ModularFunctions.cpp 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. /*
  2. * Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Debug.h>
  7. #include <LibCrypto/BigInt/Algorithms/UnsignedBigIntegerAlgorithms.h>
  8. #include <LibCrypto/NumberTheory/ModularFunctions.h>
  9. namespace Crypto::NumberTheory {
  10. UnsignedBigInteger ModularInverse(UnsignedBigInteger const& a_, UnsignedBigInteger const& b)
  11. {
  12. if (b == 1)
  13. return { 1 };
  14. UnsignedBigInteger temp_1;
  15. UnsignedBigInteger temp_2;
  16. UnsignedBigInteger temp_3;
  17. UnsignedBigInteger temp_4;
  18. UnsignedBigInteger temp_minus;
  19. UnsignedBigInteger temp_quotient;
  20. UnsignedBigInteger temp_d;
  21. UnsignedBigInteger temp_u;
  22. UnsignedBigInteger temp_v;
  23. UnsignedBigInteger temp_x;
  24. UnsignedBigInteger result;
  25. UnsignedBigIntegerAlgorithms::modular_inverse_without_allocation(a_, b, temp_1, temp_2, temp_3, temp_4, temp_minus, temp_quotient, temp_d, temp_u, temp_v, temp_x, result);
  26. return result;
  27. }
  28. UnsignedBigInteger ModularPower(UnsignedBigInteger const& b, UnsignedBigInteger const& e, UnsignedBigInteger const& m)
  29. {
  30. if (m == 1)
  31. return 0;
  32. if (m.is_odd()) {
  33. UnsignedBigInteger temp_z0 { 0 };
  34. UnsignedBigInteger temp_rr { 0 };
  35. UnsignedBigInteger temp_one { 0 };
  36. UnsignedBigInteger temp_z { 0 };
  37. UnsignedBigInteger temp_zz { 0 };
  38. UnsignedBigInteger temp_x { 0 };
  39. UnsignedBigInteger temp_extra { 0 };
  40. UnsignedBigInteger result;
  41. UnsignedBigIntegerAlgorithms::montgomery_modular_power_with_minimal_allocations(b, e, m, temp_z0, temp_rr, temp_one, temp_z, temp_zz, temp_x, temp_extra, result);
  42. return result;
  43. }
  44. UnsignedBigInteger ep { e };
  45. UnsignedBigInteger base { b };
  46. UnsignedBigInteger result;
  47. UnsignedBigInteger temp_1;
  48. UnsignedBigInteger temp_2;
  49. UnsignedBigInteger temp_3;
  50. UnsignedBigInteger temp_4;
  51. UnsignedBigInteger temp_multiply;
  52. UnsignedBigInteger temp_quotient;
  53. UnsignedBigInteger temp_remainder;
  54. UnsignedBigIntegerAlgorithms::destructive_modular_power_without_allocation(ep, base, m, temp_1, temp_2, temp_3, temp_4, temp_multiply, temp_quotient, temp_remainder, result);
  55. return result;
  56. }
  57. UnsignedBigInteger GCD(UnsignedBigInteger const& a, UnsignedBigInteger const& b)
  58. {
  59. UnsignedBigInteger temp_a { a };
  60. UnsignedBigInteger temp_b { b };
  61. UnsignedBigInteger temp_1;
  62. UnsignedBigInteger temp_2;
  63. UnsignedBigInteger temp_3;
  64. UnsignedBigInteger temp_4;
  65. UnsignedBigInteger temp_quotient;
  66. UnsignedBigInteger temp_remainder;
  67. UnsignedBigInteger output;
  68. UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, output);
  69. return output;
  70. }
  71. UnsignedBigInteger LCM(UnsignedBigInteger const& a, UnsignedBigInteger const& b)
  72. {
  73. UnsignedBigInteger temp_a { a };
  74. UnsignedBigInteger temp_b { b };
  75. UnsignedBigInteger temp_1;
  76. UnsignedBigInteger temp_2;
  77. UnsignedBigInteger temp_3;
  78. UnsignedBigInteger temp_4;
  79. UnsignedBigInteger temp_quotient;
  80. UnsignedBigInteger temp_remainder;
  81. UnsignedBigInteger gcd_output;
  82. UnsignedBigInteger output { 0 };
  83. UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, gcd_output);
  84. if (gcd_output == 0) {
  85. dbgln_if(NT_DEBUG, "GCD is zero");
  86. return output;
  87. }
  88. // output = (a / gcd_output) * b
  89. UnsignedBigIntegerAlgorithms::divide_without_allocation(a, gcd_output, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
  90. UnsignedBigIntegerAlgorithms::multiply_without_allocation(temp_quotient, b, temp_1, temp_2, temp_3, output);
  91. dbgln_if(NT_DEBUG, "quot: {} rem: {} out: {}", temp_quotient, temp_remainder, output);
  92. return output;
  93. }
  94. static bool MR_primality_test(UnsignedBigInteger n, Vector<UnsignedBigInteger, 256> const& tests)
  95. {
  96. // Written using Wikipedia:
  97. // https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test
  98. VERIFY(!(n < 4));
  99. auto predecessor = n.minus({ 1 });
  100. auto d = predecessor;
  101. size_t r = 0;
  102. {
  103. auto div_result = d.divided_by(2);
  104. while (div_result.remainder == 0) {
  105. d = div_result.quotient;
  106. div_result = d.divided_by(2);
  107. ++r;
  108. }
  109. }
  110. if (r == 0) {
  111. // n - 1 is odd, so n was even. But there is only one even prime:
  112. return n == 2;
  113. }
  114. for (auto& a : tests) {
  115. // Technically: VERIFY(2 <= a && a <= n - 2)
  116. VERIFY(a < n);
  117. auto x = ModularPower(a, d, n);
  118. if (x == 1 || x == predecessor)
  119. continue;
  120. bool skip_this_witness = false;
  121. // r − 1 iterations.
  122. for (size_t i = 0; i < r - 1; ++i) {
  123. x = ModularPower(x, 2, n);
  124. if (x == predecessor) {
  125. skip_this_witness = true;
  126. break;
  127. }
  128. }
  129. if (skip_this_witness)
  130. continue;
  131. return false; // "composite"
  132. }
  133. return true; // "probably prime"
  134. }
  135. UnsignedBigInteger random_number(UnsignedBigInteger const& min, UnsignedBigInteger const& max_excluded)
  136. {
  137. VERIFY(min < max_excluded);
  138. auto range = max_excluded.minus(min);
  139. UnsignedBigInteger base;
  140. auto size = range.trimmed_length() * sizeof(u32) + 2;
  141. // "+2" is intentional (see below).
  142. auto buffer = ByteBuffer::create_uninitialized(size).release_value_but_fixme_should_propagate_errors(); // FIXME: Handle possible OOM situation.
  143. auto* buf = buffer.data();
  144. fill_with_random(buffer);
  145. UnsignedBigInteger random { buf, size };
  146. // At this point, `random` is a large number, in the range [0, 256^size).
  147. // To get down to the actual range, we could just compute random % range.
  148. // This introduces "modulo bias". However, since we added 2 to `size`,
  149. // we know that the generated range is at least 65536 times as large as the
  150. // required range! This means that the modulo bias is only 0.0015%, if all
  151. // inputs are chosen adversarially. Let's hope this is good enough.
  152. auto divmod = random.divided_by(range);
  153. // The proper way to fix this is to restart if `divmod.quotient` is maximal.
  154. return divmod.remainder.plus(min);
  155. }
  156. bool is_probably_prime(UnsignedBigInteger const& p)
  157. {
  158. // Is it a small number?
  159. if (p < 49) {
  160. u32 p_value = p.words()[0];
  161. // Is it a very small prime?
  162. if (p_value == 2 || p_value == 3 || p_value == 5 || p_value == 7)
  163. return true;
  164. // Is it the multiple of a very small prime?
  165. if (p_value % 2 == 0 || p_value % 3 == 0 || p_value % 5 == 0 || p_value % 7 == 0)
  166. return false;
  167. // Then it must be a prime, but not a very small prime, like 37.
  168. return true;
  169. }
  170. Vector<UnsignedBigInteger, 256> tests;
  171. // Make some good initial guesses that are guaranteed to find all primes < 2^64.
  172. tests.append(UnsignedBigInteger(2));
  173. tests.append(UnsignedBigInteger(3));
  174. tests.append(UnsignedBigInteger(5));
  175. tests.append(UnsignedBigInteger(7));
  176. tests.append(UnsignedBigInteger(11));
  177. tests.append(UnsignedBigInteger(13));
  178. UnsignedBigInteger seventeen { 17 };
  179. for (size_t i = tests.size(); i < 256; ++i) {
  180. tests.append(random_number(seventeen, p.minus(2)));
  181. }
  182. // Miller-Rabin's "error" is 8^-k. In adversarial cases, it's 4^-k.
  183. // With 200 random numbers, this would mean an error of about 2^-400.
  184. // So we don't need to worry too much about the quality of the random numbers.
  185. return MR_primality_test(p, tests);
  186. }
  187. UnsignedBigInteger random_big_prime(size_t bits)
  188. {
  189. VERIFY(bits >= 33);
  190. UnsignedBigInteger min = "6074001000"_bigint.shift_left(bits - 33);
  191. UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).minus(1);
  192. for (;;) {
  193. auto p = random_number(min, max);
  194. if ((p.words()[0] & 1) == 0) {
  195. // An even number is definitely not a large prime.
  196. continue;
  197. }
  198. if (is_probably_prime(p))
  199. return p;
  200. }
  201. }
  202. }