123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- /*
- * Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/ByteReader.h>
- #include <AK/Endian.h>
- #include <LibCrypto/Authentication/Poly1305.h>
- namespace Crypto::Authentication {
- Poly1305::Poly1305(ReadonlyBytes key)
- {
- for (size_t i = 0; i < 16; i += 4) {
- m_state.r[i / 4] = AK::convert_between_host_and_little_endian(ByteReader::load32(key.offset(i)));
- }
- // r[3], r[7], r[11], and r[15] are required to have their top four bits clear (be smaller than 16)
- // r[4], r[8], and r[12] are required to have their bottom two bits clear (be divisible by 4)
- m_state.r[0] &= 0x0FFFFFFF;
- m_state.r[1] &= 0x0FFFFFFC;
- m_state.r[2] &= 0x0FFFFFFC;
- m_state.r[3] &= 0x0FFFFFFC;
- for (size_t i = 16; i < 32; i += 4) {
- m_state.s[(i - 16) / 4] = AK::convert_between_host_and_little_endian(ByteReader::load32(key.offset(i)));
- }
- }
- void Poly1305::update(ReadonlyBytes message)
- {
- size_t offset = 0;
- while (offset < message.size()) {
- u32 n = min(message.size() - offset, 16 - m_state.block_count);
- memcpy(m_state.blocks + m_state.block_count, message.offset_pointer(offset), n);
- m_state.block_count += n;
- offset += n;
- if (m_state.block_count == 16) {
- process_block();
- m_state.block_count = 0;
- }
- }
- }
- void Poly1305::process_block()
- {
- u32 a[5];
- u8 n = m_state.block_count;
- // Add one bit beyond the number of octets. For a 16-byte block,
- // this is equivalent to adding 2^128 to the number. For the shorter
- // block, it can be 2^120, 2^112, or any power of two that is evenly
- // divisible by 8, all the way down to 2^8.
- m_state.blocks[n++] = 0x01;
- // If the block is not 17 bytes long (the last block), pad it with zeros.
- // This is meaningless if you are treating the blocks as numbers.
- while (n < 17) {
- m_state.blocks[n++] = 0x00;
- }
- // Read the block as a little-endian number.
- for (size_t i = 0; i < 16; i += 4) {
- a[i / 4] = AK::convert_between_host_and_little_endian(ByteReader::load32(m_state.blocks + i));
- }
- a[4] = m_state.blocks[16];
- // Add this number to the accumulator.
- m_state.a[0] += a[0];
- m_state.a[1] += a[1];
- m_state.a[2] += a[2];
- m_state.a[3] += a[3];
- m_state.a[4] += a[4];
- // Carry
- m_state.a[1] += m_state.a[0] >> 32;
- m_state.a[2] += m_state.a[1] >> 32;
- m_state.a[3] += m_state.a[2] >> 32;
- m_state.a[4] += m_state.a[3] >> 32;
- // Only consider the least significant bits
- a[0] = m_state.a[0] & 0xFFFFFFFF;
- a[1] = m_state.a[1] & 0xFFFFFFFF;
- a[2] = m_state.a[2] & 0xFFFFFFFF;
- a[3] = m_state.a[3] & 0xFFFFFFFF;
- a[4] = m_state.a[4] & 0xFFFFFFFF;
- // Multiply by r
- m_state.a[0] = (u64)a[0] * m_state.r[0];
- m_state.a[1] = (u64)a[0] * m_state.r[1] + (u64)a[1] * m_state.r[0];
- m_state.a[2] = (u64)a[0] * m_state.r[2] + (u64)a[1] * m_state.r[1] + (u64)a[2] * m_state.r[0];
- m_state.a[3] = (u64)a[0] * m_state.r[3] + (u64)a[1] * m_state.r[2] + (u64)a[2] * m_state.r[1] + (u64)a[3] * m_state.r[0];
- m_state.a[4] = (u64)a[1] * m_state.r[3] + (u64)a[2] * m_state.r[2] + (u64)a[3] * m_state.r[1] + (u64)a[4] * m_state.r[0];
- m_state.a[5] = (u64)a[2] * m_state.r[3] + (u64)a[3] * m_state.r[2] + (u64)a[4] * m_state.r[1];
- m_state.a[6] = (u64)a[3] * m_state.r[3] + (u64)a[4] * m_state.r[2];
- m_state.a[7] = (u64)a[4] * m_state.r[3];
- // Carry
- m_state.a[1] += m_state.a[0] >> 32;
- m_state.a[2] += m_state.a[1] >> 32;
- m_state.a[3] += m_state.a[2] >> 32;
- m_state.a[4] += m_state.a[3] >> 32;
- m_state.a[5] += m_state.a[4] >> 32;
- m_state.a[6] += m_state.a[5] >> 32;
- m_state.a[7] += m_state.a[6] >> 32;
- // Save the high part of the accumulator
- a[0] = m_state.a[4] & 0xFFFFFFFC;
- a[1] = m_state.a[5] & 0xFFFFFFFF;
- a[2] = m_state.a[6] & 0xFFFFFFFF;
- a[3] = m_state.a[7] & 0xFFFFFFFF;
- // Only consider the least significant bits
- m_state.a[0] &= 0xFFFFFFFF;
- m_state.a[1] &= 0xFFFFFFFF;
- m_state.a[2] &= 0xFFFFFFFF;
- m_state.a[3] &= 0xFFFFFFFF;
- m_state.a[4] &= 0x00000003;
- // Fast modular reduction (first pass)
- m_state.a[0] += a[0];
- m_state.a[0] += (a[0] >> 2) | (a[1] << 30);
- m_state.a[1] += a[1];
- m_state.a[1] += (a[1] >> 2) | (a[2] << 30);
- m_state.a[2] += a[2];
- m_state.a[2] += (a[2] >> 2) | (a[3] << 30);
- m_state.a[3] += a[3];
- m_state.a[3] += (a[3] >> 2);
- // Carry
- m_state.a[1] += m_state.a[0] >> 32;
- m_state.a[2] += m_state.a[1] >> 32;
- m_state.a[3] += m_state.a[2] >> 32;
- m_state.a[4] += m_state.a[3] >> 32;
- // Save the high part of the accumulator
- a[0] = m_state.a[4] & 0xFFFFFFFC;
- // Only consider the least significant bits
- m_state.a[0] &= 0xFFFFFFFF;
- m_state.a[1] &= 0xFFFFFFFF;
- m_state.a[2] &= 0xFFFFFFFF;
- m_state.a[3] &= 0xFFFFFFFF;
- m_state.a[4] &= 0x00000003;
- // Fast modular reduction (second pass)
- m_state.a[0] += a[0];
- m_state.a[0] += a[0] >> 2;
- // Carry
- m_state.a[1] += m_state.a[0] >> 32;
- m_state.a[2] += m_state.a[1] >> 32;
- m_state.a[3] += m_state.a[2] >> 32;
- m_state.a[4] += m_state.a[3] >> 32;
- // Only consider the least significant bits
- m_state.a[0] &= 0xFFFFFFFF;
- m_state.a[1] &= 0xFFFFFFFF;
- m_state.a[2] &= 0xFFFFFFFF;
- m_state.a[3] &= 0xFFFFFFFF;
- m_state.a[4] &= 0x00000003;
- }
- ErrorOr<ByteBuffer> Poly1305::digest()
- {
- if (m_state.block_count != 0)
- process_block();
- u32 b[4];
- // Save the accumulator
- b[0] = m_state.a[0] & 0xFFFFFFFF;
- b[1] = m_state.a[1] & 0xFFFFFFFF;
- b[2] = m_state.a[2] & 0xFFFFFFFF;
- b[3] = m_state.a[3] & 0xFFFFFFFF;
- // Compute a + 5
- m_state.a[0] += 5;
- // Carry
- m_state.a[1] += m_state.a[0] >> 32;
- m_state.a[2] += m_state.a[1] >> 32;
- m_state.a[3] += m_state.a[2] >> 32;
- m_state.a[4] += m_state.a[3] >> 32;
- // Select mask based on (a + 5) >= 2^130
- u32 mask = ((m_state.a[4] & 0x04) >> 2) - 1;
- // Select based on mask
- m_state.a[0] = (m_state.a[0] & ~mask) | (b[0] & mask);
- m_state.a[1] = (m_state.a[1] & ~mask) | (b[1] & mask);
- m_state.a[2] = (m_state.a[2] & ~mask) | (b[2] & mask);
- m_state.a[3] = (m_state.a[3] & ~mask) | (b[3] & mask);
- // Finally, the value of the secret key "s" is added to the accumulator,
- // and the 128 least significant bits are serialized in little-endian
- // order to form the tag.
- m_state.a[0] += m_state.s[0];
- m_state.a[1] += m_state.s[1];
- m_state.a[2] += m_state.s[2];
- m_state.a[3] += m_state.s[3];
- // Carry
- m_state.a[1] += m_state.a[0] >> 32;
- m_state.a[2] += m_state.a[1] >> 32;
- m_state.a[3] += m_state.a[2] >> 32;
- m_state.a[4] += m_state.a[3] >> 32;
- // Only consider the least significant bits
- b[0] = m_state.a[0] & 0xFFFFFFFF;
- b[1] = m_state.a[1] & 0xFFFFFFFF;
- b[2] = m_state.a[2] & 0xFFFFFFFF;
- b[3] = m_state.a[3] & 0xFFFFFFFF;
- ByteBuffer output = TRY(ByteBuffer::create_uninitialized(16));
- for (auto i = 0; i < 4; i++) {
- ByteReader::store(output.offset_pointer(i * 4), AK::convert_between_host_and_little_endian(b[i]));
- }
- return output;
- }
- }
|