Curve25519.cpp 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. /*
  2. * Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Endian.h>
  7. #include <AK/Types.h>
  8. #include <LibCrypto/Curves/Curve25519.h>
  9. namespace Crypto::Curves {
  10. void Curve25519::set(u32* state, u32 value)
  11. {
  12. state[0] = value;
  13. for (auto i = 1; i < WORDS; i++) {
  14. state[i] = 0;
  15. }
  16. }
  17. void Curve25519::modular_square(u32* state, u32 const* value)
  18. {
  19. // Compute R = (A ^ 2) mod p
  20. modular_multiply(state, value, value);
  21. }
  22. void Curve25519::modular_subtract(u32* state, u32 const* first, u32 const* second)
  23. {
  24. // R = (A - B) mod p
  25. i64 temp = -19;
  26. for (auto i = 0; i < WORDS; i++) {
  27. temp += first[i];
  28. temp -= second[i];
  29. state[i] = temp & 0xFFFFFFFF;
  30. temp >>= 32;
  31. }
  32. // Compute R = A + (2^255 - 19) - B
  33. state[7] += 0x80000000;
  34. modular_reduce(state, state);
  35. }
  36. void Curve25519::modular_add(u32* state, u32 const* first, u32 const* second)
  37. {
  38. // R = (A + B) mod p
  39. u64 temp = 0;
  40. for (auto i = 0; i < WORDS; i++) {
  41. temp += first[i];
  42. temp += second[i];
  43. state[i] = temp & 0xFFFFFFFF;
  44. temp >>= 32;
  45. }
  46. modular_reduce(state, state);
  47. }
  48. void Curve25519::modular_multiply(u32* state, u32 const* first, u32 const* second)
  49. {
  50. // Compute R = (A * B) mod p
  51. u64 temp = 0;
  52. u64 carry = 0;
  53. u32 output[WORDS * 2];
  54. // Comba's method
  55. for (auto i = 0; i < 16; i++) {
  56. if (i < WORDS) {
  57. for (auto j = 0; j <= i; j++) {
  58. temp += (u64)first[j] * second[i - j];
  59. carry += temp >> 32;
  60. temp &= 0xFFFFFFFF;
  61. }
  62. } else {
  63. for (auto j = i - 7; j < WORDS; j++) {
  64. temp += (u64)first[j] * second[i - j];
  65. carry += temp >> 32;
  66. temp &= 0xFFFFFFFF;
  67. }
  68. }
  69. output[i] = temp & 0xFFFFFFFF;
  70. temp = carry & 0xFFFFFFFF;
  71. carry >>= 32;
  72. }
  73. // Reduce bit 255 (2^255 = 19 mod p)
  74. temp = (output[7] >> 31) * 19;
  75. // Mask the most significant bit
  76. output[7] &= 0x7FFFFFFF;
  77. // Fast modular reduction 1st pass
  78. for (auto i = 0; i < WORDS; i++) {
  79. temp += output[i];
  80. temp += (u64)output[i + 8] * 38;
  81. output[i] = temp & 0xFFFFFFFF;
  82. temp >>= 32;
  83. }
  84. // Reduce bit 256 (2^256 = 38 mod p)
  85. temp *= 38;
  86. // Reduce bit 255 (2^255 = 19 mod p)
  87. temp += (output[7] >> 31) * 19;
  88. // Mask the most significant bit
  89. output[7] &= 0x7FFFFFFF;
  90. // Fast modular reduction 2nd pass
  91. for (auto i = 0; i < WORDS; i++) {
  92. temp += output[i];
  93. output[i] = temp & 0xFFFFFFFF;
  94. temp >>= 32;
  95. }
  96. modular_reduce(state, output);
  97. }
  98. void Curve25519::export_state(u32* state, u8* output)
  99. {
  100. for (u32 i = 0; i < WORDS; i++) {
  101. state[i] = AK::convert_between_host_and_little_endian(state[i]);
  102. }
  103. memcpy(output, state, BYTES);
  104. }
  105. void Curve25519::import_state(u32* state, u8 const* data)
  106. {
  107. memcpy(state, data, BYTES);
  108. for (u32 i = 0; i < WORDS; i++) {
  109. state[i] = AK::convert_between_host_and_little_endian(state[i]);
  110. }
  111. }
  112. void Curve25519::modular_subtract_single(u32* r, u32 const* a, u32 b)
  113. {
  114. i64 temp = -19;
  115. temp -= b;
  116. // Compute R = A - 19 - B
  117. for (u32 i = 0; i < 8; i++) {
  118. temp += a[i];
  119. r[i] = temp & 0xFFFFFFFF;
  120. temp >>= 32;
  121. }
  122. // Compute R = A + (2^255 - 19) - B
  123. r[7] += 0x80000000;
  124. modular_reduce(r, r);
  125. }
  126. void Curve25519::modular_add_single(u32* state, u32 const* first, u32 second)
  127. {
  128. u64 temp = second;
  129. // Compute R = A + B
  130. for (u32 i = 0; i < 8; i++) {
  131. temp += first[i];
  132. state[i] = temp & 0xFFFFFFFF;
  133. temp >>= 32;
  134. }
  135. modular_reduce(state, state);
  136. }
  137. u32 Curve25519::modular_square_root(u32* r, u32 const* a, u32 const* b)
  138. {
  139. u32 c[8];
  140. u32 u[8];
  141. u32 v[8];
  142. // To compute the square root of (A / B), the first step is to compute the candidate root x = (A / B)^((p+3)/8)
  143. modular_square(v, b);
  144. modular_multiply(v, v, b);
  145. modular_square(v, v);
  146. modular_multiply(v, v, b);
  147. modular_multiply(c, a, v);
  148. modular_square(u, c);
  149. modular_multiply(u, u, c);
  150. modular_square(u, u);
  151. modular_multiply(v, u, c);
  152. to_power_of_2n(u, v, 3);
  153. modular_multiply(u, u, v);
  154. modular_square(u, u);
  155. modular_multiply(v, u, c);
  156. to_power_of_2n(u, v, 7);
  157. modular_multiply(u, u, v);
  158. modular_square(u, u);
  159. modular_multiply(v, u, c);
  160. to_power_of_2n(u, v, 15);
  161. modular_multiply(u, u, v);
  162. modular_square(u, u);
  163. modular_multiply(v, u, c);
  164. to_power_of_2n(u, v, 31);
  165. modular_multiply(v, u, v);
  166. to_power_of_2n(u, v, 62);
  167. modular_multiply(u, u, v);
  168. modular_square(u, u);
  169. modular_multiply(v, u, c);
  170. to_power_of_2n(u, v, 125);
  171. modular_multiply(u, u, v);
  172. modular_square(u, u);
  173. modular_square(u, u);
  174. modular_multiply(u, u, c);
  175. // The first candidate root is U = A * B^3 * (A * B^7)^((p - 5) / 8)
  176. modular_multiply(u, u, a);
  177. modular_square(v, b);
  178. modular_multiply(v, v, b);
  179. modular_multiply(u, u, v);
  180. // The second candidate root is V = U * sqrt(-1)
  181. modular_multiply(v, u, SQRT_MINUS_1);
  182. modular_square(c, u);
  183. modular_multiply(c, c, b);
  184. // Check whether B * U^2 = A
  185. u32 first_comparison = compare(c, a);
  186. modular_square(c, v);
  187. modular_multiply(c, c, b);
  188. // Check whether B * V^2 = A
  189. u32 second_comparison = compare(c, a);
  190. // Select the first or the second candidate root
  191. select(r, u, v, first_comparison);
  192. // Return 0 if the square root exists
  193. return first_comparison & second_comparison;
  194. }
  195. u32 Curve25519::compare(u32 const* a, u32 const* b)
  196. {
  197. u32 mask = 0;
  198. for (u32 i = 0; i < 8; i++) {
  199. mask |= a[i] ^ b[i];
  200. }
  201. // Return 0 if A = B, else 1
  202. return ((u32)(mask | (~mask + 1))) >> 31;
  203. }
  204. void Curve25519::modular_reduce(u32* state, u32 const* data)
  205. {
  206. // R = A mod p
  207. u64 temp = 19;
  208. u32 other[WORDS];
  209. for (auto i = 0; i < WORDS; i++) {
  210. temp += data[i];
  211. other[i] = temp & 0xFFFFFFFF;
  212. temp >>= 32;
  213. }
  214. // Compute B = A - (2^255 - 19)
  215. other[7] -= 0x80000000;
  216. u32 mask = (other[7] & 0x80000000) >> 31;
  217. select(state, other, data, mask);
  218. }
  219. void Curve25519::to_power_of_2n(u32* state, u32 const* value, u8 n)
  220. {
  221. // Pre-compute (A ^ 2) mod p
  222. modular_square(state, value);
  223. // Compute R = (A ^ (2^n)) mod p
  224. for (u32 i = 1; i < n; i++) {
  225. modular_square(state, state);
  226. }
  227. }
  228. void Curve25519::select(u32* state, u32 const* a, u32 const* b, u32 condition)
  229. {
  230. // If B < (2^255 - 19) then R = B, else R = A
  231. u32 mask = condition - 1;
  232. for (auto i = 0; i < WORDS; i++) {
  233. state[i] = (a[i] & mask) | (b[i] & ~mask);
  234. }
  235. }
  236. void Curve25519::copy(u32* state, u32 const* value)
  237. {
  238. for (auto i = 0; i < WORDS; i++) {
  239. state[i] = value[i];
  240. }
  241. }
  242. void Curve25519::modular_multiply_inverse(u32* state, u32 const* value)
  243. {
  244. // Compute R = A^-1 mod p
  245. u32 u[WORDS];
  246. u32 v[WORDS];
  247. // Fermat's little theorem
  248. modular_square(u, value);
  249. modular_multiply(u, u, value);
  250. modular_square(u, u);
  251. modular_multiply(v, u, value);
  252. to_power_of_2n(u, v, 3);
  253. modular_multiply(u, u, v);
  254. modular_square(u, u);
  255. modular_multiply(v, u, value);
  256. to_power_of_2n(u, v, 7);
  257. modular_multiply(u, u, v);
  258. modular_square(u, u);
  259. modular_multiply(v, u, value);
  260. to_power_of_2n(u, v, 15);
  261. modular_multiply(u, u, v);
  262. modular_square(u, u);
  263. modular_multiply(v, u, value);
  264. to_power_of_2n(u, v, 31);
  265. modular_multiply(v, u, v);
  266. to_power_of_2n(u, v, 62);
  267. modular_multiply(u, u, v);
  268. modular_square(u, u);
  269. modular_multiply(v, u, value);
  270. to_power_of_2n(u, v, 125);
  271. modular_multiply(u, u, v);
  272. modular_square(u, u);
  273. modular_square(u, u);
  274. modular_multiply(u, u, value);
  275. modular_square(u, u);
  276. modular_square(u, u);
  277. modular_multiply(u, u, value);
  278. modular_square(u, u);
  279. modular_multiply(state, u, value);
  280. }
  281. void Curve25519::modular_multiply_single(u32* state, u32 const* first, u32 second)
  282. {
  283. // Compute R = (A * B) mod p
  284. u64 temp = 0;
  285. u32 output[WORDS];
  286. for (auto i = 0; i < WORDS; i++) {
  287. temp += (u64)first[i] * second;
  288. output[i] = temp & 0xFFFFFFFF;
  289. temp >>= 32;
  290. }
  291. // Reduce bit 256 (2^256 = 38 mod p)
  292. temp *= 38;
  293. // Reduce bit 255 (2^255 = 19 mod p)
  294. temp += (output[7] >> 31) * 19;
  295. // Mask the most significant bit
  296. output[7] &= 0x7FFFFFFF;
  297. // Fast modular reduction
  298. for (auto i = 0; i < WORDS; i++) {
  299. temp += output[i];
  300. output[i] = temp & 0xFFFFFFFF;
  301. temp >>= 32;
  302. }
  303. modular_reduce(state, output);
  304. }
  305. }