123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 |
- /*
- * Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
- * Copyright (c) 2023, Jelle Raaijmakers <jelle@gmta.nl>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/Types.h>
- #include <LibCrypto/Hash/SHA2.h>
- namespace Crypto::Hash {
- constexpr static auto ROTRIGHT(u32 a, size_t b) { return (a >> b) | (a << (32 - b)); }
- constexpr static auto CH(u32 x, u32 y, u32 z) { return (x & y) ^ (z & ~x); }
- constexpr static auto MAJ(u32 x, u32 y, u32 z) { return (x & y) ^ (x & z) ^ (y & z); }
- constexpr static auto EP0(u32 x) { return ROTRIGHT(x, 2) ^ ROTRIGHT(x, 13) ^ ROTRIGHT(x, 22); }
- constexpr static auto EP1(u32 x) { return ROTRIGHT(x, 6) ^ ROTRIGHT(x, 11) ^ ROTRIGHT(x, 25); }
- constexpr static auto SIGN0(u32 x) { return ROTRIGHT(x, 7) ^ ROTRIGHT(x, 18) ^ (x >> 3); }
- constexpr static auto SIGN1(u32 x) { return ROTRIGHT(x, 17) ^ ROTRIGHT(x, 19) ^ (x >> 10); }
- constexpr static auto ROTRIGHT(u64 a, size_t b) { return (a >> b) | (a << (64 - b)); }
- constexpr static auto CH(u64 x, u64 y, u64 z) { return (x & y) ^ (z & ~x); }
- constexpr static auto MAJ(u64 x, u64 y, u64 z) { return (x & y) ^ (x & z) ^ (y & z); }
- constexpr static auto EP0(u64 x) { return ROTRIGHT(x, 28) ^ ROTRIGHT(x, 34) ^ ROTRIGHT(x, 39); }
- constexpr static auto EP1(u64 x) { return ROTRIGHT(x, 14) ^ ROTRIGHT(x, 18) ^ ROTRIGHT(x, 41); }
- constexpr static auto SIGN0(u64 x) { return ROTRIGHT(x, 1) ^ ROTRIGHT(x, 8) ^ (x >> 7); }
- constexpr static auto SIGN1(u64 x) { return ROTRIGHT(x, 19) ^ ROTRIGHT(x, 61) ^ (x >> 6); }
- inline void SHA256::transform(u8 const* data)
- {
- u32 m[64];
- size_t i = 0;
- for (size_t j = 0; i < 16; ++i, j += 4) {
- m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | data[j + 3];
- }
- for (; i < BlockSize; ++i) {
- m[i] = SIGN1(m[i - 2]) + m[i - 7] + SIGN0(m[i - 15]) + m[i - 16];
- }
- auto a = m_state[0], b = m_state[1],
- c = m_state[2], d = m_state[3],
- e = m_state[4], f = m_state[5],
- g = m_state[6], h = m_state[7];
- for (i = 0; i < Rounds; ++i) {
- auto temp0 = h + EP1(e) + CH(e, f, g) + SHA256Constants::RoundConstants[i] + m[i];
- auto temp1 = EP0(a) + MAJ(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + temp0;
- d = c;
- c = b;
- b = a;
- a = temp0 + temp1;
- }
- m_state[0] += a;
- m_state[1] += b;
- m_state[2] += c;
- m_state[3] += d;
- m_state[4] += e;
- m_state[5] += f;
- m_state[6] += g;
- m_state[7] += h;
- }
- template<size_t BlockSize, typename Callback>
- void update_buffer(u8* buffer, u8 const* input, size_t length, size_t& data_length, Callback callback)
- {
- while (length > 0) {
- size_t copy_bytes = AK::min(length, BlockSize - data_length);
- __builtin_memcpy(buffer + data_length, input, copy_bytes);
- input += copy_bytes;
- length -= copy_bytes;
- data_length += copy_bytes;
- if (data_length == BlockSize) {
- callback();
- data_length = 0;
- }
- }
- }
- void SHA256::update(u8 const* message, size_t length)
- {
- update_buffer<BlockSize>(m_data_buffer, message, length, m_data_length, [&]() {
- transform(m_data_buffer);
- m_bit_length += BlockSize * 8;
- });
- }
- SHA256::DigestType SHA256::digest()
- {
- auto digest = peek();
- reset();
- return digest;
- }
- SHA256::DigestType SHA256::peek()
- {
- DigestType digest;
- size_t i = m_data_length;
- if (i < FinalBlockDataSize) {
- m_data_buffer[i++] = 0x80;
- while (i < FinalBlockDataSize)
- m_data_buffer[i++] = 0x00;
- } else {
- // First, complete a block with some padding.
- m_data_buffer[i++] = 0x80;
- while (i < BlockSize)
- m_data_buffer[i++] = 0x00;
- transform(m_data_buffer);
- // Then start another block with BlockSize - 8 bytes of zeros
- __builtin_memset(m_data_buffer, 0, FinalBlockDataSize);
- }
- // append total message length
- m_bit_length += m_data_length * 8;
- m_data_buffer[BlockSize - 1] = m_bit_length;
- m_data_buffer[BlockSize - 2] = m_bit_length >> 8;
- m_data_buffer[BlockSize - 3] = m_bit_length >> 16;
- m_data_buffer[BlockSize - 4] = m_bit_length >> 24;
- m_data_buffer[BlockSize - 5] = m_bit_length >> 32;
- m_data_buffer[BlockSize - 6] = m_bit_length >> 40;
- m_data_buffer[BlockSize - 7] = m_bit_length >> 48;
- m_data_buffer[BlockSize - 8] = m_bit_length >> 56;
- transform(m_data_buffer);
- // SHA uses big-endian and we assume little-endian
- // FIXME: looks like a thing for AK::NetworkOrdered,
- // but that doesn't support shifting operations
- for (i = 0; i < 4; ++i) {
- digest.data[i + 0] = (m_state[0] >> (24 - i * 8)) & 0x000000ff;
- digest.data[i + 4] = (m_state[1] >> (24 - i * 8)) & 0x000000ff;
- digest.data[i + 8] = (m_state[2] >> (24 - i * 8)) & 0x000000ff;
- digest.data[i + 12] = (m_state[3] >> (24 - i * 8)) & 0x000000ff;
- digest.data[i + 16] = (m_state[4] >> (24 - i * 8)) & 0x000000ff;
- digest.data[i + 20] = (m_state[5] >> (24 - i * 8)) & 0x000000ff;
- digest.data[i + 24] = (m_state[6] >> (24 - i * 8)) & 0x000000ff;
- digest.data[i + 28] = (m_state[7] >> (24 - i * 8)) & 0x000000ff;
- }
- return digest;
- }
- inline void SHA384::transform(u8 const* data)
- {
- u64 m[80];
- size_t i = 0;
- for (size_t j = 0; i < 16; ++i, j += 8) {
- m[i] = ((u64)data[j] << 56) | ((u64)data[j + 1] << 48) | ((u64)data[j + 2] << 40) | ((u64)data[j + 3] << 32) | ((u64)data[j + 4] << 24) | ((u64)data[j + 5] << 16) | ((u64)data[j + 6] << 8) | (u64)data[j + 7];
- }
- for (; i < Rounds; ++i) {
- m[i] = SIGN1(m[i - 2]) + m[i - 7] + SIGN0(m[i - 15]) + m[i - 16];
- }
- auto a = m_state[0], b = m_state[1],
- c = m_state[2], d = m_state[3],
- e = m_state[4], f = m_state[5],
- g = m_state[6], h = m_state[7];
- for (i = 0; i < Rounds; ++i) {
- // Note : SHA384 uses the SHA512 constants.
- auto temp0 = h + EP1(e) + CH(e, f, g) + SHA512Constants::RoundConstants[i] + m[i];
- auto temp1 = EP0(a) + MAJ(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + temp0;
- d = c;
- c = b;
- b = a;
- a = temp0 + temp1;
- }
- m_state[0] += a;
- m_state[1] += b;
- m_state[2] += c;
- m_state[3] += d;
- m_state[4] += e;
- m_state[5] += f;
- m_state[6] += g;
- m_state[7] += h;
- }
- void SHA384::update(u8 const* message, size_t length)
- {
- update_buffer<BlockSize>(m_data_buffer, message, length, m_data_length, [&]() {
- transform(m_data_buffer);
- m_bit_length += BlockSize * 8;
- });
- }
- SHA384::DigestType SHA384::digest()
- {
- auto digest = peek();
- reset();
- return digest;
- }
- SHA384::DigestType SHA384::peek()
- {
- DigestType digest;
- size_t i = m_data_length;
- if (i < FinalBlockDataSize) {
- m_data_buffer[i++] = 0x80;
- while (i < FinalBlockDataSize)
- m_data_buffer[i++] = 0x00;
- } else {
- // First, complete a block with some padding.
- m_data_buffer[i++] = 0x80;
- while (i < BlockSize)
- m_data_buffer[i++] = 0x00;
- transform(m_data_buffer);
- // Then start another block with BlockSize - 8 bytes of zeros
- __builtin_memset(m_data_buffer, 0, FinalBlockDataSize);
- }
- // append total message length
- m_bit_length += m_data_length * 8;
- m_data_buffer[BlockSize - 1] = m_bit_length;
- m_data_buffer[BlockSize - 2] = m_bit_length >> 8;
- m_data_buffer[BlockSize - 3] = m_bit_length >> 16;
- m_data_buffer[BlockSize - 4] = m_bit_length >> 24;
- m_data_buffer[BlockSize - 5] = m_bit_length >> 32;
- m_data_buffer[BlockSize - 6] = m_bit_length >> 40;
- m_data_buffer[BlockSize - 7] = m_bit_length >> 48;
- m_data_buffer[BlockSize - 8] = m_bit_length >> 56;
- // FIXME: Theoretically we should keep track of the number of bits as a u128, now we can only hash up to 2 EiB.
- m_data_buffer[BlockSize - 9] = 0;
- m_data_buffer[BlockSize - 10] = 0;
- m_data_buffer[BlockSize - 11] = 0;
- m_data_buffer[BlockSize - 12] = 0;
- m_data_buffer[BlockSize - 13] = 0;
- m_data_buffer[BlockSize - 14] = 0;
- m_data_buffer[BlockSize - 15] = 0;
- m_data_buffer[BlockSize - 16] = 0;
- transform(m_data_buffer);
- // SHA uses big-endian and we assume little-endian
- // FIXME: looks like a thing for AK::NetworkOrdered,
- // but that doesn't support shifting operations
- for (i = 0; i < 8; ++i) {
- digest.data[i + 0] = (m_state[0] >> (56 - i * 8)) & 0x000000ff;
- digest.data[i + 8] = (m_state[1] >> (56 - i * 8)) & 0x000000ff;
- digest.data[i + 16] = (m_state[2] >> (56 - i * 8)) & 0x000000ff;
- digest.data[i + 24] = (m_state[3] >> (56 - i * 8)) & 0x000000ff;
- digest.data[i + 32] = (m_state[4] >> (56 - i * 8)) & 0x000000ff;
- digest.data[i + 40] = (m_state[5] >> (56 - i * 8)) & 0x000000ff;
- }
- return digest;
- }
- inline void SHA512::transform(u8 const* data)
- {
- u64 m[80];
- size_t i = 0;
- for (size_t j = 0; i < 16; ++i, j += 8) {
- m[i] = ((u64)data[j] << 56) | ((u64)data[j + 1] << 48) | ((u64)data[j + 2] << 40) | ((u64)data[j + 3] << 32) | ((u64)data[j + 4] << 24) | ((u64)data[j + 5] << 16) | ((u64)data[j + 6] << 8) | (u64)data[j + 7];
- }
- for (; i < Rounds; ++i) {
- m[i] = SIGN1(m[i - 2]) + m[i - 7] + SIGN0(m[i - 15]) + m[i - 16];
- }
- auto a = m_state[0], b = m_state[1],
- c = m_state[2], d = m_state[3],
- e = m_state[4], f = m_state[5],
- g = m_state[6], h = m_state[7];
- for (i = 0; i < Rounds; ++i) {
- auto temp0 = h + EP1(e) + CH(e, f, g) + SHA512Constants::RoundConstants[i] + m[i];
- auto temp1 = EP0(a) + MAJ(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + temp0;
- d = c;
- c = b;
- b = a;
- a = temp0 + temp1;
- }
- m_state[0] += a;
- m_state[1] += b;
- m_state[2] += c;
- m_state[3] += d;
- m_state[4] += e;
- m_state[5] += f;
- m_state[6] += g;
- m_state[7] += h;
- }
- void SHA512::update(u8 const* message, size_t length)
- {
- update_buffer<BlockSize>(m_data_buffer, message, length, m_data_length, [&]() {
- transform(m_data_buffer);
- m_bit_length += BlockSize * 8;
- });
- }
- SHA512::DigestType SHA512::digest()
- {
- auto digest = peek();
- reset();
- return digest;
- }
- SHA512::DigestType SHA512::peek()
- {
- DigestType digest;
- size_t i = m_data_length;
- if (i < FinalBlockDataSize) {
- m_data_buffer[i++] = 0x80;
- while (i < FinalBlockDataSize)
- m_data_buffer[i++] = 0x00;
- } else {
- // First, complete a block with some padding.
- m_data_buffer[i++] = 0x80;
- while (i < BlockSize)
- m_data_buffer[i++] = 0x00;
- transform(m_data_buffer);
- // Then start another block with BlockSize - 8 bytes of zeros
- __builtin_memset(m_data_buffer, 0, FinalBlockDataSize);
- }
- // append total message length
- m_bit_length += m_data_length * 8;
- m_data_buffer[BlockSize - 1] = m_bit_length;
- m_data_buffer[BlockSize - 2] = m_bit_length >> 8;
- m_data_buffer[BlockSize - 3] = m_bit_length >> 16;
- m_data_buffer[BlockSize - 4] = m_bit_length >> 24;
- m_data_buffer[BlockSize - 5] = m_bit_length >> 32;
- m_data_buffer[BlockSize - 6] = m_bit_length >> 40;
- m_data_buffer[BlockSize - 7] = m_bit_length >> 48;
- m_data_buffer[BlockSize - 8] = m_bit_length >> 56;
- // FIXME: Theoretically we should keep track of the number of bits as a u128, now we can only hash up to 2 EiB.
- m_data_buffer[BlockSize - 9] = 0;
- m_data_buffer[BlockSize - 10] = 0;
- m_data_buffer[BlockSize - 11] = 0;
- m_data_buffer[BlockSize - 12] = 0;
- m_data_buffer[BlockSize - 13] = 0;
- m_data_buffer[BlockSize - 14] = 0;
- m_data_buffer[BlockSize - 15] = 0;
- m_data_buffer[BlockSize - 16] = 0;
- transform(m_data_buffer);
- // SHA uses big-endian and we assume little-endian
- // FIXME: looks like a thing for AK::NetworkOrdered,
- // but that doesn't support shifting operations
- for (i = 0; i < 8; ++i) {
- digest.data[i + 0] = (m_state[0] >> (56 - i * 8)) & 0x000000ff;
- digest.data[i + 8] = (m_state[1] >> (56 - i * 8)) & 0x000000ff;
- digest.data[i + 16] = (m_state[2] >> (56 - i * 8)) & 0x000000ff;
- digest.data[i + 24] = (m_state[3] >> (56 - i * 8)) & 0x000000ff;
- digest.data[i + 32] = (m_state[4] >> (56 - i * 8)) & 0x000000ff;
- digest.data[i + 40] = (m_state[5] >> (56 - i * 8)) & 0x000000ff;
- digest.data[i + 48] = (m_state[6] >> (56 - i * 8)) & 0x000000ff;
- digest.data[i + 56] = (m_state[7] >> (56 - i * 8)) & 0x000000ff;
- }
- return digest;
- }
- }
|