0);
  645. SpinlockLocker lock(s_mm_lock);
  646. if (m_system_memory_info.user_physical_pages_uncommitted < page_count)
  647. return ENOMEM;
  648. m_system_memory_info.user_physical_pages_uncommitted -= page_count;
  649. m_system_memory_info.user_physical_pages_committed += page_count;
  650. return CommittedPhysicalPageSet { {}, page_count };
  651. }
  652. void MemoryManager::uncommit_user_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count)
  653. {
  654. VERIFY(page_count > 0);
  655. SpinlockLocker lock(s_mm_lock);
  656. VERIFY(m_system_memory_info.user_physical_pages_committed >= page_count);
  657. m_system_memory_info.user_physical_pages_uncommitted += page_count;
  658. m_system_memory_info.user_physical_pages_committed -= page_count;
  659. }
  660. void MemoryManager::deallocate_physical_page(PhysicalAddress paddr)
  661. {
  662. SpinlockLocker lock(s_mm_lock);
  663. // Are we returning a user page?
  664. for (auto& region : m_user_physical_regions) {
  665. if (!region.contains(paddr))
  666. continue;
  667. region.return_page(paddr);
  668. --m_system_memory_info.user_physical_pages_used;
  669. // Always return pages to the uncommitted pool. Pages that were
  670. // committed and allocated are only freed upon request. Once
  671. // returned there is no guarantee being able to get them back.
  672. ++m_system_memory_info.user_physical_pages_uncommitted;
  673. return;
  674. }
  675. // If it's not a user page, it should be a supervisor page.
  676. if (!m_super_physical_region->contains(paddr))
  677. PANIC("MM: deallocate_user_physical_page couldn't figure out region for page @ {}", paddr);
  678. m_super_physical_region->return_page(paddr);
  679. --m_system_memory_info.super_physical_pages_used;
  680. }
  681. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page(bool committed)
  682. {
  683. VERIFY(s_mm_lock.is_locked());
  684. RefPtr<PhysicalPage> page;
  685. if (committed) {
  686. // Draw from the committed pages pool. We should always have these pages available
  687. VERIFY(m_system_memory_info.user_physical_pages_committed > 0);
  688. m_system_memory_info.user_physical_pages_committed--;
  689. } else {
  690. // We need to make sure we don't touch pages that we have committed to
  691. if (m_system_memory_info.user_physical_pages_uncommitted == 0)
  692. return {};
  693. m_system_memory_info.user_physical_pages_uncommitted--;
  694. }
  695. for (auto& region : m_user_physical_regions) {
  696. page = region.take_free_page();
  697. if (!page.is_null()) {
  698. ++m_system_memory_info.user_physical_pages_used;
  699. break;
  700. }
  701. }
  702. VERIFY(!committed || !page.is_null());
  703. return page;
  704. }
  705. NonnullRefPtr<PhysicalPage> MemoryManager::allocate_committed_user_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill should_zero_fill)
  706. {
  707. SpinlockLocker lock(s_mm_lock);
  708. auto page = find_free_user_physical_page(true);
  709. if (should_zero_fill == ShouldZeroFill::Yes) {
  710. auto* ptr = quickmap_page(*page);
  711. memset(ptr, 0, PAGE_SIZE);
  712. unquickmap_page();
  713. }
  714. return page.release_nonnull();
  715. }
  716. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  717. {
  718. SpinlockLocker lock(s_mm_lock);
  719. auto page = find_free_user_physical_page(false);
  720. bool purged_pages = false;
  721. if (!page) {
  722. // We didn't have a single free physical page. Let's try to free something up!
  723. // First, we look for a purgeable VMObject in the volatile state.
  724. for_each_vmobject([&](auto& vmobject) {
  725. if (!vmobject.is_anonymous())
  726. return IterationDecision::Continue;
  727. auto& anonymous_vmobject = static_cast<AnonymousVMObject&>(vmobject);
  728. if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile())
  729. return IterationDecision::Continue;
  730. if (auto purged_page_count = anonymous_vmobject.purge()) {
  731. dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count);
  732. page = find_free_user_physical_page(false);
  733. purged_pages = true;
  734. VERIFY(page);
  735. return IterationDecision::Break;
  736. }
  737. return IterationDecision::Continue;
  738. });
  739. if (!page) {
  740. dmesgln("MM: no user physical pages available");
  741. return {};
  742. }
  743. }
  744. if (should_zero_fill == ShouldZeroFill::Yes) {
  745. auto* ptr = quickmap_page(*page);
  746. memset(ptr, 0, PAGE_SIZE);
  747. unquickmap_page();
  748. }
  749. if (did_purge)
  750. *did_purge = purged_pages;
  751. return page;
  752. }
  753. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  754. {
  755. VERIFY(!(size % PAGE_SIZE));
  756. SpinlockLocker lock(s_mm_lock);
  757. size_t count = ceil_div(size, static_cast<size_t>(PAGE_SIZE));
  758. auto physical_pages = m_super_physical_region->take_contiguous_free_pages(count);
  759. if (physical_pages.is_empty()) {
  760. dmesgln("MM: no super physical pages available");
  761. VERIFY_NOT_REACHED();
  762. return {};
  763. }
  764. {
  765. auto region_or_error = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  766. if (region_or_error.is_error())
  767. TODO();
  768. auto cleanup_region = region_or_error.release_value();
  769. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  770. }
  771. m_system_memory_info.super_physical_pages_used += count;
  772. return physical_pages;
  773. }
  774. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  775. {
  776. SpinlockLocker lock(s_mm_lock);
  777. auto page = m_super_physical_region->take_free_page();
  778. if (!page) {
  779. dmesgln("MM: no super physical pages available");
  780. VERIFY_NOT_REACHED();
  781. return {};
  782. }
  783. fast_u32_fill((u32*)page->paddr().offset(physical_to_virtual_offset).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  784. ++m_system_memory_info.super_physical_pages_used;
  785. return page;
  786. }
  787. void MemoryManager::enter_process_address_space(Process& process)
  788. {
  789. enter_address_space(process.address_space());
  790. }
  791. void MemoryManager::enter_address_space(AddressSpace& space)
  792. {
  793. auto current_thread = Thread::current();
  794. VERIFY(current_thread != nullptr);
  795. SpinlockLocker lock(s_mm_lock);
  796. current_thread->regs().cr3 = space.page_directory().cr3();
  797. write_cr3(space.page_directory().cr3());
  798. }
  799. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  800. {
  801. Processor::flush_tlb_local(vaddr, page_count);
  802. }
  803. void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
  804. {
  805. Processor::flush_tlb(page_directory, vaddr, page_count);
  806. }
  807. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  808. {
  809. VERIFY(s_mm_lock.is_locked_by_current_processor());
  810. auto& mm_data = get_data();
  811. auto& pte = boot_pd_kernel_pt1023[(KERNEL_QUICKMAP_PD - KERNEL_PT1024_BASE) / PAGE_SIZE];
  812. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  813. if (pte.physical_page_base() != pd_paddr.get()) {
  814. pte.set_physical_page_base(pd_paddr.get());
  815. pte.set_present(true);
  816. pte.set_writable(true);
  817. pte.set_user_allowed(false);
  818. // Because we must continue to hold the MM lock while we use this
  819. // mapping, it is sufficient to only flush on the current CPU. Other
  820. // CPUs trying to use this API must wait on the MM lock anyway
  821. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  822. } else {
  823. // Even though we don't allow this to be called concurrently, it's
  824. // possible that this PD was mapped on a different CPU and we don't
  825. // broadcast the flush. If so, we still need to flush the TLB.
  826. if (mm_data.m_last_quickmap_pd != pd_paddr)
  827. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD));
  828. }
  829. mm_data.m_last_quickmap_pd = pd_paddr;
  830. return (PageDirectoryEntry*)KERNEL_QUICKMAP_PD;
  831. }
  832. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  833. {
  834. VERIFY(s_mm_lock.is_locked_by_current_processor());
  835. auto& mm_data = get_data();
  836. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[(KERNEL_QUICKMAP_PT - KERNEL_PT1024_BASE) / PAGE_SIZE];
  837. if (pte.physical_page_base() != pt_paddr.get()) {
  838. pte.set_physical_page_base(pt_paddr.get());
  839. pte.set_present(true);
  840. pte.set_writable(true);
  841. pte.set_user_allowed(false);
  842. // Because we must continue to hold the MM lock while we use this
  843. // mapping, it is sufficient to only flush on the current CPU. Other
  844. // CPUs trying to use this API must wait on the MM lock anyway
  845. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  846. } else {
  847. // Even though we don't allow this to be called concurrently, it's
  848. // possible that this PT was mapped on a different CPU and we don't
  849. // broadcast the flush. If so, we still need to flush the TLB.
  850. if (mm_data.m_last_quickmap_pt != pt_paddr)
  851. flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT));
  852. }
  853. mm_data.m_last_quickmap_pt = pt_paddr;
  854. return (PageTableEntry*)KERNEL_QUICKMAP_PT;
  855. }
  856. u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address)
  857. {
  858. VERIFY_INTERRUPTS_DISABLED();
  859. VERIFY(s_mm_lock.is_locked_by_current_processor());
  860. auto& mm_data = get_data();
  861. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  862. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  863. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  864. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  865. if (pte.physical_page_base() != physical_address.get()) {
  866. pte.set_physical_page_base(physical_address.get());
  867. pte.set_present(true);
  868. pte.set_writable(true);
  869. pte.set_user_allowed(false);
  870. flush_tlb_local(vaddr);
  871. }
  872. return vaddr.as_ptr();
  873. }
  874. void MemoryManager::unquickmap_page()
  875. {
  876. VERIFY_INTERRUPTS_DISABLED();
  877. VERIFY(s_mm_lock.is_locked_by_current_processor());
  878. auto& mm_data = get_data();
  879. VERIFY(mm_data.m_quickmap_in_use.is_locked());
  880. VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE);
  881. u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE;
  882. auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx];
  883. pte.clear();
  884. flush_tlb_local(vaddr);
  885. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  886. }
  887. bool MemoryManager::validate_user_stack_no_lock(AddressSpace& space, VirtualAddress vaddr) const
  888. {
  889. VERIFY(space.get_lock().is_locked_by_current_processor());
  890. if (!is_user_address(vaddr))
  891. return false;
  892. auto* region = find_user_region_from_vaddr_no_lock(space, vaddr);
  893. return region && region->is_user() && region->is_stack();
  894. }
  895. bool MemoryManager::validate_user_stack(AddressSpace& space, VirtualAddress vaddr) const
  896. {
  897. SpinlockLocker lock(space.get_lock());
  898. return validate_user_stack_no_lock(space, vaddr);
  899. }
  900. void MemoryManager::register_region(Region& region)
  901. {
  902. SpinlockLocker lock(s_mm_lock);
  903. if (region.is_kernel())
  904. m_kernel_regions.append(region);
  905. }
  906. void MemoryManager::unregister_region(Region& region)
  907. {
  908. SpinlockLocker lock(s_mm_lock);
  909. if (region.is_kernel())
  910. m_kernel_regions.remove(region);
  911. }
  912. void MemoryManager::dump_kernel_regions()
  913. {
  914. dbgln("Kernel regions:");
  915. #if ARCH(I386)
  916. auto addr_padding = "";
  917. #else
  918. auto addr_padding = " ";
  919. #endif
  920. dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
  921. addr_padding, addr_padding, addr_padding);
  922. SpinlockLocker lock(s_mm_lock);
  923. for (auto& region : m_kernel_regions) {
  924. dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}",
  925. region.vaddr().get(),
  926. region.vaddr().offset(region.size() - 1).get(),
  927. region.size(),
  928. region.is_readable() ? 'R' : ' ',
  929. region.is_writable() ? 'W' : ' ',
  930. region.is_executable() ? 'X' : ' ',
  931. region.is_shared() ? 'S' : ' ',
  932. region.is_stack() ? 'T' : ' ',
  933. region.is_syscall_region() ? 'C' : ' ',
  934. region.name());
  935. }
  936. }
  937. void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable)
  938. {
  939. SpinlockLocker page_lock(kernel_page_directory().get_lock());
  940. SpinlockLocker lock(s_mm_lock);
  941. auto* pte = ensure_pte(kernel_page_directory(), vaddr);
  942. VERIFY(pte);
  943. if (pte->is_writable() == writable)
  944. return;
  945. pte->set_writable(writable);
  946. flush_tlb(&kernel_page_directory(), vaddr);
  947. }
  948. CommittedPhysicalPageSet::~CommittedPhysicalPageSet()
  949. {
  950. if (m_page_count)
  951. MM.uncommit_user_physical_pages({}, m_page_count);
  952. }
  953. NonnullRefPtr<PhysicalPage> CommittedPhysicalPageSet::take_one()
  954. {
  955. VERIFY(m_page_count > 0);
  956. --m_page_count;
  957. return MM.allocate_committed_user_physical_page({}, MemoryManager::ShouldZeroFill::Yes);
  958. }
  959. void CommittedPhysicalPageSet::uncommit_one()
  960. {
  961. VERIFY(m_page_count > 0);
  962. --m_page_count;
  963. MM.uncommit_user_physical_pages({}, 1);
  964. }
  965. }