SHA1.cpp 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. /*
  2. * Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
  3. * Copyright (c) 2023, Jelle Raaijmakers <jelle@gmta.nl>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/Endian.h>
  8. #include <AK/Memory.h>
  9. #include <AK/Types.h>
  10. #include <LibCrypto/Hash/SHA1.h>
  11. namespace Crypto::Hash {
  12. static constexpr auto ROTATE_LEFT(u32 value, size_t bits)
  13. {
  14. return (value << bits) | (value >> (32 - bits));
  15. }
  16. inline void SHA1::transform(u8 const* data)
  17. {
  18. u32 blocks[80];
  19. for (size_t i = 0; i < 16; ++i)
  20. blocks[i] = AK::convert_between_host_and_network_endian(((u32 const*)data)[i]);
  21. // w[i] = (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16]) leftrotate 1
  22. for (size_t i = 16; i < Rounds; ++i)
  23. blocks[i] = ROTATE_LEFT(blocks[i - 3] ^ blocks[i - 8] ^ blocks[i - 14] ^ blocks[i - 16], 1);
  24. auto a = m_state[0], b = m_state[1], c = m_state[2], d = m_state[3], e = m_state[4];
  25. u32 f, k;
  26. for (size_t i = 0; i < Rounds; ++i) {
  27. if (i <= 19) {
  28. f = (b & c) | ((~b) & d);
  29. k = SHA1Constants::RoundConstants[0];
  30. } else if (i <= 39) {
  31. f = b ^ c ^ d;
  32. k = SHA1Constants::RoundConstants[1];
  33. } else if (i <= 59) {
  34. f = (b & c) | (b & d) | (c & d);
  35. k = SHA1Constants::RoundConstants[2];
  36. } else {
  37. f = b ^ c ^ d;
  38. k = SHA1Constants::RoundConstants[3];
  39. }
  40. auto temp = ROTATE_LEFT(a, 5) + f + e + k + blocks[i];
  41. e = d;
  42. d = c;
  43. c = ROTATE_LEFT(b, 30);
  44. b = a;
  45. a = temp;
  46. }
  47. m_state[0] += a;
  48. m_state[1] += b;
  49. m_state[2] += c;
  50. m_state[3] += d;
  51. m_state[4] += e;
  52. // "security" measures, as if SHA1 is secure
  53. a = 0;
  54. b = 0;
  55. c = 0;
  56. d = 0;
  57. e = 0;
  58. secure_zero(blocks, 16 * sizeof(u32));
  59. }
  60. void SHA1::update(u8 const* message, size_t length)
  61. {
  62. while (length > 0) {
  63. size_t copy_bytes = AK::min(length, BlockSize - m_data_length);
  64. __builtin_memcpy(m_data_buffer + m_data_length, message, copy_bytes);
  65. message += copy_bytes;
  66. length -= copy_bytes;
  67. m_data_length += copy_bytes;
  68. if (m_data_length == BlockSize) {
  69. transform(m_data_buffer);
  70. m_bit_length += BlockSize * 8;
  71. m_data_length = 0;
  72. }
  73. }
  74. }
  75. SHA1::DigestType SHA1::digest()
  76. {
  77. auto digest = peek();
  78. reset();
  79. return digest;
  80. }
  81. SHA1::DigestType SHA1::peek()
  82. {
  83. DigestType digest;
  84. size_t i = m_data_length;
  85. // make a local copy of the data as we modify it
  86. u8 data[BlockSize];
  87. u32 state[5];
  88. __builtin_memcpy(data, m_data_buffer, m_data_length);
  89. __builtin_memcpy(state, m_state, 20);
  90. if (m_data_length < FinalBlockDataSize) {
  91. m_data_buffer[i++] = 0x80;
  92. while (i < FinalBlockDataSize)
  93. m_data_buffer[i++] = 0x00;
  94. } else {
  95. // First, complete a block with some padding.
  96. m_data_buffer[i++] = 0x80;
  97. while (i < BlockSize)
  98. m_data_buffer[i++] = 0x00;
  99. transform(m_data_buffer);
  100. // Then start another block with BlockSize - 8 bytes of zeros
  101. __builtin_memset(m_data_buffer, 0, FinalBlockDataSize);
  102. }
  103. // append total message length
  104. m_bit_length += m_data_length * 8;
  105. m_data_buffer[BlockSize - 1] = m_bit_length;
  106. m_data_buffer[BlockSize - 2] = m_bit_length >> 8;
  107. m_data_buffer[BlockSize - 3] = m_bit_length >> 16;
  108. m_data_buffer[BlockSize - 4] = m_bit_length >> 24;
  109. m_data_buffer[BlockSize - 5] = m_bit_length >> 32;
  110. m_data_buffer[BlockSize - 6] = m_bit_length >> 40;
  111. m_data_buffer[BlockSize - 7] = m_bit_length >> 48;
  112. m_data_buffer[BlockSize - 8] = m_bit_length >> 56;
  113. transform(m_data_buffer);
  114. for (i = 0; i < 4; ++i) {
  115. digest.data[i + 0] = (m_state[0] >> (24 - i * 8)) & 0x000000ff;
  116. digest.data[i + 4] = (m_state[1] >> (24 - i * 8)) & 0x000000ff;
  117. digest.data[i + 8] = (m_state[2] >> (24 - i * 8)) & 0x000000ff;
  118. digest.data[i + 12] = (m_state[3] >> (24 - i * 8)) & 0x000000ff;
  119. digest.data[i + 16] = (m_state[4] >> (24 - i * 8)) & 0x000000ff;
  120. }
  121. // restore the data
  122. __builtin_memcpy(m_data_buffer, data, m_data_length);
  123. __builtin_memcpy(m_state, state, 20);
  124. return digest;
  125. }
  126. }