123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- /*
- * Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/ByteReader.h>
- #include <AK/Endian.h>
- #include <LibCrypto/Cipher/ChaCha20.h>
- namespace Crypto::Cipher {
- ChaCha20::ChaCha20(ReadonlyBytes key, ReadonlyBytes nonce, u32 initial_counter)
- {
- VERIFY(key.size() == 16 || key.size() == 32);
- VERIFY(nonce.size() == 8 || nonce.size() == 12);
- // The first four words (0-3) are constants
- if (key.size() == 32) {
- m_state[0] = CONSTANT_32_BYTES[0];
- m_state[1] = CONSTANT_32_BYTES[1];
- m_state[2] = CONSTANT_32_BYTES[2];
- m_state[3] = CONSTANT_32_BYTES[3];
- } else {
- m_state[0] = CONSTANT_16_BYTES[0];
- m_state[1] = CONSTANT_16_BYTES[1];
- m_state[2] = CONSTANT_16_BYTES[2];
- m_state[3] = CONSTANT_16_BYTES[3];
- }
- // The next eight words (4-11) are taken from the key by reading the bytes in little-endian order, in 4-byte chunks.
- for (u32 i = 0; i < 16; i += 4) {
- m_state[(i / 4) + 4] = AK::convert_between_host_and_little_endian(ByteReader::load32(key.offset(i)));
- }
- // NOTE: For the 128-bit keys we read the same bytes twice to fill the state
- u32 key_offset = key.size() == 32 ? 16 : 0;
- for (u32 i = 0; i < 16; i += 4) {
- m_state[(i / 4) + 8] = AK::convert_between_host_and_little_endian(ByteReader::load32(key.offset(key_offset + i)));
- }
- // Word 12 is a block counter. Since each block is 64-bytes, a 32-bit word is enough for 256 gigabytes of data.
- m_state[12] = initial_counter;
- // Words 13-15 are a nonce, which should not be repeated for the same key.
- // The 13th word is the first 32 bits of the input nonce taken as a little-endian integer,
- // while the 15th word is the last 32 bits.
- // NOTE: In the case of an 8-byte nonce, we skip the 13th word
- u32 nonce_offset = nonce.size() == 8 ? 1 : 0;
- for (u32 i = 0; i < 12; i += 4) {
- m_state[(i / 4) + 13 + nonce_offset] = AK::convert_between_host_and_little_endian(ByteReader::load32(nonce.offset(i)));
- }
- }
- // https://datatracker.ietf.org/doc/html/rfc7539#section-2.3
- void ChaCha20::generate_block()
- {
- // Copy the current state into the block
- memcpy(m_block, m_state, 16 * sizeof(u32));
- // ChaCha20 runs 20 rounds, alternating between "column rounds" and "diagonal rounds".
- // Each round consists of four quarter-rounds
- for (u32 i = 0; i < 20; i += 2) {
- // Column rounds
- do_quarter_round(m_block[0], m_block[4], m_block[8], m_block[12]);
- do_quarter_round(m_block[1], m_block[5], m_block[9], m_block[13]);
- do_quarter_round(m_block[2], m_block[6], m_block[10], m_block[14]);
- do_quarter_round(m_block[3], m_block[7], m_block[11], m_block[15]);
- // Diagonal rounds
- do_quarter_round(m_block[0], m_block[5], m_block[10], m_block[15]);
- do_quarter_round(m_block[1], m_block[6], m_block[11], m_block[12]);
- do_quarter_round(m_block[2], m_block[7], m_block[8], m_block[13]);
- do_quarter_round(m_block[3], m_block[4], m_block[9], m_block[14]);
- }
- // At the end of 20 rounds, we add the original input words to the output words,
- for (u32 i = 0; i < 16; i++) {
- m_block[i] += m_state[i];
- }
- // and serialize the result by sequencing the words one-by-one in little-endian order.
- for (u32 i = 0; i < 16; i++) {
- m_block[i] = AK::convert_between_host_and_little_endian(m_block[i]);
- }
- }
- ALWAYS_INLINE static void rotl(u32& x, u32 n)
- {
- x = (x << n) | (x >> (32 - n));
- }
- // https://datatracker.ietf.org/doc/html/rfc8439#section-2.1
- void ChaCha20::do_quarter_round(u32& a, u32& b, u32& c, u32& d)
- {
- a += b;
- d ^= a;
- rotl(d, 16);
- c += d;
- b ^= c;
- rotl(b, 12);
- a += b;
- d ^= a;
- rotl(d, 8);
- c += d;
- b ^= c;
- rotl(b, 7);
- }
- void ChaCha20::run_cipher(ReadonlyBytes input, Bytes& output)
- {
- size_t offset = 0;
- size_t block_offset = 0;
- while (offset < input.size()) {
- if (block_offset == 0 || block_offset >= 64) {
- // Generate a new XOR block
- generate_block();
- // Increment the block counter, and carry over to block 13
- m_state[12]++;
- if (m_state[12] == 0) {
- m_state[13]++;
- }
- block_offset = 0;
- }
- // XOR the input and the current block
- u32 n = min(input.size() - offset, 64 - block_offset);
- u8* key_block = (u8*)m_block + block_offset;
- for (u32 i = 0; i < n; i++) {
- u8 input_byte = input.offset_pointer(offset)[i];
- u8 key_byte = key_block[i];
- u8 output_byte = input_byte ^ key_byte;
- ByteReader::store(output.offset_pointer(offset + i), output_byte);
- }
- offset += n;
- block_offset += n;
- }
- }
- void ChaCha20::encrypt(ReadonlyBytes input, Bytes& output)
- {
- VERIFY(input.size() <= output.size());
- this->run_cipher(input, output);
- }
- void ChaCha20::decrypt(ReadonlyBytes input, Bytes& output)
- {
- VERIFY(input.size() <= output.size());
- this->run_cipher(input, output);
- }
- }
|