123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587 |
- /*
- * Copyright (c) 2022-2023, MacDue <macdue@dueutil.tech>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/Math.h>
- #include <LibGfx/Gradients.h>
- #include <LibGfx/PaintStyle.h>
- #include <LibGfx/Painter.h>
- #if defined(AK_COMPILER_GCC)
- # pragma GCC optimize("O3")
- #endif
- namespace Gfx {
- // Note: This file implements the CSS/Canvas gradients for LibWeb according to the spec.
- // Please do not make ad-hoc changes that may break spec compliance!
- static float color_stop_step(ColorStop const& previous_stop, ColorStop const& next_stop, float position)
- {
- if (position < previous_stop.position)
- return 0;
- if (position > next_stop.position)
- return 1;
- // For any given point between the two color stops,
- // determine the point’s location as a percentage of the distance between the two color stops.
- // Let this percentage be P.
- auto stop_length = next_stop.position - previous_stop.position;
- // FIXME: Avoids NaNs... Still not quite correct?
- if (stop_length <= 0)
- return 1;
- auto p = (position - previous_stop.position) / stop_length;
- if (!next_stop.transition_hint.has_value())
- return p;
- if (*next_stop.transition_hint >= 1)
- return 0;
- if (*next_stop.transition_hint <= 0)
- return 1;
- // Let C, the color weighting at that point, be equal to P^(logH(.5)).
- auto c = AK::pow(p, AK::log<float>(0.5) / AK::log(*next_stop.transition_hint));
- // The color at that point is then a linear blend between the colors of the two color stops,
- // blending (1 - C) of the first stop and C of the second stop.
- return c;
- }
- enum class UsePremultipliedAlpha {
- Yes,
- No
- };
- class GradientLine {
- public:
- GradientLine(int gradient_length, ReadonlySpan<ColorStop> color_stops, Optional<float> repeat_length, UsePremultipliedAlpha use_premultiplied_alpha = UsePremultipliedAlpha::Yes)
- : m_repeat_mode(repeat_length.has_value() ? RepeatMode::Repeat : RepeatMode::None)
- , m_start_offset(round_to<int>((repeating() ? color_stops.first().position : 0.0f) * gradient_length))
- , m_color_stops(color_stops)
- , m_use_premultiplied_alpha(use_premultiplied_alpha)
- {
- // Avoid generating excessive amounts of colors when the not enough shades to fill that length.
- auto necessary_length = min<int>((color_stops.size() - 1) * 255, gradient_length);
- m_sample_scale = float(necessary_length) / gradient_length;
- // Note: color_count will be < gradient_length for repeating gradients.
- auto color_count = round_to<int>(repeat_length.value_or(1.0f) * necessary_length);
- m_gradient_line_colors.resize(color_count);
- for (int loc = 0; loc < color_count; loc++) {
- auto relative_loc = float(loc + m_start_offset) / necessary_length;
- Color gradient_color = color_blend(color_stops[0].color, color_stops[1].color,
- color_stop_step(color_stops[0], color_stops[1], relative_loc));
- for (size_t i = 1; i < color_stops.size() - 1; i++) {
- gradient_color = color_blend(gradient_color, color_stops[i + 1].color,
- color_stop_step(color_stops[i], color_stops[i + 1], relative_loc));
- }
- m_gradient_line_colors[loc] = gradient_color;
- if (gradient_color.alpha() < 255)
- m_requires_blending = true;
- }
- }
- Color color_blend(Color a, Color b, float amount) const
- {
- // Note: color.mixed_with() performs premultiplied alpha mixing when necessary as defined in:
- // https://drafts.csswg.org/css-images/#coloring-gradient-line
- if (m_use_premultiplied_alpha == UsePremultipliedAlpha::Yes)
- return a.mixed_with(b, amount);
- return a.interpolate(b, amount);
- }
- Color get_color(i64 index) const
- {
- if (index < 0)
- return m_color_stops.first().color;
- if (index >= static_cast<i64>(m_gradient_line_colors.size()))
- return m_color_stops.last().color;
- return m_gradient_line_colors[index];
- }
- Color sample_color(float loc) const
- {
- if (!isfinite(loc))
- return Color();
- if (m_sample_scale != 1.0f)
- loc *= m_sample_scale;
- auto repeat_wrap_if_required = [&](i64 loc) {
- if (m_repeat_mode != RepeatMode::None) {
- auto current_loc = loc + m_start_offset;
- auto gradient_len = static_cast<i64>(m_gradient_line_colors.size());
- if (m_repeat_mode == RepeatMode::Repeat) {
- auto color_loc = current_loc % gradient_len;
- return color_loc < 0 ? gradient_len + color_loc : color_loc;
- } else if (m_repeat_mode == RepeatMode::Reflect) {
- auto color_loc = AK::abs(current_loc % gradient_len);
- auto repeats = current_loc / gradient_len;
- return (repeats & 1) ? gradient_len - color_loc : color_loc;
- }
- }
- return loc;
- };
- auto int_loc = static_cast<i64>(floor(loc));
- auto blend = loc - int_loc;
- auto color = get_color(repeat_wrap_if_required(int_loc));
- // Blend between the two neighboring colors (this fixes some nasty aliasing issues at small angles)
- if (blend >= 0.004f)
- color = color_blend(color, get_color(repeat_wrap_if_required(int_loc + 1)), blend);
- return color;
- }
- void paint_into_physical_rect(Painter& painter, IntRect rect, auto location_transform)
- {
- auto clipped_rect = rect.intersected(painter.clip_rect() * painter.scale());
- auto start_offset = clipped_rect.location() - rect.location();
- for (int y = 0; y < clipped_rect.height(); y++) {
- for (int x = 0; x < clipped_rect.width(); x++) {
- auto pixel = sample_color(location_transform(x + start_offset.x(), y + start_offset.y()));
- painter.set_physical_pixel(clipped_rect.location().translated(x, y), pixel, m_requires_blending);
- }
- }
- }
- bool repeating() const
- {
- return m_repeat_mode != RepeatMode::None;
- }
- enum class RepeatMode {
- None,
- Repeat,
- Reflect
- };
- void set_repeat_mode(RepeatMode repeat_mode)
- {
- // Note: A gradient can be set to repeating without a repeat length.
- // The repeat length is used for CSS gradients but not for SVG gradients.
- m_repeat_mode = repeat_mode;
- }
- private:
- RepeatMode m_repeat_mode { RepeatMode::None };
- int m_start_offset { 0 };
- float m_sample_scale { 1 };
- ReadonlySpan<ColorStop> m_color_stops {};
- UsePremultipliedAlpha m_use_premultiplied_alpha { UsePremultipliedAlpha::Yes };
- Vector<Color, 1024> m_gradient_line_colors;
- bool m_requires_blending = false;
- };
- template<typename TransformFunction>
- struct Gradient {
- Gradient(GradientLine gradient_line, TransformFunction transform_function)
- : m_gradient_line(move(gradient_line))
- , m_transform_function(move(transform_function))
- {
- }
- void paint(Painter& painter, IntRect rect)
- {
- m_gradient_line.paint_into_physical_rect(painter, rect, m_transform_function);
- }
- template<typename CoordinateType = int>
- auto sample_function()
- {
- return [this](Point<CoordinateType> point) {
- return m_gradient_line.sample_color(m_transform_function(point.x(), point.y()));
- };
- }
- GradientLine& gradient_line()
- {
- return m_gradient_line;
- }
- private:
- GradientLine m_gradient_line;
- TransformFunction m_transform_function;
- };
- static auto create_linear_gradient(IntRect const& physical_rect, ReadonlySpan<ColorStop> color_stops, float angle, Optional<float> repeat_length)
- {
- float normalized_angle = normalized_gradient_angle_radians(angle);
- float sin_angle, cos_angle;
- AK::sincos(normalized_angle, sin_angle, cos_angle);
- // Full length of the gradient
- auto gradient_length = calculate_gradient_length(physical_rect.size(), sin_angle, cos_angle);
- IntPoint offset { cos_angle * (gradient_length / 2), sin_angle * (gradient_length / 2) };
- auto center = physical_rect.translated(-physical_rect.location()).center();
- auto start_point = center - offset;
- // Rotate gradient line to be horizontal
- auto rotated_start_point_x = start_point.x() * cos_angle - start_point.y() * -sin_angle;
- GradientLine gradient_line(gradient_length, color_stops, repeat_length);
- return Gradient {
- move(gradient_line),
- [=](int x, int y) {
- return (x * cos_angle - (physical_rect.height() - y) * -sin_angle) - rotated_start_point_x;
- }
- };
- }
- static auto create_conic_gradient(ReadonlySpan<ColorStop> color_stops, FloatPoint center_point, float start_angle, Optional<float> repeat_length, UsePremultipliedAlpha use_premultiplied_alpha = UsePremultipliedAlpha::Yes)
- {
- // FIXME: Do we need/want sub-degree accuracy for the gradient line?
- GradientLine gradient_line(360, color_stops, repeat_length, use_premultiplied_alpha);
- float normalized_start_angle = (360.0f - start_angle) + 90.0f;
- // The flooring can make gradients that want soft edges look worse, so only floor if we have hard edges.
- // Which makes sure the hard edge stay hard edges :^)
- bool should_floor_angles = false;
- for (size_t i = 0; i < color_stops.size() - 1; i++) {
- if (color_stops[i + 1].position - color_stops[i].position <= 0.01f) {
- should_floor_angles = true;
- break;
- }
- }
- return Gradient {
- move(gradient_line),
- [=](int x, int y) {
- auto point = FloatPoint { x, y } - center_point;
- // FIXME: We could probably get away with some approximation here:
- auto loc = fmod((AK::to_degrees(AK::atan2(point.y(), point.x())) + 360.0f + normalized_start_angle), 360.0f);
- return should_floor_angles ? floor(loc) : loc;
- }
- };
- }
- static auto create_radial_gradient(IntRect const& physical_rect, ReadonlySpan<ColorStop> color_stops, IntPoint center, IntSize size, Optional<float> repeat_length, Optional<float> rotation_angle = {})
- {
- // A conservative guesstimate on how many colors we need to generate:
- auto max_dimension = max(physical_rect.width(), physical_rect.height());
- auto max_visible_gradient = max(max_dimension / 2, min(size.width(), max_dimension));
- GradientLine gradient_line(max_visible_gradient, color_stops, repeat_length);
- auto center_point = FloatPoint { center }.translated(0.5, 0.5);
- AffineTransform rotation_transform;
- if (rotation_angle.has_value()) {
- auto angle_as_radians = AK::to_radians(rotation_angle.value());
- rotation_transform.rotate_radians(angle_as_radians);
- }
- return Gradient {
- move(gradient_line),
- [=](int x, int y) {
- // FIXME: See if there's a more efficient calculation we do there :^)
- auto point = FloatPoint(x, y) - center_point;
- if (rotation_angle.has_value())
- point.transform_by(rotation_transform);
- auto gradient_x = point.x() / size.width();
- auto gradient_y = point.y() / size.height();
- return AK::sqrt(gradient_x * gradient_x + gradient_y * gradient_y) * max_visible_gradient;
- }
- };
- }
- void Painter::fill_rect_with_linear_gradient(IntRect const& rect, ReadonlySpan<ColorStop> color_stops, float angle, Optional<float> repeat_length)
- {
- auto a_rect = to_physical(rect);
- if (a_rect.intersected(clip_rect() * scale()).is_empty())
- return;
- auto linear_gradient = create_linear_gradient(a_rect, color_stops, angle, repeat_length);
- linear_gradient.paint(*this, a_rect);
- }
- static FloatPoint pixel_center(IntPoint point)
- {
- return point.to_type<float>().translated(0.5f, 0.5f);
- }
- void Painter::fill_rect_with_conic_gradient(IntRect const& rect, ReadonlySpan<ColorStop> color_stops, IntPoint center, float start_angle, Optional<float> repeat_length)
- {
- auto a_rect = to_physical(rect);
- if (a_rect.intersected(clip_rect() * scale()).is_empty())
- return;
- // Translate position/center to the center of the pixel (avoids some funky painting)
- auto center_point = pixel_center(center * scale());
- auto conic_gradient = create_conic_gradient(color_stops, center_point, start_angle, repeat_length);
- conic_gradient.paint(*this, a_rect);
- }
- void Painter::fill_rect_with_radial_gradient(IntRect const& rect, ReadonlySpan<ColorStop> color_stops, IntPoint center, IntSize size, Optional<float> repeat_length, Optional<float> rotation_angle)
- {
- auto a_rect = to_physical(rect);
- if (a_rect.intersected(clip_rect() * scale()).is_empty())
- return;
- auto radial_gradient = create_radial_gradient(a_rect, color_stops, center * scale(), size * scale(), repeat_length, rotation_angle);
- radial_gradient.paint(*this, a_rect);
- }
- // TODO: Figure out how to handle scale() here... Not important while not supported by fill_path()
- void LinearGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
- {
- VERIFY(color_stops().size() > 2);
- auto linear_gradient = create_linear_gradient(physical_bounding_box, color_stops(), m_angle, repeat_length());
- paint(linear_gradient.sample_function());
- }
- void ConicGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
- {
- VERIFY(color_stops().size() > 2);
- (void)physical_bounding_box;
- auto conic_gradient = create_conic_gradient(color_stops(), pixel_center(m_center), m_start_angle, repeat_length());
- paint(conic_gradient.sample_function());
- }
- void RadialGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
- {
- VERIFY(color_stops().size() > 2);
- auto radial_gradient = create_radial_gradient(physical_bounding_box, color_stops(), m_center, m_size, repeat_length());
- paint(radial_gradient.sample_function());
- }
- // The following implements the gradient fill/stoke styles for the HTML canvas: https://html.spec.whatwg.org/multipage/canvas.html#fill-and-stroke-styles
- static auto make_sample_non_relative(IntPoint draw_location, auto sample)
- {
- return [=, sample = move(sample)](IntPoint point) { return sample(point.translated(draw_location)); };
- }
- static auto make_linear_gradient_between_two_points(FloatPoint p0, FloatPoint p1, ReadonlySpan<ColorStop> color_stops, Optional<float> repeat_length)
- {
- auto delta = p1 - p0;
- auto angle = AK::atan2(delta.y(), delta.x());
- float sin_angle, cos_angle;
- AK::sincos(angle, sin_angle, cos_angle);
- int gradient_length = ceilf(p1.distance_from(p0));
- auto rotated_start_point_x = p0.x() * cos_angle - p0.y() * -sin_angle;
- return Gradient {
- GradientLine(gradient_length, color_stops, repeat_length, UsePremultipliedAlpha::No),
- [=](int x, int y) {
- return (x * cos_angle - y * -sin_angle) - rotated_start_point_x;
- }
- };
- }
- void CanvasLinearGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
- {
- // If x0 = x1 and y0 = y1, then the linear gradient must paint nothing.
- if (m_p0 == m_p1)
- return;
- if (color_stops().is_empty())
- return;
- if (color_stops().size() < 2)
- return paint([this](IntPoint) { return color_stops().first().color; });
- auto linear_gradient = make_linear_gradient_between_two_points(m_p0, m_p1, color_stops(), repeat_length());
- paint(make_sample_non_relative(physical_bounding_box.location(), linear_gradient.sample_function()));
- }
- static GradientLine::RepeatMode svg_spread_method_to_repeat_mode(SVGGradientPaintStyle::SpreadMethod spread_method)
- {
- switch (spread_method) {
- case SVGGradientPaintStyle::SpreadMethod::Pad:
- return GradientLine::RepeatMode::None;
- case SVGGradientPaintStyle::SpreadMethod::Reflect:
- return GradientLine::RepeatMode::Reflect;
- case SVGGradientPaintStyle::SpreadMethod::Repeat:
- return GradientLine::RepeatMode::Repeat;
- default:
- VERIFY_NOT_REACHED();
- }
- }
- void SVGGradientPaintStyle::set_gradient_transform(AffineTransform transform)
- {
- // Note: The scaling is removed so enough points on the gradient line are generated.
- // Otherwise, if you scale a tiny path the gradient looks pixelated.
- m_scale = 1.0f;
- if (auto inverse = transform.inverse(); inverse.has_value()) {
- auto transform_scale = transform.scale();
- m_scale = max(transform_scale.x(), transform_scale.y());
- m_inverse_transform = AffineTransform {}.scale(m_scale, m_scale).multiply(*inverse);
- } else {
- m_inverse_transform = OptionalNone {};
- }
- }
- void SVGLinearGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
- {
- if (color_stops().is_empty())
- return;
- // If ‘x1’ = ‘x2’ and ‘y1’ = ‘y2’, then the area to be painted will be painted as
- // a single color using the color and opacity of the last gradient stop.
- if (m_p0 == m_p1)
- return paint([this](IntPoint) { return color_stops().last().color; });
- if (color_stops().size() < 2)
- return paint([this](IntPoint) { return color_stops().first().color; });
- float scale = gradient_transform_scale();
- auto linear_gradient = make_linear_gradient_between_two_points(
- m_p0.scaled(scale, scale), m_p1.scaled(scale, scale),
- color_stops(), repeat_length());
- linear_gradient.gradient_line().set_repeat_mode(
- svg_spread_method_to_repeat_mode(spread_method()));
- paint([&, sampler = linear_gradient.sample_function<float>()](IntPoint target_point) {
- auto point = target_point.translated(physical_bounding_box.location()).to_type<float>();
- if (auto inverse_transform = scale_adjusted_inverse_gradient_transform(); inverse_transform.has_value())
- point = inverse_transform->map(point);
- return sampler(point);
- });
- }
- void CanvasConicGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
- {
- if (color_stops().is_empty())
- return;
- if (color_stops().size() < 2)
- return paint([this](IntPoint) { return color_stops().first().color; });
- // Follows the same rendering rule as CSS 'conic-gradient' and it is equivalent to CSS
- // 'conic-gradient(from adjustedStartAnglerad at xpx ypx, angularColorStopList)'.
- // Here:
- // adjustedStartAngle is given by startAngle + π/2;
- auto conic_gradient = create_conic_gradient(color_stops(), m_center, m_start_angle + 90.0f, repeat_length(), UsePremultipliedAlpha::No);
- paint(make_sample_non_relative(physical_bounding_box.location(), conic_gradient.sample_function()));
- }
- static auto create_radial_gradient_between_two_circles(Gfx::FloatPoint start_center, float start_radius, Gfx::FloatPoint end_center, float end_radius, ReadonlySpan<ColorStop> color_stops, Optional<float> repeat_length)
- {
- bool reverse_gradient = end_radius < start_radius;
- if (reverse_gradient) {
- swap(end_radius, start_radius);
- swap(end_center, start_center);
- }
- // FIXME: Handle the start_radius == end_radius special case separately.
- // This hack is not quite correct.
- if (end_radius - start_radius < 1)
- end_radius += 1;
- // Spec steps: Useless for writing an actual implementation (give it a go :P):
- //
- // 2. Let x(ω) = (x1-x0)ω + x0
- // Let y(ω) = (y1-y0)ω + y0
- // Let r(ω) = (r1-r0)ω + r0
- // Let the color at ω be the color at that position on the gradient
- // (with the colors coming from the interpolation and extrapolation described above).
- //
- // 3. For all values of ω where r(ω) > 0, starting with the value of ω nearest to positive infinity and
- // ending with the value of ω nearest to negative infinity, draw the circumference of the circle with
- // radius r(ω) at position (x(ω), y(ω)), with the color at ω, but only painting on the parts of the
- // bitmap that have not yet been painted on by earlier circles in this step for this rendering of the gradient.
- auto center_dist = end_center.distance_from(start_center);
- bool inner_contained = ((center_dist + start_radius) < end_radius);
- auto start_point = start_center;
- if (start_radius != 0) {
- // Set the start point to the focal point.
- auto f = end_radius / (end_radius - start_radius);
- auto one_minus_f = 1 - f;
- start_point = start_center.scaled(f) + end_center.scaled(one_minus_f);
- }
- // This is just an approximate upperbound (the gradient line class will shorten this if necessary).
- int gradient_length = AK::ceil(center_dist + end_radius + start_radius);
- GradientLine gradient_line(gradient_length, color_stops, repeat_length, UsePremultipliedAlpha::No);
- // If you can simplify this please do, this is "best guess" implementation due to lack of specification.
- // It was implemented to visually match chrome/firefox in all cases:
- // - Start circle inside end circle
- // - Start circle outside end circle
- // - Start circle radius == end circle radius
- // - Start circle larger than end circle (inside end circle)
- // - Start circle larger than end circle (outside end circle)
- // - Start circle or end circle radius == 0
- auto circle_distance_finder = [=](auto radius, auto center) {
- auto radius2 = radius * radius;
- auto delta = center - start_point;
- auto delta_xy = delta.x() * delta.y();
- auto dx2_factor = radius2 - delta.y() * delta.y();
- auto dy2_factor = radius2 - delta.x() * delta.x();
- return [=](bool positive_root, auto vec) {
- // This works out the distance to the nearest point on the circle
- // in the direction of the "vec" vector.
- auto dx2 = vec.x() * vec.x();
- auto dy2 = vec.y() * vec.y();
- auto root = sqrtf(dx2 * dx2_factor + dy2 * dy2_factor
- + 2 * vec.x() * vec.y() * delta_xy);
- auto dot = vec.x() * delta.x() + vec.y() * delta.y();
- return ((positive_root ? root : -root) + dot) / (dx2 + dy2);
- };
- };
- auto end_circle_dist = circle_distance_finder(end_radius, end_center);
- auto start_circle_dist = [=, dist = circle_distance_finder(start_radius, start_center)](bool positive_root, auto vec) {
- if (start_center == start_point)
- return start_radius;
- return dist(positive_root, vec);
- };
- return Gradient {
- move(gradient_line),
- [=](float x, float y) {
- auto loc = [&] {
- FloatPoint point { x, y };
- // Add a little to avoid division by zero at the focal point.
- if (point == start_point)
- point += FloatPoint { 0.001f, 0.001f };
- // The "vec" (unit) vector points from the focal point to the current point.
- auto dist = point.distance_from(start_point);
- auto vec = (point - start_point) / dist;
- bool use_positive_root = inner_contained || reverse_gradient;
- auto dist_end = end_circle_dist(use_positive_root, vec);
- auto dist_start = start_circle_dist(use_positive_root, vec);
- // FIXME: Returning nan is a hack for "Don't paint me!"
- if (dist_end < 0)
- return AK::NaN<float>;
- if (dist_end - dist_start < 0)
- return float(gradient_length);
- return (dist - dist_start) / (dist_end - dist_start);
- }();
- if (reverse_gradient)
- loc = 1.0f - loc;
- return loc * gradient_length;
- }
- };
- }
- void CanvasRadialGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
- {
- // 1. If x0 = x1 and y0 = y1 and r0 = r1, then the radial gradient must paint nothing. Return.
- if (m_start_center == m_end_center && m_start_radius == m_end_radius)
- return;
- if (color_stops().is_empty())
- return;
- if (color_stops().size() < 2)
- return paint([this](IntPoint) { return color_stops().first().color; });
- if (m_end_radius == 0 && m_start_radius == 0)
- return;
- auto radial_gradient = create_radial_gradient_between_two_circles(m_start_center, m_start_radius, m_end_center, m_end_radius, color_stops(), repeat_length());
- paint(make_sample_non_relative(physical_bounding_box.location(), radial_gradient.sample_function()));
- }
- void SVGRadialGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
- {
- // FIXME: Ensure this handles all the edge cases of SVG gradients.
- if (color_stops().is_empty())
- return;
- if (color_stops().size() < 2 || (m_end_radius == 0 && m_start_radius == 0))
- return paint([this](IntPoint) { return color_stops().last().color; });
- float scale = gradient_transform_scale();
- auto radial_gradient = create_radial_gradient_between_two_circles(
- m_start_center.scaled(scale, scale), m_start_radius * scale, m_end_center.scaled(scale, scale), m_end_radius * scale,
- color_stops(), repeat_length());
- radial_gradient.gradient_line().set_repeat_mode(
- svg_spread_method_to_repeat_mode(spread_method()));
- paint([&, sampler = radial_gradient.sample_function<float>()](IntPoint target_point) {
- auto point = target_point.translated(physical_bounding_box.location()).to_type<float>();
- if (auto inverse_transform = scale_adjusted_inverse_gradient_transform(); inverse_transform.has_value())
- point = inverse_transform->map(point);
- return sampler(point);
- });
- }
- }
|