123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447 |
- /*
- * Copyright (c) 2023, Martin Janiczek <martin@janiczek.cz>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #pragma once
- #include <LibTest/Macros.h>
- #include <LibTest/Randomized/RandomRun.h>
- #include <AK/Function.h>
- #include <AK/Random.h>
- #include <AK/String.h>
- #include <AK/StringView.h>
- #include <AK/Tuple.h>
- #include <math.h>
- namespace Test {
- namespace Randomized {
- // Returns a random double value in range 0..1.
- // This is not a generator. It is meant to be used inside RandomnessSource::draw_value().
- // Based on: https://dotat.at/@/2023-06-23-random-double.html
- inline f64 get_random_probability()
- {
- return static_cast<f64>(AK::get_random<u64>() >> 11) * 0x1.0p-53;
- }
- // Generators take random bits from the RandomnessSource and return a value
- // back.
- //
- // Example:
- // - Gen::number_u64(5,10) --> 9, 7, 5, 10, 8, ...
- namespace Gen {
- // An unsigned integer generator.
- //
- // The minimum value will always be 0.
- // The maximum value is given by user in the argument.
- //
- // Gen::number_u64(10) -> value 5, RandomRun [5]
- // -> value 8, RandomRun [8]
- // etc.
- //
- // Shrinks towards 0.
- inline u64 number_u64(u64 max)
- {
- if (max == 0)
- return 0;
- u64 random = Test::randomness_source().draw_value(max, [&]() {
- // `clamp` to guard against integer overflow
- u64 exclusive_bound = AK::clamp(max + 1, max, NumericLimits<u64>::max());
- return AK::get_random_uniform_64(exclusive_bound);
- });
- return random;
- }
- // An unsigned integer generator in a particular range.
- //
- // Gen::number_u64(3,10) -> value 3, RandomRun [0]
- // -> value 8, RandomRun [5]
- // -> value 10, RandomRun [7]
- // etc.
- //
- // In case `min == max`, the RandomRun footprint will be smaller: no randomness
- // is needed.
- //
- // Gen::number_u64(3,3) -> value 3, RandomRun [] (always)
- //
- // Shrinks towards the minimum.
- inline u64 number_u64(u64 min, u64 max)
- {
- VERIFY(max >= min);
- return number_u64(max - min) + min;
- }
- // Randomly (uniformly) selects a value out of the given arguments.
- //
- // Gen::one_of(20,5,10) --> value 20, RandomRun [0]
- // --> value 5, RandomRun [1]
- // --> value 10, RandomRun [2]
- //
- // Shrinks towards the earlier arguments (above, towards 20).
- template<typename... Ts>
- requires(sizeof...(Ts) > 0)
- CommonType<Ts...> one_of(Ts... choices)
- {
- Vector<CommonType<Ts...>> choices_vec { choices... };
- constexpr size_t count = sizeof...(choices);
- size_t i = number_u64(count - 1);
- return choices_vec[i];
- }
- template<typename T>
- struct Choice {
- i32 weight;
- T value;
- };
- // Workaround for clang bug fixed in clang 17
- template<typename T>
- Choice(i32, T) -> Choice<T>;
- // Randomly (uniformly) selects a value out of the given weighted arguments.
- //
- // Gen::frequency(
- // Gen::Choice {5,999},
- // Gen::Choice {1,111},
- // )
- // --> value 999 (5 out of 6 times), RandomRun [0]
- // --> value 111 (1 out of 6 times), RandomRun [1]
- //
- // Shrinks towards the earlier arguments (above, towards 'x').
- template<typename... Ts>
- requires(sizeof...(Ts) > 0)
- CommonType<Ts...> frequency(Choice<Ts>... choices)
- {
- Vector<Choice<CommonType<Ts...>>> choices_vec { choices... };
- u64 sum = 0;
- for (auto const& choice : choices_vec) {
- VERIFY(choice.weight > 0);
- sum += static_cast<u64>(choice.weight);
- }
- u64 target = number_u64(sum);
- size_t i = 0;
- for (auto const& choice : choices_vec) {
- u64 weight = static_cast<u64>(choice.weight);
- if (weight >= target) {
- return choice.value;
- }
- target -= weight;
- ++i;
- }
- return choices_vec[i - 1].value;
- }
- // An unsigned integer generator in the full u64 range.
- //
- // Prefers 8bit numbers, then 4bit, 16bit, 32bit and 64bit ones.
- // Around 11% of the time it tries edge cases like 0 and various NumericLimits::max().
- //
- // Gen::number_u64() -> value 3, RandomRun [0,3]
- // -> value 8, RandomRun [1,8]
- // -> value 100, RandomRun [2,100]
- // -> value 5, RandomRun [3,5]
- // -> value 255, RandomRun [4,1]
- // -> value 65535, RandomRun [4,2]
- // etc.
- //
- // Shrinks towards 0.
- inline u64 number_u64()
- {
- u64 bits = frequency(
- // weight, bits
- Choice { 4, 4 },
- Choice { 8, 8 },
- Choice { 2, 16 },
- Choice { 1, 32 },
- Choice { 1, 64 },
- Choice { 2, 0 });
- // The special cases go last as they can be the most extreme (large) values.
- if (bits == 0) {
- // Special cases, eg. max integers for u8, u16, u32, u64.
- return one_of(
- 0U,
- NumericLimits<u8>::max(),
- NumericLimits<u16>::max(),
- NumericLimits<u32>::max(),
- NumericLimits<u64>::max());
- }
- u64 max = bits == 64
- ? NumericLimits<u64>::max()
- : ((u64)1 << bits) - 1;
- return number_u64(max);
- }
- // A generator returning `true` with the given `probability` (0..1).
- //
- // If probability <= 0, doesn't use any randomness and returns false.
- // If probability >= 1, doesn't use any randomness and returns true.
- //
- // In general case:
- // Gen::weighted_boolean(0.75)
- // -> value false, RandomRun [0]
- // -> value true, RandomRun [1]
- //
- // Shrinks towards false.
- inline bool weighted_boolean(f64 probability)
- {
- if (probability <= 0)
- return false;
- if (probability >= 1)
- return true;
- u64 random_int = Test::randomness_source().draw_value(1, [&]() {
- f64 drawn_probability = get_random_probability();
- return drawn_probability <= probability ? 1 : 0;
- });
- bool random_bool = random_int == 1;
- return random_bool;
- }
- // A (fair) boolean generator.
- //
- // Gen::boolean()
- // -> value false, RandomRun [0]
- // -> value true, RandomRun [1]
- //
- // Shrinks towards false.
- inline bool boolean()
- {
- return weighted_boolean(0.5);
- }
- // A vector generator of a random length between the given limits.
- //
- // Gen::vector(2,3,[]() { return Gen::number_u64(5); })
- // -> value [1,5], RandomRun [1,1,1,5,0]
- // -> value [1,5,0], RandomRun [1,1,1,5,1,0,0]
- // etc.
- //
- // In case `min == max`, the RandomRun footprint will be smaller, as there will
- // be no randomness involved in figuring out the length:
- //
- // Gen::vector(3,3,[]() { return Gen::number_u64(5); })
- // -> value [1,3], RandomRun [1,3]
- // -> value [5,2], RandomRun [5,2]
- // etc.
- //
- // Shrinks towards shorter vectors, with simpler elements inside.
- template<typename Fn>
- inline Vector<InvokeResult<Fn>> vector(size_t min, size_t max, Fn item_gen)
- {
- VERIFY(max >= min);
- size_t size = 0;
- Vector<InvokeResult<Fn>> acc;
- // Special case: no randomness for the boolean
- if (min == max) {
- while (size < min) {
- acc.append(item_gen());
- ++size;
- }
- return acc;
- }
- // General case: before each item we "flip a coin" to decide whether to
- // generate another one.
- //
- // This algorithm is used instead of the more intuitive "generate length,
- // then generate that many items" algorithm, because it produces RandomRun
- // patterns that shrink more easily.
- //
- // See the Hypothesis paper [1], section 3.3, around the paragraph starting
- // with "More commonly".
- //
- // [1]: https://drops.dagstuhl.de/opus/volltexte/2020/13170/pdf/LIPIcs-ECOOP-2020-13.pdf
- while (size < min) {
- acc.append(item_gen());
- ++size;
- }
- f64 average = static_cast<f64>(min + max) / 2.0;
- VERIFY(average > 0);
- // A geometric distribution: https://en.wikipedia.org/wiki/Geometric_distribution#Moments_and_cumulants
- // The below derives from the E(X) = 1/p formula.
- //
- // We need to flip the `p` to `1-p` as our success ("another item!") is
- // a "failure" in the geometric distribution's interpretation ("we fail X
- // times before succeeding the first time").
- //
- // That gives us `1 - 1/p`. Then, E(X) also contains the final success, so we
- // need to say `1 + average` instead of `average`, as it will mean "our X
- // items + the final failure that stops the process".
- f64 probability = 1.0 - 1.0 / (1.0 + average);
- while (size < max) {
- if (weighted_boolean(probability)) {
- acc.append(item_gen());
- ++size;
- } else {
- break;
- }
- }
- return acc;
- }
- // A vector generator of a given length.
- //
- // Gen::vector_of_length(3,[]() { return Gen::number_u64(5); })
- // -> value [1,5,0], RandomRun [1,1,1,5,1,0,0]
- // -> value [2,9,3], RandomRun [1,2,1,9,1,3,0]
- // etc.
- //
- // Shrinks towards shorter vectors, with simpler elements inside.
- template<typename Fn>
- inline Vector<InvokeResult<Fn>> vector(size_t length, Fn item_gen)
- {
- return vector(length, length, item_gen);
- }
- // A vector generator of a random length between 0 and 32 elements.
- //
- // If you need a different length, use vector(max,item_gen) or
- // vector(min,max,item_gen).
- //
- // Gen::vector([]() { return Gen::number_u64(5); })
- // -> value [], RandomRun [0]
- // -> value [1], RandomRun [1,1,0]
- // -> value [1,5], RandomRun [1,1,1,5,0]
- // -> value [1,5,0], RandomRun [1,1,1,5,1,0,0]
- // -> value [1,5,0,2], RandomRun [1,1,1,5,1,0,1,2,0]
- // etc.
- //
- // Shrinks towards shorter vectors, with simpler elements inside.
- template<typename Fn>
- inline Vector<InvokeResult<Fn>> vector(Fn item_gen)
- {
- return vector(0, 32, item_gen);
- }
- // A double generator in the [0,1) range.
- //
- // RandomRun footprint: a single number.
- //
- // Shrinks towards 0.
- //
- // Based on: https://dotat.at/@/2023-06-23-random-double.html
- inline f64 percentage()
- {
- return static_cast<f64>(number_u64() >> 11) * 0x1.0p-53;
- }
- // An internal double generator. This one won't make any attempt to shrink nicely.
- // Test writers should use number_f64(f64 min, f64 max) instead.
- inline f64 number_f64_scaled(f64 min, f64 max)
- {
- VERIFY(max >= min);
- if (min == max)
- return min;
- f64 p = percentage();
- return min * (1.0 - p) + max * p;
- }
- inline f64 number_f64(f64 min, f64 max)
- {
- // FIXME: after we figure out how to use frequency() with lambdas,
- // do edge cases and nicely shrinking float generators here
- return number_f64_scaled(min, max);
- }
- inline f64 number_f64()
- {
- // FIXME: this could be much nicer to the user, at the expense of code complexity
- // We could follow Hypothesis' lead and remap integers 0..MAXINT to _simple_
- // floats rather than small floats. Meaning, we would like to prefer integers
- // over floats with decimal digits, positive numbers over negative numbers etc.
- // As a result, users would get failures with floats like 0, 1, or 0.5 instead of
- // ones like 1.175494e-38.
- // Check the doc comment in Hypothesis: https://github.com/HypothesisWorks/hypothesis/blob/master/hypothesis-python/src/hypothesis/internal/conjecture/floats.py
- return number_f64(NumericLimits<f64>::lowest(), NumericLimits<f64>::max());
- }
- // A double generator.
- //
- // The minimum value will always be NumericLimits<f64>::lowest().
- // The maximum value is given by user in the argument.
- //
- // Prefers positive numbers, then negative numbers, then edge cases.
- //
- // Shrinks towards 0.
- inline f64 number_f64(f64 max)
- {
- // FIXME: after we figure out how to use frequency() with lambdas,
- // do edge cases and nicely shrinking float generators here
- return number_f64_scaled(NumericLimits<f64>::lowest(), max);
- }
- // TODO
- inline u32 number_u32(u32 max)
- {
- if (max == 0)
- return 0;
- u32 random = Test::randomness_source().draw_value(max, [&]() {
- // `clamp` to guard against integer overflow
- u32 exclusive_bound = AK::clamp(max + 1, max, NumericLimits<u32>::max());
- return AK::get_random_uniform(exclusive_bound);
- });
- return random;
- }
- // TODO
- inline u32 number_u32(u32 min, u32 max)
- {
- VERIFY(max >= min);
- return number_u32(max - min) + min;
- }
- // TODO
- inline u32 number_u32()
- {
- u32 bits = frequency(
- // weight, bits
- Choice { 4, 4 },
- Choice { 8, 8 },
- Choice { 2, 16 },
- Choice { 1, 32 },
- Choice { 1, 64 },
- Choice { 2, 0 });
- // The special cases go last as they can be the most extreme (large) values.
- if (bits == 0) {
- // Special cases, eg. max integers for u8, u16, u32.
- return one_of(
- 0U,
- NumericLimits<u8>::max(),
- NumericLimits<u16>::max(),
- NumericLimits<u32>::max());
- }
- u32 max = bits == 32
- ? NumericLimits<u32>::max()
- : ((u32)1 << bits) - 1;
- return number_u32(max);
- }
- } // namespace Gen
- } // namespace Randomized
- } // namespace Test
|