123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602 |
- /*
- * Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
- * Copyright (c) 2022, Ben Maxwell <macdue@dueutil.tech>
- * Copyright (c) 2022, Torsten Engelmann <engelTorsten@gmx.de>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #if defined(AK_COMPILER_GCC)
- # pragma GCC optimize("O3")
- #endif
- #include <AK/Function.h>
- #include <AK/NumericLimits.h>
- #include <LibGfx/AntiAliasingPainter.h>
- #include <LibGfx/Line.h>
- namespace Gfx {
- void AntiAliasingPainter::draw_anti_aliased_line(FloatPoint actual_from, FloatPoint actual_to, Color color, float thickness, Painter::LineStyle style, Color, LineLengthMode line_length_mode)
- {
- // FIXME: Implement this :P
- VERIFY(style == Painter::LineStyle::Solid);
- if (color.alpha() == 0)
- return;
- // FIMXE:
- // This is not a proper line drawing algorithm.
- // It's hack-ish AA rotated rectangle painting.
- // There's probably more optimal ways to achieve this
- // (though this still runs faster than the previous AA-line code)
- //
- // If you, reading this comment, know a better way that:
- // 1. Does not overpaint (i.e. painting a line with transparency looks correct)
- // 2. Has square end points (i.e. the line is a rectangle)
- // 3. Has good anti-aliasing
- // 4. Is less hacky than this
- //
- // Please delete this code and implement it!
- int int_thickness = AK::ceil(thickness);
- auto mapped_from = m_transform.map(actual_from);
- auto mapped_to = m_transform.map(actual_to);
- auto distance = mapped_to.distance_from(mapped_from);
- auto length = distance + (line_length_mode == LineLengthMode::PointToPoint);
- // Axis-aligned lines:
- if (mapped_from.y() == mapped_to.y()) {
- auto start_point = (mapped_from.x() < mapped_to.x() ? mapped_from : mapped_to).translated(0, -int_thickness / 2);
- return fill_rect(Gfx::FloatRect(start_point, { length, thickness }), color);
- }
- if (mapped_from.x() == mapped_to.x()) {
- auto start_point = (mapped_from.y() < mapped_to.y() ? mapped_from : mapped_to).translated(-int_thickness / 2, 0);
- return fill_rect(Gfx::FloatRect(start_point, { thickness, length }), color);
- }
- // The painting only works for the positive XY quadrant (because that is easier).
- // So flip things around until we're there:
- bool flip_x = false;
- bool flip_y = false;
- if (mapped_to.x() < mapped_from.x() && mapped_to.y() < mapped_from.y())
- swap(mapped_to, mapped_from);
- if ((flip_x = mapped_to.x() < mapped_from.x()))
- mapped_to.set_x(2 * mapped_from.x() - mapped_to.x());
- if ((flip_y = mapped_to.y() < mapped_from.y()))
- mapped_to.set_y(2 * mapped_from.y() - mapped_to.y());
- auto delta = mapped_to - mapped_from;
- auto line_angle_radians = AK::atan2(delta.y(), delta.x()) - 0.5f * AK::Pi<float>;
- float sin_inverse_angle;
- float cos_inverse_angle;
- AK::sincos(-line_angle_radians, sin_inverse_angle, cos_inverse_angle);
- auto inverse_rotate_point = [=](FloatPoint point) {
- return Gfx::FloatPoint(
- point.x() * cos_inverse_angle - point.y() * sin_inverse_angle,
- point.y() * cos_inverse_angle + point.x() * sin_inverse_angle);
- };
- Gfx::FloatRect line_rect({ -(thickness * 255) / 2.0f, 0 }, Gfx::FloatSize(thickness * 255, length * 255));
- auto gradient = delta.y() / delta.x();
- // Work out how long we need to scan along the X-axis to reach the other side of the line.
- // E.g. for a vertical line this would be `thickness', in general it is this:
- int scan_line_length = AK::ceil(AK::sqrt((gradient * gradient + 1) * thickness * thickness) / gradient);
- auto x_gradient = 1 / gradient;
- int x_step = floorf(x_gradient);
- float x_error = 0;
- float x_error_per_y = x_gradient - x_step;
- auto y_offset = int_thickness + 1;
- auto x_offset = int(x_gradient * y_offset);
- int const line_start_x = mapped_from.x();
- int const line_start_y = mapped_from.y();
- int const line_end_x = mapped_to.x();
- int const line_end_y = mapped_to.y();
- auto set_pixel = [=, this](int x, int y, Gfx::Color color) {
- // FIXME: The lines seem slightly off (<= 1px) when flipped.
- if (flip_x)
- x = 2 * line_start_x - x;
- if (flip_y)
- y = 2 * line_start_y - y;
- m_underlying_painter.set_pixel(x, y, color, true);
- };
- // Scan a bit extra to avoid issues from the x_error:
- int const overscan = max(x_step, 1) * 2 + 1;
- int x = line_start_x - x_offset;
- int const center_offset = (scan_line_length + 1) / 2;
- for (int y = line_start_y - y_offset; y < line_end_y + y_offset; y += 1) {
- for (int i = -overscan; i < scan_line_length + overscan; i++) {
- int scan_x_pos = x + i - center_offset;
- // Avoid scanning over pixels definitely outside the line:
- int dx = (line_start_x - int_thickness) - (scan_x_pos + 1);
- if (dx > 0) {
- i += dx;
- continue;
- }
- if (line_end_x + int_thickness <= scan_x_pos - 1)
- break;
- auto sample = inverse_rotate_point(Gfx::FloatPoint(scan_x_pos - line_start_x, y - line_start_y));
- Gfx::FloatRect sample_px(sample * 255, Gfx::FloatSize(255, 255));
- sample_px.intersect(line_rect);
- auto alpha = (sample_px.width() * sample_px.height()) / 255.0f;
- alpha = (alpha * color.alpha()) / 255;
- set_pixel(scan_x_pos, y, color.with_alpha(alpha));
- }
- x += x_step;
- x_error += x_error_per_y;
- if (x_error > 1.0f) {
- x_error -= 1.0f;
- x += 1;
- }
- }
- }
- void AntiAliasingPainter::draw_dotted_line(IntPoint point1, IntPoint point2, Color color, int thickness)
- {
- // AA circles don't really work below a radius of 2px.
- if (thickness < 4)
- return m_underlying_painter.draw_line(point1, point2, color, thickness, Painter::LineStyle::Dotted);
- auto draw_spaced_dots = [&](int start, int end, auto to_point) {
- int step = thickness * 2;
- if (start > end)
- swap(start, end);
- int delta = end - start;
- int dots = delta / step;
- if (dots == 0)
- return;
- int fudge_per_dot = 0;
- int extra_fudge = 0;
- if (dots > 3) {
- // Fudge the numbers so the last dot is drawn at the `end' point (otherwise you can get lines cuts short).
- // You need at least a handful of dots to do this.
- int fudge = delta % step;
- fudge_per_dot = fudge / dots;
- extra_fudge = fudge % dots;
- }
- for (int dot = start; dot <= end; dot += (step + fudge_per_dot + (extra_fudge > 0))) {
- fill_circle(to_point(dot), thickness / 2, color);
- --extra_fudge;
- }
- };
- if (point1.y() == point2.y()) {
- draw_spaced_dots(point1.x(), point2.x(), [&](int dot_x) {
- return IntPoint { dot_x, point1.y() };
- });
- } else if (point1.x() == point2.x()) {
- draw_spaced_dots(point1.y(), point2.y(), [&](int dot_y) {
- return IntPoint { point1.x(), dot_y };
- });
- } else {
- TODO();
- }
- }
- void AntiAliasingPainter::draw_line(IntPoint actual_from, IntPoint actual_to, Color color, float thickness, Painter::LineStyle style, Color alternate_color, LineLengthMode line_length_mode)
- {
- draw_line(actual_from.to_type<float>(), actual_to.to_type<float>(), color, thickness, style, alternate_color, line_length_mode);
- }
- void AntiAliasingPainter::draw_line(FloatPoint actual_from, FloatPoint actual_to, Color color, float thickness, Painter::LineStyle style, Color alternate_color, LineLengthMode line_length_mode)
- {
- if (style == Painter::LineStyle::Dotted)
- return draw_dotted_line(actual_from.to_rounded<int>(), actual_to.to_rounded<int>(), color, static_cast<int>(round(thickness)));
- draw_anti_aliased_line(actual_from, actual_to, color, thickness, style, alternate_color, line_length_mode);
- }
- void AntiAliasingPainter::stroke_path(Path const& path, Color color, float thickness)
- {
- if (thickness <= 0)
- return;
- // FIXME: Cache this? Probably at a higher level such as in LibWeb?
- fill_path(path.stroke_to_fill(thickness), color);
- }
- void AntiAliasingPainter::stroke_path(Path const& path, Gfx::PaintStyle const& paint_style, float thickness, float opacity)
- {
- if (thickness <= 0)
- return;
- // FIXME: Cache this? Probably at a higher level such as in LibWeb?
- fill_path(path.stroke_to_fill(thickness), paint_style, opacity);
- }
- void AntiAliasingPainter::fill_rect(FloatRect const& float_rect, Color color)
- {
- // Draw the integer part of the rectangle:
- float right_x = float_rect.x() + float_rect.width();
- float bottom_y = float_rect.y() + float_rect.height();
- int x1 = ceilf(float_rect.x());
- int y1 = ceilf(float_rect.y());
- int x2 = floorf(right_x);
- int y2 = floorf(bottom_y);
- auto solid_rect = Gfx::IntRect::from_two_points({ x1, y1 }, { x2, y2 });
- m_underlying_painter.fill_rect(solid_rect, color);
- if (float_rect == solid_rect)
- return;
- // Draw the rest:
- float left_subpixel = x1 - float_rect.x();
- float top_subpixel = y1 - float_rect.y();
- float right_subpixel = right_x - x2;
- float bottom_subpixel = bottom_y - y2;
- float top_left_subpixel = top_subpixel * left_subpixel;
- float top_right_subpixel = top_subpixel * right_subpixel;
- float bottom_left_subpixel = bottom_subpixel * left_subpixel;
- float bottom_right_subpixel = bottom_subpixel * right_subpixel;
- auto subpixel = [&](float alpha) {
- return color.with_alpha(color.alpha() * alpha);
- };
- auto set_pixel = [&](int x, int y, float alpha) {
- m_underlying_painter.set_pixel(x, y, subpixel(alpha), true);
- };
- auto line_to_rect = [&](int x1, int y1, int x2, int y2) {
- return IntRect::from_two_points({ x1, y1 }, { x2 + 1, y2 + 1 });
- };
- set_pixel(x1 - 1, y1 - 1, top_left_subpixel);
- set_pixel(x2, y1 - 1, top_right_subpixel);
- set_pixel(x2, y2, bottom_right_subpixel);
- set_pixel(x1 - 1, y2, bottom_left_subpixel);
- m_underlying_painter.fill_rect(line_to_rect(x1, y1 - 1, x2 - 1, y1 - 1), subpixel(top_subpixel));
- m_underlying_painter.fill_rect(line_to_rect(x1, y2, x2 - 1, y2), subpixel(bottom_subpixel));
- m_underlying_painter.fill_rect(line_to_rect(x1 - 1, y1, x1 - 1, y2 - 1), subpixel(left_subpixel));
- m_underlying_painter.fill_rect(line_to_rect(x2, y1, x2, y2 - 1), subpixel(right_subpixel));
- }
- void AntiAliasingPainter::draw_ellipse(IntRect const& a_rect, Color color, int thickness)
- {
- // FIXME: Come up with an allocation-free version of this!
- // Using draw_line() for segments of an ellipse was attempted but gave really poor results :^(
- // There probably is a way to adjust the fill of draw_ellipse_part() to do this, but getting it rendering correctly is tricky.
- // The outline of the steps required to paint it efficiently is:
- // - Paint the outer ellipse without the fill (from the fill() lambda in draw_ellipse_part())
- // - Paint the inner ellipse, but in the set_pixel() invert the alpha values
- // - Somehow fill in the gap between the two ellipses (the tricky part to get right)
- // - Have to avoid overlapping pixels and accidentally painting over some of the edge pixels
- auto color_no_alpha = color;
- color_no_alpha.set_alpha(255);
- auto outline_ellipse_bitmap = ({
- auto bitmap = Bitmap::create(BitmapFormat::BGRA8888, a_rect.size());
- if (bitmap.is_error())
- return warnln("Failed to allocate temporary bitmap for antialiased outline ellipse!");
- bitmap.release_value();
- });
- auto outer_rect = a_rect;
- outer_rect.set_location({ 0, 0 });
- auto inner_rect = outer_rect.shrunken(thickness * 2, thickness * 2);
- Painter painter { outline_ellipse_bitmap };
- AntiAliasingPainter aa_painter { painter };
- aa_painter.fill_ellipse(outer_rect, color_no_alpha);
- aa_painter.fill_ellipse(inner_rect, color_no_alpha, BlendMode::AlphaSubtract);
- m_underlying_painter.blit(a_rect.location(), outline_ellipse_bitmap, outline_ellipse_bitmap->rect(), color.alpha() / 255.);
- }
- void AntiAliasingPainter::fill_circle(IntPoint center, int radius, Color color, BlendMode blend_mode)
- {
- if (radius <= 0)
- return;
- draw_ellipse_part(center, radius, radius, color, false, {}, blend_mode);
- }
- void AntiAliasingPainter::fill_ellipse(IntRect const& a_rect, Color color, BlendMode blend_mode)
- {
- auto center = a_rect.center();
- auto radius_a = a_rect.width() / 2;
- auto radius_b = a_rect.height() / 2;
- if (radius_a <= 0 || radius_b <= 0)
- return;
- if (radius_a == radius_b)
- return fill_circle(center, radius_a, color, blend_mode);
- auto x_paint_range = draw_ellipse_part(center, radius_a, radius_b, color, false, {}, blend_mode);
- // FIXME: This paints some extra fill pixels that are clipped
- draw_ellipse_part(center, radius_b, radius_a, color, true, x_paint_range, blend_mode);
- }
- FLATTEN AntiAliasingPainter::Range AntiAliasingPainter::draw_ellipse_part(
- IntPoint center, int radius_a, int radius_b, Color color, bool flip_x_and_y, Optional<Range> x_clip, BlendMode blend_mode)
- {
- /*
- Algorithm from: https://cs.uwaterloo.ca/research/tr/1984/CS-84-38.pdf
- This method can draw a whole circle with a whole circle in one call using
- 8-way symmetry, or an ellipse in two calls using 4-way symmetry.
- */
- center *= m_underlying_painter.scale();
- radius_a *= m_underlying_painter.scale();
- radius_b *= m_underlying_painter.scale();
- // If this is a ellipse everything can be drawn in one pass with 8 way symmetry
- bool const is_circle = radius_a == radius_b;
- // These happen to be the same here, but are treated separately in the paper:
- // intensity is the fill alpha
- int const intensity = 255;
- // 0 to subpixel_resolution is the range of alpha values for the circle edges
- int const subpixel_resolution = intensity;
- // Current pixel address
- int i = 0;
- int q = radius_b;
- // 1st and 2nd order differences of y
- int delta_y = 0;
- int delta2_y = 0;
- int const a_squared = radius_a * radius_a;
- int const b_squared = radius_b * radius_b;
- // Exact and predicted values of f(i) -- the ellipse equation scaled by subpixel_resolution
- int y = subpixel_resolution * radius_b;
- int y_hat = 0;
- // The value of f(i)*f(i)
- int f_squared = y * y;
- // 1st and 2nd order differences of f(i)*f(i)
- int delta_f_squared = (static_cast<int64_t>(b_squared) * subpixel_resolution * subpixel_resolution) / a_squared;
- int delta2_f_squared = -delta_f_squared - delta_f_squared;
- // edge_intersection_area/subpixel_resolution = percentage of pixel intersected by circle
- // (aka the alpha for the pixel)
- int edge_intersection_area = 0;
- int old_area = edge_intersection_area;
- auto predict = [&] {
- delta_y += delta2_y;
- // y_hat is the predicted value of f(i)
- y_hat = y + delta_y;
- };
- auto minimize = [&] {
- // Initialize the minimization
- delta_f_squared += delta2_f_squared;
- f_squared += delta_f_squared;
- int min_squared_error = y_hat * y_hat - f_squared;
- int prediction_overshot = 1;
- y = y_hat;
- // Force error negative
- if (min_squared_error > 0) {
- min_squared_error = -min_squared_error;
- prediction_overshot = -1;
- }
- // Minimize
- int previous_error = min_squared_error;
- while (min_squared_error < 0) {
- y += prediction_overshot;
- previous_error = min_squared_error;
- min_squared_error += y + y - prediction_overshot;
- }
- if (min_squared_error + previous_error > 0)
- y -= prediction_overshot;
- };
- auto correct = [&] {
- int error = y - y_hat;
- delta2_y += error;
- delta_y += error;
- };
- int min_paint_x = NumericLimits<int>::max();
- int max_paint_x = NumericLimits<int>::min();
- auto pixel = [&](int x, int y, int alpha) {
- if (alpha <= 0 || alpha > 255)
- return;
- if (flip_x_and_y)
- swap(x, y);
- if (x_clip.has_value() && x_clip->contains_inclusive(x))
- return;
- min_paint_x = min(x, min_paint_x);
- max_paint_x = max(x, max_paint_x);
- alpha = (alpha * color.alpha()) / 255;
- if (blend_mode == BlendMode::AlphaSubtract)
- alpha = ~alpha;
- auto pixel_color = color;
- pixel_color.set_alpha(alpha);
- m_underlying_painter.set_pixel(center + IntPoint { x, y }, pixel_color, blend_mode == BlendMode::Normal);
- };
- auto fill = [&](int x, int ymax, int ymin, int alpha) {
- while (ymin <= ymax) {
- pixel(x, ymin, alpha);
- ymin += 1;
- }
- };
- auto symmetric_pixel = [&](int x, int y, int alpha) {
- pixel(x, y, alpha);
- pixel(x, -y - 1, alpha);
- pixel(-x - 1, -y - 1, alpha);
- pixel(-x - 1, y, alpha);
- if (is_circle) {
- pixel(y, x, alpha);
- pixel(y, -x - 1, alpha);
- pixel(-y - 1, -x - 1, alpha);
- pixel(-y - 1, x, alpha);
- }
- };
- // These are calculated incrementally (as it is possibly a tiny bit faster)
- int ib_squared = 0;
- int qa_squared = q * a_squared;
- auto in_symmetric_region = [&] {
- // Main fix two stop cond here
- return is_circle ? i < q : ib_squared < qa_squared;
- };
- // Draws a 8 octants for a circle or 4 quadrants for a (partial) ellipse
- while (in_symmetric_region()) {
- predict();
- minimize();
- correct();
- old_area = edge_intersection_area;
- edge_intersection_area += delta_y;
- if (edge_intersection_area >= 0) {
- // Single pixel on perimeter
- symmetric_pixel(i, q, (edge_intersection_area + old_area) / 2);
- fill(i, q - 1, -q, intensity);
- fill(-i - 1, q - 1, -q, intensity);
- } else {
- // Two pixels on perimeter
- edge_intersection_area += subpixel_resolution;
- symmetric_pixel(i, q, old_area / 2);
- q -= 1;
- qa_squared -= a_squared;
- fill(i, q - 1, -q, intensity);
- fill(-i - 1, q - 1, -q, intensity);
- if (!is_circle || in_symmetric_region()) {
- symmetric_pixel(i, q, (edge_intersection_area + subpixel_resolution) / 2);
- if (is_circle) {
- fill(q, i - 1, -i, intensity);
- fill(-q - 1, i - 1, -i, intensity);
- }
- } else {
- edge_intersection_area += subpixel_resolution;
- }
- }
- i += 1;
- ib_squared += b_squared;
- }
- if (is_circle) {
- int alpha = edge_intersection_area / 2;
- pixel(q, q, alpha);
- pixel(-q - 1, q, alpha);
- pixel(-q - 1, -q - 1, alpha);
- pixel(q, -q - 1, alpha);
- }
- return Range { min_paint_x, max_paint_x };
- }
- void AntiAliasingPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int radius)
- {
- fill_rect_with_rounded_corners(a_rect, color, radius, radius, radius, radius);
- }
- void AntiAliasingPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, int top_left_radius, int top_right_radius, int bottom_right_radius, int bottom_left_radius)
- {
- fill_rect_with_rounded_corners(a_rect, color,
- { top_left_radius, top_left_radius },
- { top_right_radius, top_right_radius },
- { bottom_right_radius, bottom_right_radius },
- { bottom_left_radius, bottom_left_radius });
- }
- void AntiAliasingPainter::fill_rect_with_rounded_corners(IntRect const& a_rect, Color color, CornerRadius top_left, CornerRadius top_right, CornerRadius bottom_right, CornerRadius bottom_left, BlendMode blend_mode)
- {
- if (!top_left && !top_right && !bottom_right && !bottom_left) {
- if (blend_mode == BlendMode::Normal)
- return m_underlying_painter.fill_rect(a_rect, color);
- else if (blend_mode == BlendMode::AlphaSubtract)
- return m_underlying_painter.clear_rect(a_rect, Color());
- }
- if (color.alpha() == 0)
- return;
- IntPoint top_left_corner {
- a_rect.x() + top_left.horizontal_radius,
- a_rect.y() + top_left.vertical_radius,
- };
- IntPoint top_right_corner {
- a_rect.x() + a_rect.width() - top_right.horizontal_radius,
- a_rect.y() + top_right.vertical_radius,
- };
- IntPoint bottom_left_corner {
- a_rect.x() + bottom_left.horizontal_radius,
- a_rect.y() + a_rect.height() - bottom_left.vertical_radius
- };
- IntPoint bottom_right_corner {
- a_rect.x() + a_rect.width() - bottom_right.horizontal_radius,
- a_rect.y() + a_rect.height() - bottom_right.vertical_radius
- };
- // All corners are centered at the same point, so this can be painted as a single ellipse.
- if (top_left_corner == top_right_corner && top_right_corner == bottom_left_corner && bottom_left_corner == bottom_right_corner)
- return fill_ellipse(a_rect, color, blend_mode);
- IntRect top_rect {
- a_rect.x() + top_left.horizontal_radius,
- a_rect.y(),
- a_rect.width() - top_left.horizontal_radius - top_right.horizontal_radius,
- top_left.vertical_radius
- };
- IntRect right_rect {
- a_rect.x() + a_rect.width() - top_right.horizontal_radius,
- a_rect.y() + top_right.vertical_radius,
- top_right.horizontal_radius,
- a_rect.height() - top_right.vertical_radius - bottom_right.vertical_radius
- };
- IntRect bottom_rect {
- a_rect.x() + bottom_left.horizontal_radius,
- a_rect.y() + a_rect.height() - bottom_right.vertical_radius,
- a_rect.width() - bottom_left.horizontal_radius - bottom_right.horizontal_radius,
- bottom_right.vertical_radius
- };
- IntRect left_rect {
- a_rect.x(),
- a_rect.y() + top_left.vertical_radius,
- bottom_left.horizontal_radius,
- a_rect.height() - top_left.vertical_radius - bottom_left.vertical_radius
- };
- IntRect inner = {
- left_rect.x() + left_rect.width(),
- left_rect.y(),
- a_rect.width() - left_rect.width() - right_rect.width(),
- a_rect.height() - top_rect.height() - bottom_rect.height()
- };
- if (blend_mode == BlendMode::Normal) {
- m_underlying_painter.fill_rect(top_rect, color);
- m_underlying_painter.fill_rect(right_rect, color);
- m_underlying_painter.fill_rect(bottom_rect, color);
- m_underlying_painter.fill_rect(left_rect, color);
- m_underlying_painter.fill_rect(inner, color);
- } else if (blend_mode == BlendMode::AlphaSubtract) {
- m_underlying_painter.clear_rect(top_rect, Color());
- m_underlying_painter.clear_rect(right_rect, Color());
- m_underlying_painter.clear_rect(bottom_rect, Color());
- m_underlying_painter.clear_rect(left_rect, Color());
- m_underlying_painter.clear_rect(inner, Color());
- }
- auto fill_corner = [&](auto const& ellipse_center, auto const& corner_point, CornerRadius const& corner) {
- PainterStateSaver save { m_underlying_painter };
- m_underlying_painter.add_clip_rect(IntRect::from_two_points(ellipse_center, corner_point));
- fill_ellipse(IntRect::centered_at(ellipse_center, { corner.horizontal_radius * 2, corner.vertical_radius * 2 }), color, blend_mode);
- };
- auto bounding_rect = a_rect.inflated(0, 1, 1, 0);
- if (top_left)
- fill_corner(top_left_corner, bounding_rect.top_left(), top_left);
- if (top_right)
- fill_corner(top_right_corner, bounding_rect.top_right().moved_left(1), top_right);
- if (bottom_left)
- fill_corner(bottom_left_corner, bounding_rect.bottom_left().moved_up(1), bottom_left);
- if (bottom_right)
- fill_corner(bottom_right_corner, bounding_rect.bottom_right().translated(-1), bottom_right);
- }
- }
|