TreeParser.cpp 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792
  1. /*
  2. * Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
  3. * Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/Function.h>
  8. #include "Enums.h"
  9. #include "LookupTables.h"
  10. #include "Parser.h"
  11. #include "TreeParser.h"
  12. namespace Video::VP9 {
  13. template<typename T>
  14. ErrorOr<T> TreeParser::parse_tree(SyntaxElementType type)
  15. {
  16. auto tree_selection = select_tree(type);
  17. int value;
  18. if (tree_selection.is_single_value()) {
  19. value = tree_selection.single_value();
  20. } else {
  21. auto tree = tree_selection.tree();
  22. int n = 0;
  23. do {
  24. n = tree[n + TRY(m_decoder.m_bit_stream->read_bool(select_tree_probability(type, n >> 1)))];
  25. } while (n > 0);
  26. value = -n;
  27. }
  28. count_syntax_element(type, value);
  29. return static_cast<T>(value);
  30. }
  31. template ErrorOr<int> TreeParser::parse_tree(SyntaxElementType);
  32. template ErrorOr<bool> TreeParser::parse_tree(SyntaxElementType);
  33. template ErrorOr<u8> TreeParser::parse_tree(SyntaxElementType);
  34. template ErrorOr<u32> TreeParser::parse_tree(SyntaxElementType);
  35. template ErrorOr<PredictionMode> TreeParser::parse_tree(SyntaxElementType);
  36. template ErrorOr<TXSize> TreeParser::parse_tree(SyntaxElementType);
  37. template ErrorOr<InterpolationFilter> TreeParser::parse_tree(SyntaxElementType);
  38. template ErrorOr<ReferenceMode> TreeParser::parse_tree(SyntaxElementType);
  39. template ErrorOr<Token> TreeParser::parse_tree(SyntaxElementType);
  40. template ErrorOr<MvClass> TreeParser::parse_tree(SyntaxElementType);
  41. template ErrorOr<MvJoint> TreeParser::parse_tree(SyntaxElementType);
  42. template<typename OutputType>
  43. inline ErrorOr<OutputType> parse_tree_new(BitStream& bit_stream, TreeParser::TreeSelection tree_selection, Function<u8(u8)> const& probability_getter)
  44. {
  45. if (tree_selection.is_single_value())
  46. return static_cast<OutputType>(tree_selection.single_value());
  47. int const* tree = tree_selection.tree();
  48. int n = 0;
  49. do {
  50. u8 node = n >> 1;
  51. n = tree[n + TRY(bit_stream.read_bool(probability_getter(node)))];
  52. } while (n > 0);
  53. return static_cast<OutputType>(-n);
  54. }
  55. inline void increment_counter(u8& counter)
  56. {
  57. counter = min(static_cast<u32>(counter) + 1, 255);
  58. }
  59. ErrorOr<Partition> TreeParser::parse_partition(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, bool has_rows, bool has_columns, BlockSubsize block_subsize, u8 num_8x8, Vector<u8> const& above_partition_context, Vector<u8> const& left_partition_context, u32 row, u32 column, bool frame_is_intra)
  60. {
  61. // Tree array
  62. TreeParser::TreeSelection tree = { PartitionSplit };
  63. if (has_rows && has_columns)
  64. tree = { partition_tree };
  65. else if (has_rows)
  66. tree = { rows_partition_tree };
  67. else if (has_columns)
  68. tree = { cols_partition_tree };
  69. // Probability array
  70. u32 above = 0;
  71. u32 left = 0;
  72. auto bsl = mi_width_log2_lookup[block_subsize];
  73. auto block_offset = mi_width_log2_lookup[Block_64x64] - bsl;
  74. for (auto i = 0; i < num_8x8; i++) {
  75. above |= above_partition_context[column + i];
  76. left |= left_partition_context[row + i];
  77. }
  78. above = (above & (1 << block_offset)) > 0;
  79. left = (left & (1 << block_offset)) > 0;
  80. auto context = bsl * 4 + left * 2 + above;
  81. u8 const* probabilities = frame_is_intra ? probability_table.kf_partition_probs()[context] : probability_table.partition_probs()[context];
  82. Function<u8(u8)> probability_getter = [&](u8 node) {
  83. if (has_rows && has_columns)
  84. return probabilities[node];
  85. if (has_columns)
  86. return probabilities[1];
  87. return probabilities[2];
  88. };
  89. auto value = TRY(parse_tree_new<Partition>(bit_stream, tree, probability_getter));
  90. increment_counter(counter.m_counts_partition[context][value]);
  91. return value;
  92. }
  93. ErrorOr<PredictionMode> TreeParser::parse_default_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, BlockSubsize mi_size, Optional<Array<PredictionMode, 4> const&> above_context, Optional<Array<PredictionMode, 4> const&> left_context, PredictionMode block_sub_modes[4], u8 index_x, u8 index_y)
  94. {
  95. // FIXME: This should use a struct for the above and left contexts.
  96. // Tree
  97. TreeParser::TreeSelection tree = { intra_mode_tree };
  98. // Probabilities
  99. PredictionMode above_mode, left_mode;
  100. if (mi_size >= Block_8x8) {
  101. above_mode = above_context.has_value() ? above_context.value()[2] : PredictionMode::DcPred;
  102. left_mode = left_context.has_value() ? left_context.value()[1] : PredictionMode::DcPred;
  103. } else {
  104. if (index_y > 0)
  105. above_mode = block_sub_modes[index_x];
  106. else
  107. above_mode = above_context.has_value() ? above_context.value()[2 + index_x] : PredictionMode::DcPred;
  108. if (index_x > 0)
  109. left_mode = block_sub_modes[index_y << 1];
  110. else
  111. left_mode = left_context.has_value() ? left_context.value()[1 + (index_y << 1)] : PredictionMode::DcPred;
  112. }
  113. u8 const* probabilities = probability_table.kf_y_mode_probs()[to_underlying(above_mode)][to_underlying(left_mode)];
  114. auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
  115. // Default intra mode is not counted.
  116. return value;
  117. }
  118. ErrorOr<PredictionMode> TreeParser::parse_default_uv_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, PredictionMode y_mode)
  119. {
  120. // Tree
  121. TreeParser::TreeSelection tree = { intra_mode_tree };
  122. // Probabilities
  123. u8 const* probabilities = probability_table.kf_uv_mode_prob()[to_underlying(y_mode)];
  124. auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
  125. // Default UV mode is not counted.
  126. return value;
  127. }
  128. ErrorOr<PredictionMode> TreeParser::parse_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, BlockSubsize mi_size)
  129. {
  130. // Tree
  131. TreeParser::TreeSelection tree = { intra_mode_tree };
  132. // Probabilities
  133. auto context = size_group_lookup[mi_size];
  134. u8 const* probabilities = probability_table.y_mode_probs()[context];
  135. auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
  136. increment_counter(counter.m_counts_intra_mode[context][to_underlying(value)]);
  137. return value;
  138. }
  139. ErrorOr<PredictionMode> TreeParser::parse_sub_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter)
  140. {
  141. // Tree
  142. TreeParser::TreeSelection tree = { intra_mode_tree };
  143. // Probabilities
  144. u8 const* probabilities = probability_table.y_mode_probs()[0];
  145. auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
  146. increment_counter(counter.m_counts_intra_mode[0][to_underlying(value)]);
  147. return value;
  148. }
  149. /*
  150. * Select a tree value based on the type of syntax element being parsed, as well as some parser state, as specified in section 9.3.1
  151. */
  152. TreeParser::TreeSelection TreeParser::select_tree(SyntaxElementType type)
  153. {
  154. switch (type) {
  155. case SyntaxElementType::UVMode:
  156. return { intra_mode_tree };
  157. case SyntaxElementType::SegmentID:
  158. return { segment_tree };
  159. case SyntaxElementType::Skip:
  160. case SyntaxElementType::SegIDPredicted:
  161. case SyntaxElementType::IsInter:
  162. case SyntaxElementType::CompMode:
  163. case SyntaxElementType::CompRef:
  164. case SyntaxElementType::SingleRefP1:
  165. case SyntaxElementType::SingleRefP2:
  166. case SyntaxElementType::MVSign:
  167. case SyntaxElementType::MVClass0Bit:
  168. case SyntaxElementType::MVBit:
  169. case SyntaxElementType::MoreCoefs:
  170. return { binary_tree };
  171. case SyntaxElementType::TXSize:
  172. if (m_decoder.m_max_tx_size == TX_32x32)
  173. return { tx_size_32_tree };
  174. if (m_decoder.m_max_tx_size == TX_16x16)
  175. return { tx_size_16_tree };
  176. return { tx_size_8_tree };
  177. case SyntaxElementType::InterMode:
  178. return { inter_mode_tree };
  179. case SyntaxElementType::InterpFilter:
  180. return { interp_filter_tree };
  181. case SyntaxElementType::MVJoint:
  182. return { mv_joint_tree };
  183. case SyntaxElementType::MVClass:
  184. return { mv_class_tree };
  185. case SyntaxElementType::MVClass0FR:
  186. case SyntaxElementType::MVFR:
  187. return { mv_fr_tree };
  188. case SyntaxElementType::MVClass0HP:
  189. case SyntaxElementType::MVHP:
  190. if (m_decoder.m_use_hp)
  191. return { binary_tree };
  192. return { 1 };
  193. case SyntaxElementType::Token:
  194. return { token_tree };
  195. default:
  196. break;
  197. }
  198. VERIFY_NOT_REACHED();
  199. }
  200. /*
  201. * Select a probability with which to read a boolean when decoding a tree, as specified in section 9.3.2
  202. */
  203. u8 TreeParser::select_tree_probability(SyntaxElementType type, u8 node)
  204. {
  205. switch (type) {
  206. case SyntaxElementType::UVMode:
  207. return calculate_uv_mode_probability(node);
  208. case SyntaxElementType::SegmentID:
  209. return calculate_segment_id_probability(node);
  210. case SyntaxElementType::Skip:
  211. return calculate_skip_probability();
  212. case SyntaxElementType::SegIDPredicted:
  213. return calculate_seg_id_predicted_probability();
  214. case SyntaxElementType::IsInter:
  215. return calculate_is_inter_probability();
  216. case SyntaxElementType::CompMode:
  217. return calculate_comp_mode_probability();
  218. case SyntaxElementType::CompRef:
  219. return calculate_comp_ref_probability();
  220. case SyntaxElementType::SingleRefP1:
  221. return calculate_single_ref_p1_probability();
  222. case SyntaxElementType::SingleRefP2:
  223. return calculate_single_ref_p2_probability();
  224. case SyntaxElementType::MVSign:
  225. return m_decoder.m_probability_tables->mv_sign_prob()[m_mv_component];
  226. case SyntaxElementType::MVClass0Bit:
  227. return m_decoder.m_probability_tables->mv_class0_bit_prob()[m_mv_component];
  228. case SyntaxElementType::MVBit:
  229. VERIFY(m_mv_bit < MV_OFFSET_BITS);
  230. return m_decoder.m_probability_tables->mv_bits_prob()[m_mv_component][m_mv_bit];
  231. case SyntaxElementType::TXSize:
  232. return calculate_tx_size_probability(node);
  233. case SyntaxElementType::InterMode:
  234. return calculate_inter_mode_probability(node);
  235. case SyntaxElementType::InterpFilter:
  236. return calculate_interp_filter_probability(node);
  237. case SyntaxElementType::MVJoint:
  238. return m_decoder.m_probability_tables->mv_joint_probs()[node];
  239. case SyntaxElementType::MVClass:
  240. // Spec doesn't mention node, but the probabilities table has an extra dimension
  241. // so we will use node for that.
  242. return m_decoder.m_probability_tables->mv_class_probs()[m_mv_component][node];
  243. case SyntaxElementType::MVClass0FR:
  244. VERIFY(m_mv_class0_bit < CLASS0_SIZE);
  245. return m_decoder.m_probability_tables->mv_class0_fr_probs()[m_mv_component][m_mv_class0_bit][node];
  246. case SyntaxElementType::MVClass0HP:
  247. return m_decoder.m_probability_tables->mv_class0_hp_prob()[m_mv_component];
  248. case SyntaxElementType::MVFR:
  249. return m_decoder.m_probability_tables->mv_fr_probs()[m_mv_component][node];
  250. case SyntaxElementType::MVHP:
  251. return m_decoder.m_probability_tables->mv_hp_prob()[m_mv_component];
  252. case SyntaxElementType::Token:
  253. return calculate_token_probability(node);
  254. case SyntaxElementType::MoreCoefs:
  255. return calculate_more_coefs_probability();
  256. default:
  257. break;
  258. }
  259. VERIFY_NOT_REACHED();
  260. }
  261. #define ABOVE_FRAME_0 m_decoder.m_above_ref_frame[0]
  262. #define ABOVE_FRAME_1 m_decoder.m_above_ref_frame[1]
  263. #define LEFT_FRAME_0 m_decoder.m_left_ref_frame[0]
  264. #define LEFT_FRAME_1 m_decoder.m_left_ref_frame[1]
  265. #define AVAIL_U m_decoder.m_available_u
  266. #define AVAIL_L m_decoder.m_available_l
  267. #define ABOVE_INTRA m_decoder.m_above_intra
  268. #define LEFT_INTRA m_decoder.m_left_intra
  269. #define ABOVE_SINGLE m_decoder.m_above_single
  270. #define LEFT_SINGLE m_decoder.m_left_single
  271. u8 TreeParser::calculate_uv_mode_probability(u8 node)
  272. {
  273. m_ctx = to_underlying(m_decoder.m_y_mode);
  274. return m_decoder.m_probability_tables->uv_mode_probs()[m_ctx][node];
  275. }
  276. u8 TreeParser::calculate_segment_id_probability(u8 node)
  277. {
  278. return m_decoder.m_segmentation_tree_probs[node];
  279. }
  280. u8 TreeParser::calculate_skip_probability()
  281. {
  282. m_ctx = 0;
  283. if (AVAIL_U)
  284. m_ctx += m_decoder.m_skips[(m_decoder.m_mi_row - 1) * m_decoder.m_mi_cols + m_decoder.m_mi_col];
  285. if (AVAIL_L)
  286. m_ctx += m_decoder.m_skips[m_decoder.m_mi_row * m_decoder.m_mi_cols + m_decoder.m_mi_col - 1];
  287. return m_decoder.m_probability_tables->skip_prob()[m_ctx];
  288. }
  289. u8 TreeParser::calculate_seg_id_predicted_probability()
  290. {
  291. m_ctx = m_decoder.m_left_seg_pred_context[m_decoder.m_mi_row] + m_decoder.m_above_seg_pred_context[m_decoder.m_mi_col];
  292. return m_decoder.m_segmentation_pred_prob[m_ctx];
  293. }
  294. u8 TreeParser::calculate_is_inter_probability()
  295. {
  296. if (AVAIL_U && AVAIL_L) {
  297. m_ctx = (LEFT_INTRA && ABOVE_INTRA) ? 3 : LEFT_INTRA || ABOVE_INTRA;
  298. } else if (AVAIL_U || AVAIL_L) {
  299. m_ctx = 2 * (AVAIL_U ? ABOVE_INTRA : LEFT_INTRA);
  300. } else {
  301. m_ctx = 0;
  302. }
  303. return m_decoder.m_probability_tables->is_inter_prob()[m_ctx];
  304. }
  305. u8 TreeParser::calculate_comp_mode_probability()
  306. {
  307. if (AVAIL_U && AVAIL_L) {
  308. if (ABOVE_SINGLE && LEFT_SINGLE) {
  309. auto is_above_fixed = ABOVE_FRAME_0 == m_decoder.m_comp_fixed_ref;
  310. auto is_left_fixed = LEFT_FRAME_0 == m_decoder.m_comp_fixed_ref;
  311. m_ctx = is_above_fixed ^ is_left_fixed;
  312. } else if (ABOVE_SINGLE) {
  313. auto is_above_fixed = ABOVE_FRAME_0 == m_decoder.m_comp_fixed_ref;
  314. m_ctx = 2 + (is_above_fixed || ABOVE_INTRA);
  315. } else if (LEFT_SINGLE) {
  316. auto is_left_fixed = LEFT_FRAME_0 == m_decoder.m_comp_fixed_ref;
  317. m_ctx = 2 + (is_left_fixed || LEFT_INTRA);
  318. } else {
  319. m_ctx = 4;
  320. }
  321. } else if (AVAIL_U) {
  322. if (ABOVE_SINGLE) {
  323. m_ctx = ABOVE_FRAME_0 == m_decoder.m_comp_fixed_ref;
  324. } else {
  325. m_ctx = 3;
  326. }
  327. } else if (AVAIL_L) {
  328. if (LEFT_SINGLE) {
  329. m_ctx = LEFT_FRAME_0 == m_decoder.m_comp_fixed_ref;
  330. } else {
  331. m_ctx = 3;
  332. }
  333. } else {
  334. m_ctx = 1;
  335. }
  336. return m_decoder.m_probability_tables->comp_mode_prob()[m_ctx];
  337. }
  338. u8 TreeParser::calculate_comp_ref_probability()
  339. {
  340. auto fix_ref_idx = m_decoder.m_ref_frame_sign_bias[m_decoder.m_comp_fixed_ref];
  341. auto var_ref_idx = !fix_ref_idx;
  342. if (AVAIL_U && AVAIL_L) {
  343. if (ABOVE_INTRA && LEFT_INTRA) {
  344. m_ctx = 2;
  345. } else if (LEFT_INTRA) {
  346. if (ABOVE_SINGLE) {
  347. m_ctx = 1 + 2 * (ABOVE_FRAME_0 != m_decoder.m_comp_var_ref[1]);
  348. } else {
  349. m_ctx = 1 + 2 * (m_decoder.m_above_ref_frame[var_ref_idx] != m_decoder.m_comp_var_ref[1]);
  350. }
  351. } else if (ABOVE_INTRA) {
  352. if (LEFT_SINGLE) {
  353. m_ctx = 1 + 2 * (LEFT_FRAME_0 != m_decoder.m_comp_var_ref[1]);
  354. } else {
  355. m_ctx = 1 + 2 * (m_decoder.m_left_ref_frame[var_ref_idx] != m_decoder.m_comp_var_ref[1]);
  356. }
  357. } else {
  358. auto var_ref_above = m_decoder.m_above_ref_frame[ABOVE_SINGLE ? 0 : var_ref_idx];
  359. auto var_ref_left = m_decoder.m_left_ref_frame[LEFT_SINGLE ? 0 : var_ref_idx];
  360. if (var_ref_above == var_ref_left && m_decoder.m_comp_var_ref[1] == var_ref_above) {
  361. m_ctx = 0;
  362. } else if (LEFT_SINGLE && ABOVE_SINGLE) {
  363. if ((var_ref_above == m_decoder.m_comp_fixed_ref && var_ref_left == m_decoder.m_comp_var_ref[0])
  364. || (var_ref_left == m_decoder.m_comp_fixed_ref && var_ref_above == m_decoder.m_comp_var_ref[0])) {
  365. m_ctx = 4;
  366. } else if (var_ref_above == var_ref_left) {
  367. m_ctx = 3;
  368. } else {
  369. m_ctx = 1;
  370. }
  371. } else if (LEFT_SINGLE || ABOVE_SINGLE) {
  372. auto vrfc = LEFT_SINGLE ? var_ref_above : var_ref_left;
  373. auto rfs = ABOVE_SINGLE ? var_ref_above : var_ref_left;
  374. if (vrfc == m_decoder.m_comp_var_ref[1] && rfs != m_decoder.m_comp_var_ref[1]) {
  375. m_ctx = 1;
  376. } else if (rfs == m_decoder.m_comp_var_ref[1] && vrfc != m_decoder.m_comp_var_ref[1]) {
  377. m_ctx = 2;
  378. } else {
  379. m_ctx = 4;
  380. }
  381. } else if (var_ref_above == var_ref_left) {
  382. m_ctx = 4;
  383. } else {
  384. m_ctx = 2;
  385. }
  386. }
  387. } else if (AVAIL_U) {
  388. if (ABOVE_INTRA) {
  389. m_ctx = 2;
  390. } else {
  391. if (ABOVE_SINGLE) {
  392. m_ctx = 3 * (ABOVE_FRAME_0 != m_decoder.m_comp_var_ref[1]);
  393. } else {
  394. m_ctx = 4 * (m_decoder.m_above_ref_frame[var_ref_idx] != m_decoder.m_comp_var_ref[1]);
  395. }
  396. }
  397. } else if (AVAIL_L) {
  398. if (LEFT_INTRA) {
  399. m_ctx = 2;
  400. } else {
  401. if (LEFT_SINGLE) {
  402. m_ctx = 3 * (LEFT_FRAME_0 != m_decoder.m_comp_var_ref[1]);
  403. } else {
  404. m_ctx = 4 * (m_decoder.m_left_ref_frame[var_ref_idx] != m_decoder.m_comp_var_ref[1]);
  405. }
  406. }
  407. } else {
  408. m_ctx = 2;
  409. }
  410. return m_decoder.m_probability_tables->comp_ref_prob()[m_ctx];
  411. }
  412. u8 TreeParser::calculate_single_ref_p1_probability()
  413. {
  414. if (AVAIL_U && AVAIL_L) {
  415. if (ABOVE_INTRA && LEFT_INTRA) {
  416. m_ctx = 2;
  417. } else if (LEFT_INTRA) {
  418. if (ABOVE_SINGLE) {
  419. m_ctx = 4 * (ABOVE_FRAME_0 == LastFrame);
  420. } else {
  421. m_ctx = 1 + (ABOVE_FRAME_0 == LastFrame || ABOVE_FRAME_1 == LastFrame);
  422. }
  423. } else if (ABOVE_INTRA) {
  424. if (LEFT_SINGLE) {
  425. m_ctx = 4 * (LEFT_FRAME_0 == LastFrame);
  426. } else {
  427. m_ctx = 1 + (LEFT_FRAME_0 == LastFrame || LEFT_FRAME_1 == LastFrame);
  428. }
  429. } else {
  430. if (LEFT_SINGLE && ABOVE_SINGLE) {
  431. m_ctx = 2 * (ABOVE_FRAME_0 == LastFrame) + 2 * (LEFT_FRAME_0 == LastFrame);
  432. } else if (!LEFT_SINGLE && !ABOVE_SINGLE) {
  433. auto above_is_last = ABOVE_FRAME_0 == LastFrame || ABOVE_FRAME_1 == LastFrame;
  434. auto left_is_last = LEFT_FRAME_0 == LastFrame || LEFT_FRAME_1 == LastFrame;
  435. m_ctx = 1 + (above_is_last || left_is_last);
  436. } else {
  437. auto rfs = ABOVE_SINGLE ? ABOVE_FRAME_0 : LEFT_FRAME_0;
  438. auto crf1 = ABOVE_SINGLE ? LEFT_FRAME_0 : ABOVE_FRAME_0;
  439. auto crf2 = ABOVE_SINGLE ? LEFT_FRAME_1 : ABOVE_FRAME_1;
  440. m_ctx = crf1 == LastFrame || crf2 == LastFrame;
  441. if (rfs == LastFrame)
  442. m_ctx += 3;
  443. }
  444. }
  445. } else if (AVAIL_U) {
  446. if (ABOVE_INTRA) {
  447. m_ctx = 2;
  448. } else {
  449. if (ABOVE_SINGLE) {
  450. m_ctx = 4 * (ABOVE_FRAME_0 == LastFrame);
  451. } else {
  452. m_ctx = 1 + (ABOVE_FRAME_0 == LastFrame || ABOVE_FRAME_1 == LastFrame);
  453. }
  454. }
  455. } else if (AVAIL_L) {
  456. if (LEFT_INTRA) {
  457. m_ctx = 2;
  458. } else {
  459. if (LEFT_SINGLE) {
  460. m_ctx = 4 * (LEFT_FRAME_0 == LastFrame);
  461. } else {
  462. m_ctx = 1 + (LEFT_FRAME_0 == LastFrame || LEFT_FRAME_1 == LastFrame);
  463. }
  464. }
  465. } else {
  466. m_ctx = 2;
  467. }
  468. return m_decoder.m_probability_tables->single_ref_prob()[m_ctx][0];
  469. }
  470. u8 TreeParser::calculate_single_ref_p2_probability()
  471. {
  472. if (AVAIL_U && AVAIL_L) {
  473. if (ABOVE_INTRA && LEFT_INTRA) {
  474. m_ctx = 2;
  475. } else if (LEFT_INTRA) {
  476. if (ABOVE_SINGLE) {
  477. if (ABOVE_FRAME_0 == LastFrame) {
  478. m_ctx = 3;
  479. } else {
  480. m_ctx = 4 * (ABOVE_FRAME_0 == GoldenFrame);
  481. }
  482. } else {
  483. m_ctx = 1 + 2 * (ABOVE_FRAME_0 == GoldenFrame || ABOVE_FRAME_1 == GoldenFrame);
  484. }
  485. } else if (ABOVE_INTRA) {
  486. if (LEFT_SINGLE) {
  487. if (LEFT_FRAME_0 == LastFrame) {
  488. m_ctx = 3;
  489. } else {
  490. m_ctx = 4 * (LEFT_FRAME_0 == GoldenFrame);
  491. }
  492. } else {
  493. m_ctx = 1 + 2 * (LEFT_FRAME_0 == GoldenFrame || LEFT_FRAME_1 == GoldenFrame);
  494. }
  495. } else {
  496. if (LEFT_SINGLE && ABOVE_SINGLE) {
  497. auto above_last = ABOVE_FRAME_0 == LastFrame;
  498. auto left_last = LEFT_FRAME_0 == LastFrame;
  499. if (above_last && left_last) {
  500. m_ctx = 3;
  501. } else if (above_last) {
  502. m_ctx = 4 * (LEFT_FRAME_0 == GoldenFrame);
  503. } else if (left_last) {
  504. m_ctx = 4 * (ABOVE_FRAME_0 == GoldenFrame);
  505. } else {
  506. m_ctx = 2 * (ABOVE_FRAME_0 == GoldenFrame) + 2 * (LEFT_FRAME_0 == GoldenFrame);
  507. }
  508. } else if (!LEFT_SINGLE && !ABOVE_SINGLE) {
  509. if (ABOVE_FRAME_0 == LEFT_FRAME_0 && ABOVE_FRAME_1 == LEFT_FRAME_1) {
  510. m_ctx = 3 * (ABOVE_FRAME_0 == GoldenFrame || ABOVE_FRAME_1 == GoldenFrame);
  511. } else {
  512. m_ctx = 2;
  513. }
  514. } else {
  515. auto rfs = ABOVE_SINGLE ? ABOVE_FRAME_0 : LEFT_FRAME_0;
  516. auto crf1 = ABOVE_SINGLE ? LEFT_FRAME_0 : ABOVE_FRAME_0;
  517. auto crf2 = ABOVE_SINGLE ? LEFT_FRAME_1 : ABOVE_FRAME_1;
  518. m_ctx = crf1 == GoldenFrame || crf2 == GoldenFrame;
  519. if (rfs == GoldenFrame) {
  520. m_ctx += 3;
  521. } else if (rfs != AltRefFrame) {
  522. m_ctx = 1 + (2 * m_ctx);
  523. }
  524. }
  525. }
  526. } else if (AVAIL_U) {
  527. if (ABOVE_INTRA || (ABOVE_FRAME_0 == LastFrame && ABOVE_SINGLE)) {
  528. m_ctx = 2;
  529. } else if (ABOVE_SINGLE) {
  530. m_ctx = 4 * (ABOVE_FRAME_0 == GoldenFrame);
  531. } else {
  532. m_ctx = 3 * (ABOVE_FRAME_0 == GoldenFrame || ABOVE_FRAME_1 == GoldenFrame);
  533. }
  534. } else if (AVAIL_L) {
  535. if (LEFT_INTRA || (LEFT_FRAME_0 == LastFrame && LEFT_SINGLE)) {
  536. m_ctx = 2;
  537. } else if (LEFT_SINGLE) {
  538. m_ctx = 4 * (LEFT_FRAME_0 == GoldenFrame);
  539. } else {
  540. m_ctx = 3 * (LEFT_FRAME_0 == GoldenFrame || LEFT_FRAME_1 == GoldenFrame);
  541. }
  542. } else {
  543. m_ctx = 2;
  544. }
  545. return m_decoder.m_probability_tables->single_ref_prob()[m_ctx][1];
  546. }
  547. u8 TreeParser::calculate_tx_size_probability(u8 node)
  548. {
  549. auto above = m_decoder.m_max_tx_size;
  550. auto left = m_decoder.m_max_tx_size;
  551. if (AVAIL_U) {
  552. auto u_pos = (m_decoder.m_mi_row - 1) * m_decoder.m_mi_cols + m_decoder.m_mi_col;
  553. if (!m_decoder.m_skips[u_pos])
  554. above = m_decoder.m_tx_sizes[u_pos];
  555. }
  556. if (AVAIL_L) {
  557. auto l_pos = m_decoder.m_mi_row * m_decoder.m_mi_cols + m_decoder.m_mi_col - 1;
  558. if (!m_decoder.m_skips[l_pos])
  559. left = m_decoder.m_tx_sizes[l_pos];
  560. }
  561. if (!AVAIL_L)
  562. left = above;
  563. if (!AVAIL_U)
  564. above = left;
  565. m_ctx = (above + left) > m_decoder.m_max_tx_size;
  566. return m_decoder.m_probability_tables->tx_probs()[m_decoder.m_max_tx_size][m_ctx][node];
  567. }
  568. u8 TreeParser::calculate_inter_mode_probability(u8 node)
  569. {
  570. m_ctx = m_decoder.m_mode_context[m_decoder.m_ref_frame[0]];
  571. return m_decoder.m_probability_tables->inter_mode_probs()[m_ctx][node];
  572. }
  573. u8 TreeParser::calculate_interp_filter_probability(u8 node)
  574. {
  575. // NOTE: SWITCHABLE_FILTERS is not used in the spec for this function. Therefore, the number
  576. // was demystified by referencing the reference codec libvpx:
  577. // https://github.com/webmproject/libvpx/blob/705bf9de8c96cfe5301451f1d7e5c90a41c64e5f/vp9/common/vp9_pred_common.h#L69
  578. auto left_interp = (AVAIL_L && m_decoder.m_left_ref_frame[0] > IntraFrame)
  579. ? m_decoder.m_interp_filters[m_decoder.get_image_index(m_decoder.m_mi_row, m_decoder.m_mi_col - 1)]
  580. : SWITCHABLE_FILTERS;
  581. auto above_interp = (AVAIL_U && m_decoder.m_above_ref_frame[0] > IntraFrame)
  582. ? m_decoder.m_interp_filters[m_decoder.get_image_index(m_decoder.m_mi_row - 1, m_decoder.m_mi_col)]
  583. : SWITCHABLE_FILTERS;
  584. if (left_interp == above_interp)
  585. m_ctx = left_interp;
  586. else if (left_interp == SWITCHABLE_FILTERS)
  587. m_ctx = above_interp;
  588. else if (above_interp == SWITCHABLE_FILTERS)
  589. m_ctx = left_interp;
  590. else
  591. m_ctx = SWITCHABLE_FILTERS;
  592. return m_decoder.m_probability_tables->interp_filter_probs()[m_ctx][node];
  593. }
  594. void TreeParser::set_tokens_variables(u8 band, u32 c, u32 plane, TXSize tx_size, u32 pos)
  595. {
  596. m_band = band;
  597. m_c = c;
  598. m_plane = plane;
  599. m_tx_size = tx_size;
  600. m_pos = pos;
  601. if (m_c == 0) {
  602. auto sx = m_plane > 0 ? m_decoder.m_subsampling_x : 0;
  603. auto sy = m_plane > 0 ? m_decoder.m_subsampling_y : 0;
  604. auto max_x = (2 * m_decoder.m_mi_cols) >> sx;
  605. auto max_y = (2 * m_decoder.m_mi_rows) >> sy;
  606. u8 numpts = 1 << m_tx_size;
  607. auto x4 = m_start_x >> 2;
  608. auto y4 = m_start_y >> 2;
  609. u32 above = 0;
  610. u32 left = 0;
  611. for (size_t i = 0; i < numpts; i++) {
  612. if (x4 + i < max_x)
  613. above |= m_decoder.m_above_nonzero_context[m_plane][x4 + i];
  614. if (y4 + i < max_y)
  615. left |= m_decoder.m_left_nonzero_context[m_plane][y4 + i];
  616. }
  617. m_ctx = above + left;
  618. } else {
  619. u32 neighbor_0, neighbor_1;
  620. auto n = 4 << m_tx_size;
  621. auto i = m_pos / n;
  622. auto j = m_pos % n;
  623. auto a = i > 0 ? (i - 1) * n + j : 0;
  624. auto a2 = i * n + j - 1;
  625. if (i > 0 && j > 0) {
  626. if (m_decoder.m_tx_type == DCT_ADST) {
  627. neighbor_0 = a;
  628. neighbor_1 = a;
  629. } else if (m_decoder.m_tx_type == ADST_DCT) {
  630. neighbor_0 = a2;
  631. neighbor_1 = a2;
  632. } else {
  633. neighbor_0 = a;
  634. neighbor_1 = a2;
  635. }
  636. } else if (i > 0) {
  637. neighbor_0 = a;
  638. neighbor_1 = a;
  639. } else {
  640. neighbor_0 = a2;
  641. neighbor_1 = a2;
  642. }
  643. m_ctx = (1 + m_decoder.m_token_cache[neighbor_0] + m_decoder.m_token_cache[neighbor_1]) >> 1;
  644. }
  645. }
  646. u8 TreeParser::calculate_more_coefs_probability()
  647. {
  648. return m_decoder.m_probability_tables->coef_probs()[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][0];
  649. }
  650. u8 TreeParser::calculate_token_probability(u8 node)
  651. {
  652. auto prob = m_decoder.m_probability_tables->coef_probs()[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][min(2, 1 + node)];
  653. if (node < 2)
  654. return prob;
  655. auto x = (prob - 1) / 2;
  656. auto& pareto_table = m_decoder.m_probability_tables->pareto_table();
  657. if (prob & 1)
  658. return pareto_table[x][node - 2];
  659. return (pareto_table[x][node - 2] + pareto_table[x + 1][node - 2]) >> 1;
  660. }
  661. void TreeParser::count_syntax_element(SyntaxElementType type, int value)
  662. {
  663. auto increment = [](u8& count) {
  664. increment_counter(count);
  665. };
  666. switch (type) {
  667. case SyntaxElementType::UVMode:
  668. increment(m_decoder.m_syntax_element_counter->m_counts_uv_mode[m_ctx][value]);
  669. return;
  670. case SyntaxElementType::Skip:
  671. increment(m_decoder.m_syntax_element_counter->m_counts_skip[m_ctx][value]);
  672. return;
  673. case SyntaxElementType::IsInter:
  674. increment(m_decoder.m_syntax_element_counter->m_counts_is_inter[m_ctx][value]);
  675. return;
  676. case SyntaxElementType::CompMode:
  677. increment(m_decoder.m_syntax_element_counter->m_counts_comp_mode[m_ctx][value]);
  678. return;
  679. case SyntaxElementType::CompRef:
  680. increment(m_decoder.m_syntax_element_counter->m_counts_comp_ref[m_ctx][value]);
  681. return;
  682. case SyntaxElementType::SingleRefP1:
  683. increment(m_decoder.m_syntax_element_counter->m_counts_single_ref[m_ctx][0][value]);
  684. return;
  685. case SyntaxElementType::SingleRefP2:
  686. increment(m_decoder.m_syntax_element_counter->m_counts_single_ref[m_ctx][1][value]);
  687. return;
  688. case SyntaxElementType::MVSign:
  689. increment(m_decoder.m_syntax_element_counter->m_counts_mv_sign[m_mv_component][value]);
  690. return;
  691. case SyntaxElementType::MVClass0Bit:
  692. increment(m_decoder.m_syntax_element_counter->m_counts_mv_class0_bit[m_mv_component][value]);
  693. return;
  694. case SyntaxElementType::MVBit:
  695. VERIFY(m_mv_bit < MV_OFFSET_BITS);
  696. increment(m_decoder.m_syntax_element_counter->m_counts_mv_bits[m_mv_component][m_mv_bit][value]);
  697. m_mv_bit = 0xFF;
  698. return;
  699. case SyntaxElementType::TXSize:
  700. increment(m_decoder.m_syntax_element_counter->m_counts_tx_size[m_decoder.m_max_tx_size][m_ctx][value]);
  701. return;
  702. case SyntaxElementType::InterMode:
  703. increment(m_decoder.m_syntax_element_counter->m_counts_inter_mode[m_ctx][value]);
  704. return;
  705. case SyntaxElementType::InterpFilter:
  706. increment(m_decoder.m_syntax_element_counter->m_counts_interp_filter[m_ctx][value]);
  707. return;
  708. case SyntaxElementType::MVJoint:
  709. increment(m_decoder.m_syntax_element_counter->m_counts_mv_joint[value]);
  710. return;
  711. case SyntaxElementType::MVClass:
  712. increment(m_decoder.m_syntax_element_counter->m_counts_mv_class[m_mv_component][value]);
  713. return;
  714. case SyntaxElementType::MVClass0FR:
  715. VERIFY(m_mv_class0_bit < CLASS0_SIZE);
  716. increment(m_decoder.m_syntax_element_counter->m_counts_mv_class0_fr[m_mv_component][m_mv_class0_bit][value]);
  717. m_mv_class0_bit = 0xFF;
  718. return;
  719. case SyntaxElementType::MVClass0HP:
  720. increment(m_decoder.m_syntax_element_counter->m_counts_mv_class0_hp[m_mv_component][value]);
  721. return;
  722. case SyntaxElementType::MVFR:
  723. increment(m_decoder.m_syntax_element_counter->m_counts_mv_fr[m_mv_component][value]);
  724. return;
  725. case SyntaxElementType::MVHP:
  726. increment(m_decoder.m_syntax_element_counter->m_counts_mv_hp[m_mv_component][value]);
  727. return;
  728. case SyntaxElementType::Token:
  729. increment(m_decoder.m_syntax_element_counter->m_counts_token[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][min(2, value)]);
  730. return;
  731. case SyntaxElementType::MoreCoefs:
  732. increment(m_decoder.m_syntax_element_counter->m_counts_more_coefs[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][value]);
  733. return;
  734. case SyntaxElementType::SegmentID:
  735. case SyntaxElementType::SegIDPredicted:
  736. // No counting required
  737. return;
  738. default:
  739. break;
  740. }
  741. VERIFY_NOT_REACHED();
  742. }
  743. }