CanvasPath.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. /*
  2. * Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2022, Sam Atkins <atkinssj@serenityos.org>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <LibGfx/Vector2.h>
  8. #include <LibWeb/HTML/Canvas/CanvasPath.h>
  9. namespace Web::HTML {
  10. Gfx::AffineTransform CanvasPath::active_transform() const
  11. {
  12. if (m_canvas_state.has_value())
  13. return m_canvas_state->drawing_state().transform;
  14. return {};
  15. }
  16. void CanvasPath::close_path()
  17. {
  18. m_path.close();
  19. }
  20. void CanvasPath::move_to(float x, float y)
  21. {
  22. m_path.move_to(active_transform().map(Gfx::FloatPoint { x, y }));
  23. }
  24. void CanvasPath::line_to(float x, float y)
  25. {
  26. m_path.line_to(active_transform().map(Gfx::FloatPoint { x, y }));
  27. }
  28. void CanvasPath::quadratic_curve_to(float cx, float cy, float x, float y)
  29. {
  30. auto transform = active_transform();
  31. m_path.quadratic_bezier_curve_to(transform.map(Gfx::FloatPoint { cx, cy }), transform.map(Gfx::FloatPoint { x, y }));
  32. }
  33. void CanvasPath::bezier_curve_to(double cp1x, double cp1y, double cp2x, double cp2y, double x, double y)
  34. {
  35. auto transform = active_transform();
  36. m_path.cubic_bezier_curve_to(
  37. transform.map(Gfx::FloatPoint { cp1x, cp1y }), transform.map(Gfx::FloatPoint { cp2x, cp2y }), transform.map(Gfx::FloatPoint { x, y }));
  38. }
  39. WebIDL::ExceptionOr<void> CanvasPath::arc(float x, float y, float radius, float start_angle, float end_angle, bool counter_clockwise)
  40. {
  41. if (radius < 0)
  42. return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The radius provided ({}) is negative.", radius)));
  43. return ellipse(x, y, radius, radius, 0, start_angle, end_angle, counter_clockwise);
  44. }
  45. WebIDL::ExceptionOr<void> CanvasPath::ellipse(float x, float y, float radius_x, float radius_y, float rotation, float start_angle, float end_angle, bool counter_clockwise)
  46. {
  47. if (radius_x < 0)
  48. return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The major-axis radius provided ({}) is negative.", radius_x)));
  49. if (radius_y < 0)
  50. return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The minor-axis radius provided ({}) is negative.", radius_y)));
  51. if (constexpr float tau = M_PI * 2; (!counter_clockwise && (end_angle - start_angle) >= tau)
  52. || (counter_clockwise && (start_angle - end_angle) >= tau)) {
  53. start_angle = 0;
  54. // FIXME: elliptical_arc_to() incorrectly handles the case where the start/end points are very close.
  55. // So we slightly fudge the numbers here to correct for that.
  56. end_angle = tau * 0.9999f;
  57. } else {
  58. start_angle = fmodf(start_angle, tau);
  59. end_angle = fmodf(end_angle, tau);
  60. }
  61. // Then, figure out where the ends of the arc are.
  62. // To do so, we can pretend that the center of this ellipse is at (0, 0),
  63. // and the whole coordinate system is rotated `rotation` radians around the x axis, centered on `center`.
  64. // The sign of the resulting relative positions is just whether our angle is on one of the left quadrants.
  65. float sin_rotation;
  66. float cos_rotation;
  67. AK::sincos(rotation, sin_rotation, cos_rotation);
  68. auto resolve_point_with_angle = [&](float angle) {
  69. auto tan_relative = tanf(angle);
  70. auto tan2 = tan_relative * tan_relative;
  71. auto ab = radius_x * radius_y;
  72. auto a2 = radius_x * radius_x;
  73. auto b2 = radius_y * radius_y;
  74. auto sqrt = sqrtf(b2 + a2 * tan2);
  75. auto relative_x_position = ab / sqrt;
  76. auto relative_y_position = ab * tan_relative / sqrt;
  77. // Make sure to set the correct sign
  78. // -1 if 0 ≤ θ < 90° or 270°< θ ≤ 360°
  79. // 1 if 90° < θ< 270°
  80. float sn = cosf(angle) >= 0 ? 1 : -1;
  81. relative_x_position *= sn;
  82. relative_y_position *= sn;
  83. // Now rotate it (back) around the center point by 'rotation' radians, then move it back to our actual origin.
  84. auto relative_rotated_x_position = relative_x_position * cos_rotation - relative_y_position * sin_rotation;
  85. auto relative_rotated_y_position = relative_x_position * sin_rotation + relative_y_position * cos_rotation;
  86. return Gfx::FloatPoint { relative_rotated_x_position + x, relative_rotated_y_position + y };
  87. };
  88. auto start_point = resolve_point_with_angle(start_angle);
  89. auto end_point = resolve_point_with_angle(end_angle);
  90. auto delta_theta = end_angle - start_angle;
  91. auto transform = active_transform();
  92. m_path.move_to(transform.map(start_point));
  93. m_path.elliptical_arc_to(
  94. transform.map(Gfx::FloatPoint { end_point }),
  95. transform.map(Gfx::FloatSize { radius_x, radius_y }),
  96. rotation + transform.rotation(),
  97. delta_theta > AK::Pi<float>, !counter_clockwise);
  98. return {};
  99. }
  100. // https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-arcto
  101. WebIDL::ExceptionOr<void> CanvasPath::arc_to(double x1, double y1, double x2, double y2, double radius)
  102. {
  103. // 1. If any of the arguments are infinite or NaN, then return.
  104. if (!isfinite(x1) || !isfinite(y1) || !isfinite(x2) || !isfinite(y2) || !isfinite(radius))
  105. return {};
  106. // 2. Ensure there is a subpath for (x1, y1).
  107. auto transform = active_transform();
  108. if (m_path.is_empty())
  109. m_path.move_to(transform.map(Gfx::FloatPoint { x1, y1 }));
  110. // 3. If radius is negative, then throw an "IndexSizeError" DOMException.
  111. if (radius < 0)
  112. return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The radius provided ({}) is negative.", radius)));
  113. // 4. Let the point (x0, y0) be the last point in the subpath,
  114. // transformed by the inverse of the current transformation matrix
  115. // (so that it is in the same coordinate system as the points passed to the method).
  116. // Point (x0, y0)
  117. auto p0 = m_path.last_point();
  118. // Point (x1, y1)
  119. auto p1 = transform.map(Gfx::FloatPoint { x1, y1 });
  120. // Point (x2, y2)
  121. auto p2 = transform.map(Gfx::FloatPoint { x2, y2 });
  122. // 5. If the point (x0, y0) is equal to the point (x1, y1),
  123. // or if the point (x1, y1) is equal to the point (x2, y2),
  124. // or if radius is zero, then add the point (x1, y1) to the subpath,
  125. // and connect that point to the previous point (x0, y0) by a straight line.
  126. if (p0 == p1 || p1 == p2 || radius == 0) {
  127. m_path.line_to(p1);
  128. return {};
  129. }
  130. auto v1 = Gfx::FloatVector2 { p0.x() - p1.x(), p0.y() - p1.y() };
  131. auto v2 = Gfx::FloatVector2 { p2.x() - p1.x(), p2.y() - p1.y() };
  132. auto cos_theta = v1.dot(v2) / (v1.length() * v2.length());
  133. // 6. Otherwise, if the points (x0, y0), (x1, y1), and (x2, y2) all lie on a single straight line,
  134. // then add the point (x1, y1) to the subpath,
  135. // and connect that point to the previous point (x0, y0) by a straight line.
  136. if (-1 == cos_theta || 1 == cos_theta) {
  137. m_path.line_to(p1);
  138. return {};
  139. }
  140. // 7. Otherwise, let The Arc be the shortest arc given by circumference of the circle that has radius radius,
  141. // and that has one point tangent to the half-infinite line that crosses the point (x0, y0) and ends at the point (x1, y1),
  142. // and that has a different point tangent to the half-infinite line that ends at the point (x1, y1) and crosses the point (x2, y2).
  143. // The points at which this circle touches these two lines are called the start and end tangent points respectively.
  144. auto adjacent = radius / static_cast<double>(tan(acos(cos_theta) / 2));
  145. auto factor1 = adjacent / static_cast<double>(v1.length());
  146. auto x3 = static_cast<double>(p1.x()) + factor1 * static_cast<double>(p0.x() - p1.x());
  147. auto y3 = static_cast<double>(p1.y()) + factor1 * static_cast<double>(p0.y() - p1.y());
  148. auto start_tangent = Gfx::FloatPoint { x3, y3 };
  149. auto factor2 = adjacent / static_cast<double>(v2.length());
  150. auto x4 = static_cast<double>(p1.x()) + factor2 * static_cast<double>(p2.x() - p1.x());
  151. auto y4 = static_cast<double>(p1.y()) + factor2 * static_cast<double>(p2.y() - p1.y());
  152. auto end_tangent = Gfx::FloatPoint { x4, y4 };
  153. // Connect the point (x0, y0) to the start tangent point by a straight line, adding the start tangent point to the subpath.
  154. m_path.line_to(start_tangent);
  155. bool const large_arc = false; // always small since tangent points define arc endpoints and lines meet at (x1, y1)
  156. auto cross_product = v1.x() * v2.y() - v1.y() * v2.x();
  157. bool const sweep = cross_product < 0; // right-hand rule, true means clockwise
  158. // and then connect the start tangent point to the end tangent point by The Arc, adding the end tangent point to the subpath.
  159. m_path.arc_to(end_tangent, radius, large_arc, sweep);
  160. return {};
  161. }
  162. // https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-rect
  163. void CanvasPath::rect(double x, double y, double w, double h)
  164. {
  165. // 1. If any of the arguments are infinite or NaN, then return.
  166. if (!isfinite(x) || !isfinite(y) || !isfinite(w) || !isfinite(h))
  167. return;
  168. // 2. Create a new subpath containing just the four points (x, y), (x+w, y), (x+w, y+h), (x, y+h), in that order, with those four points connected by straight lines.
  169. auto transform = active_transform();
  170. m_path.move_to(transform.map(Gfx::FloatPoint { x, y }));
  171. m_path.line_to(transform.map(Gfx::FloatPoint { x + w, y }));
  172. m_path.line_to(transform.map(Gfx::FloatPoint { x + w, y + h }));
  173. m_path.line_to(transform.map(Gfx::FloatPoint { x, y + h }));
  174. // 3. Mark the subpath as closed.
  175. m_path.close();
  176. // 4. Create a new subpath with the point (x, y) as the only point in the subpath.
  177. m_path.move_to(transform.map(Gfx::FloatPoint { x, y }));
  178. }
  179. // https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-roundrect
  180. WebIDL::ExceptionOr<void> CanvasPath::round_rect(double x, double y, double w, double h, Variant<double, Geometry::DOMPointInit, Vector<Variant<double, Geometry::DOMPointInit>>> radii)
  181. {
  182. using Radius = Variant<double, Geometry::DOMPointInit>;
  183. // 1. If any of x, y, w, or h are infinite or NaN, then return.
  184. if (!isfinite(x) || !isfinite(y) || !isfinite(w) || !isfinite(h))
  185. return {};
  186. // 2. If radii is an unrestricted double or DOMPointInit, then set radii to « radii ».
  187. if (radii.has<double>() || radii.has<Geometry::DOMPointInit>()) {
  188. Vector<Radius> radii_list;
  189. if (radii.has<double>())
  190. radii_list.append(radii.get<double>());
  191. else
  192. radii_list.append(radii.get<Geometry::DOMPointInit>());
  193. radii = radii_list;
  194. }
  195. // 3. If radii is not a list of size one, two, three, or four, then throw a RangeError.
  196. if (radii.get<Vector<Radius>>().is_empty() || radii.get<Vector<Radius>>().size() > 4)
  197. return WebIDL::SimpleException { WebIDL::SimpleExceptionType::RangeError, "roundRect: Can have between 1 and 4 radii"sv };
  198. // 4. Let normalizedRadii be an empty list.
  199. Vector<Geometry::DOMPointInit> normalized_radii;
  200. // 5. For each radius of radii:
  201. for (auto const& radius : radii.get<Vector<Radius>>()) {
  202. // 5.1. If radius is a DOMPointInit:
  203. if (radius.has<Geometry::DOMPointInit>()) {
  204. auto const& radius_as_dom_point = radius.get<Geometry::DOMPointInit>();
  205. // 5.1.1. If radius["x"] or radius["y"] is infinite or NaN, then return.
  206. if (!isfinite(radius_as_dom_point.x) || !isfinite(radius_as_dom_point.y))
  207. return {};
  208. // 5.1.2. If radius["x"] or radius["y"] is negative, then throw a RangeError.
  209. if (radius_as_dom_point.x < 0 || radius_as_dom_point.y < 0)
  210. return WebIDL::SimpleException { WebIDL::SimpleExceptionType::RangeError, "roundRect: Radius can't be negative"sv };
  211. // 5.1.3. Otherwise, append radius to normalizedRadii.
  212. normalized_radii.append(radius_as_dom_point);
  213. }
  214. // 5.2. If radius is a unrestricted double:
  215. if (radius.has<double>()) {
  216. auto radius_as_double = radius.get<double>();
  217. // 5.2.1. If radius is infinite or NaN, then return.
  218. if (!isfinite(radius_as_double))
  219. return {};
  220. // 5.2.2. If radius is negative, then throw a RangeError.
  221. if (radius_as_double < 0)
  222. return WebIDL::SimpleException { WebIDL::SimpleExceptionType::RangeError, "roundRect: Radius can't be negative"sv };
  223. // 5.2.3. Otherwise append «[ "x" → radius, "y" → radius ]» to normalizedRadii.
  224. normalized_radii.append(Geometry::DOMPointInit { radius_as_double, radius_as_double });
  225. }
  226. }
  227. // 6. Let upperLeft, upperRight, lowerRight, and lowerLeft be null.
  228. Geometry::DOMPointInit upper_left {};
  229. Geometry::DOMPointInit upper_right {};
  230. Geometry::DOMPointInit lower_right {};
  231. Geometry::DOMPointInit lower_left {};
  232. // 7. If normalizedRadii's size is 4, then set upperLeft to normalizedRadii[0], set upperRight to normalizedRadii[1], set lowerRight to normalizedRadii[2], and set lowerLeft to normalizedRadii[3].
  233. if (normalized_radii.size() == 4) {
  234. upper_left = normalized_radii.at(0);
  235. upper_right = normalized_radii.at(1);
  236. lower_right = normalized_radii.at(2);
  237. lower_left = normalized_radii.at(3);
  238. }
  239. // 8. If normalizedRadii's size is 3, then set upperLeft to normalizedRadii[0], set upperRight and lowerLeft to normalizedRadii[1], and set lowerRight to normalizedRadii[2].
  240. if (normalized_radii.size() == 3) {
  241. upper_left = normalized_radii.at(0);
  242. upper_right = lower_left = normalized_radii.at(1);
  243. lower_right = normalized_radii.at(2);
  244. }
  245. // 9. If normalizedRadii's size is 2, then set upperLeft and lowerRight to normalizedRadii[0] and set upperRight and lowerLeft to normalizedRadii[1].
  246. if (normalized_radii.size() == 2) {
  247. upper_left = lower_right = normalized_radii.at(0);
  248. upper_right = lower_left = normalized_radii.at(1);
  249. }
  250. // 10. If normalizedRadii's size is 1, then set upperLeft, upperRight, lowerRight, and lowerLeft to normalizedRadii[0].
  251. if (normalized_radii.size() == 1)
  252. upper_left = upper_right = lower_right = lower_left = normalized_radii.at(0);
  253. // 11. Corner curves must not overlap. Scale all radii to prevent this:
  254. // 11.1. Let top be upperLeft["x"] + upperRight["x"].
  255. double top = upper_left.x + upper_right.x;
  256. // 11.2. Let right be upperRight["y"] + lowerRight["y"].
  257. double right = upper_right.y + lower_right.y;
  258. // 11.3. Let bottom be lowerRight["x"] + lowerLeft["x"].
  259. double bottom = lower_right.x + lower_left.x;
  260. // 11.4. Let left be upperLeft["y"] + lowerLeft["y"].
  261. double left = upper_left.y + lower_left.y;
  262. // 11.5. Let scale be the minimum value of the ratios w / top, h / right, w / bottom, h / left.
  263. double scale = AK::min(AK::min(w / top, h / right), AK::min(w / bottom, h / left));
  264. // 11.6. If scale is less than 1, then set the x and y members of upperLeft, upperRight, lowerLeft, and lowerRight to their current values multiplied by scale.
  265. if (scale < 1) {
  266. upper_left.x *= scale;
  267. upper_left.y *= scale;
  268. upper_right.x *= scale;
  269. upper_right.y *= scale;
  270. lower_left.x *= scale;
  271. lower_left.y *= scale;
  272. lower_right.x *= scale;
  273. lower_right.y *= scale;
  274. }
  275. // 12. Create a new subpath:
  276. auto transform = active_transform();
  277. bool large_arc = false;
  278. bool sweep = true;
  279. // 12.1. Move to the point (x + upperLeft["x"], y).
  280. m_path.move_to(transform.map(Gfx::FloatPoint { x + upper_left.x, y }));
  281. // 12.2. Draw a straight line to the point (x + w − upperRight["x"], y).
  282. m_path.line_to(transform.map(Gfx::FloatPoint { x + w - upper_right.x, y }));
  283. // 12.3. Draw an arc to the point (x + w, y + upperRight["y"]).
  284. m_path.elliptical_arc_to(transform.map(Gfx::FloatPoint { x + w, y + upper_right.y }), { upper_right.x, upper_right.y }, transform.rotation(), large_arc, sweep);
  285. // 12.4. Draw a straight line to the point (x + w, y + h − lowerRight["y"]).
  286. m_path.line_to(transform.map(Gfx::FloatPoint { x + w, y + h - lower_right.y }));
  287. // 12.5. Draw an arc to the point (x + w − lowerRight["x"], y + h).
  288. m_path.elliptical_arc_to(transform.map(Gfx::FloatPoint { x + w - lower_right.x, y + h }), { lower_right.x, lower_right.y }, transform.rotation(), large_arc, sweep);
  289. // 12.6. Draw a straight line to the point (x + lowerLeft["x"], y + h).
  290. m_path.line_to(transform.map(Gfx::FloatPoint { x + lower_left.x, y + h }));
  291. // 12.7. Draw an arc to the point (x, y + h − lowerLeft["y"]).
  292. m_path.elliptical_arc_to(transform.map(Gfx::FloatPoint { x, y + h - lower_left.y }), { lower_left.x, lower_left.y }, transform.rotation(), large_arc, sweep);
  293. // 12.8. Draw a straight line to the point (x, y + upperLeft["y"]).
  294. m_path.line_to(transform.map(Gfx::FloatPoint { x, y + upper_left.y }));
  295. // 12.9. Draw an arc to the point (x + upperLeft["x"], y).
  296. m_path.elliptical_arc_to(transform.map(Gfx::FloatPoint { x + upper_left.x, y }), { upper_left.x, upper_left.y }, transform.rotation(), large_arc, sweep);
  297. // 13. Mark the subpath as closed.
  298. m_path.close();
  299. // 14. Create a new subpath with the point (x, y) as the only point in the subpath.
  300. m_path.move_to(transform.map(Gfx::FloatPoint { x, y }));
  301. return {};
  302. }
  303. }