123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- /*
- * Copyright (c) 2021-2022, kleines Filmröllchen <filmroellchen@serenityos.org>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/HashMap.h>
- #include <AK/Math.h>
- #include <AK/Random.h>
- #include <AK/RefPtr.h>
- #include <AK/StdLibExtras.h>
- #include <LibAudio/Sample.h>
- #include <LibDSP/Envelope.h>
- #include <LibDSP/Music.h>
- #include <LibDSP/Processor.h>
- #include <LibDSP/Synthesizers.h>
- namespace DSP::Synthesizers {
- Classic::Classic(NonnullRefPtr<Transport> transport)
- : DSP::SynthesizerProcessor(move(transport))
- , m_waveform("Waveform"_string, Waveform::Saw)
- , m_attack("Attack"_string, 0.01, 2000, 5, Logarithmic::Yes)
- , m_decay("Decay"_string, 0.01, 20'000, 80, Logarithmic::Yes)
- , m_sustain("Sustain"_string, 0.001, 1, 0.725, Logarithmic::No)
- , m_release("Release"_string, 0.01, 6'000, 120, Logarithmic::Yes)
- {
- m_parameters.append(m_waveform);
- m_parameters.append(m_attack);
- m_parameters.append(m_decay);
- m_parameters.append(m_sustain);
- m_parameters.append(m_release);
- }
- void Classic::process_impl(Signal const& input_signal, [[maybe_unused]] Signal& output_signal)
- {
- auto const& in = input_signal.get<RollNotes>();
- auto& output_samples = output_signal.get<FixedArray<Sample>>();
- // Do this for every time step and set the signal accordingly.
- for (size_t sample_index = 0; sample_index < output_samples.size(); ++sample_index) {
- Sample& out = output_samples[sample_index];
- out = {};
- u32 sample_time = m_transport->time() + sample_index;
- Array<Optional<PitchedEnvelope>, note_frequencies.size()> playing_envelopes;
- // "Press" the necessary notes in the internal representation,
- // and "release" all of the others
- for (u8 i = 0; i < note_frequencies.size(); ++i) {
- if (auto maybe_note = in[i]; maybe_note.has_value())
- m_playing_notes[i] = maybe_note;
- if (m_playing_notes[i].has_value()) {
- Envelope note_envelope = m_playing_notes[i]->to_envelope(sample_time, m_attack * m_transport->ms_sample_rate(), m_decay * m_transport->ms_sample_rate(), m_release * m_transport->ms_sample_rate());
- // There are two conditions for removing notes:
- // 1. The envelope has expired, regardless of whether the note was still given to us in the input.
- if (!note_envelope.is_active()) {
- m_playing_notes[i] = {};
- continue;
- }
- // 2. The envelope has not expired, but the note was not given to us.
- // This means that the note abruptly stopped playing; i.e. the audio infrastructure didn't know the length of the notes initially.
- // That basically means we're dealing with a keyboard note. Chop its end time to end now.
- if (!note_envelope.is_release() && !in[i].has_value()) {
- // dbgln("note {} not released, setting release phase, envelope={}", i, note_envelope.envelope);
- note_envelope.set_release(0);
- auto real_note = *m_playing_notes[i];
- real_note.off_sample = sample_time;
- m_playing_notes[i] = real_note;
- }
- playing_envelopes[i] = PitchedEnvelope { note_envelope, i };
- }
- }
- for (auto envelope : playing_envelopes) {
- if (!envelope.has_value())
- continue;
- double volume = volume_from_envelope(*envelope);
- double wave = wave_position(sample_time, envelope->note);
- out += volume * wave;
- }
- }
- }
- // Linear ADSR envelope with no peak adjustment.
- double Classic::volume_from_envelope(Envelope const& envelope) const
- {
- switch (static_cast<EnvelopeState>(envelope)) {
- case EnvelopeState::Off:
- return 0;
- case EnvelopeState::Attack:
- return envelope.attack();
- case EnvelopeState::Decay:
- // As we fade from high (1) to low (headroom above the sustain level) here, use 1-decay as the interpolation.
- return (1. - envelope.decay()) * (1. - m_sustain) + m_sustain;
- case EnvelopeState::Sustain:
- return m_sustain;
- case EnvelopeState::Release:
- // Same goes for the release fade from high to low.
- return (1. - envelope.release()) * m_sustain;
- }
- VERIFY_NOT_REACHED();
- }
- double Classic::wave_position(u32 sample_time, u8 note)
- {
- switch (m_waveform) {
- case Sine:
- return sin_position(sample_time, note);
- case Triangle:
- return triangle_position(sample_time, note);
- case Square:
- return square_position(sample_time, note);
- case Saw:
- return saw_position(sample_time, note);
- case Noise:
- return noise_position(sample_time, note);
- }
- VERIFY_NOT_REACHED();
- }
- double Classic::samples_per_cycle(u8 note) const
- {
- return m_transport->sample_rate() / note_frequencies[note];
- }
- double Classic::sin_position(u32 sample_time, u8 note) const
- {
- double spc = samples_per_cycle(note);
- double cycle_pos = sample_time / spc;
- return AK::sin(cycle_pos * 2 * AK::Pi<double>);
- }
- // Absolute value of the saw wave "flips" the negative portion into the positive, creating a ramp up and down.
- double Classic::triangle_position(u32 sample_time, u8 note) const
- {
- double saw = saw_position(sample_time, note);
- return AK::fabs(saw) * 2 - 1;
- }
- // The first half of the cycle period is 1, the other half -1.
- double Classic::square_position(u32 sample_time, u8 note) const
- {
- double spc = samples_per_cycle(note);
- double progress = AK::fmod(static_cast<double>(sample_time), spc) / spc;
- return progress >= 0.5 ? -1 : 1;
- }
- // Modulus creates inverse saw, which we need to flip and scale.
- double Classic::saw_position(u32 sample_time, u8 note) const
- {
- double spc = samples_per_cycle(note);
- double unscaled = spc - AK::fmod(static_cast<double>(sample_time), spc);
- return unscaled / (samples_per_cycle(note) / 2.) - 1;
- }
- // We resample the noise twenty times per cycle.
- double Classic::noise_position(u32 sample_time, u8 note)
- {
- double spc = samples_per_cycle(note);
- u32 getrandom_interval = max(static_cast<u32>(spc / 2), 1);
- // Note that this code only works well if the processor is called for every increment of time.
- if (sample_time % getrandom_interval == 0)
- last_random[note] = (get_random<u16>() / static_cast<double>(NumericLimits<u16>::max()) - .5) * 2;
- return last_random[note];
- }
- }
|