MemoryManager.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. //#define MM_DEBUG
  13. //#define PAGE_FAULT_DEBUG
  14. static MemoryManager* s_the;
  15. MemoryManager& MM
  16. {
  17. return *s_the;
  18. }
  19. MemoryManager::MemoryManager()
  20. {
  21. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
  22. m_page_table_zero = (PageTableEntry*)0x6000;
  23. m_page_table_one = (PageTableEntry*)0x7000;
  24. initialize_paging();
  25. kprintf("MM initialized.\n");
  26. }
  27. MemoryManager::~MemoryManager()
  28. {
  29. }
  30. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  31. {
  32. page_directory.m_directory_page = allocate_supervisor_physical_page();
  33. page_directory.entries()[0].copy_from({}, kernel_page_directory().entries()[0]);
  34. page_directory.entries()[1].copy_from({}, kernel_page_directory().entries()[1]);
  35. // Defer to the kernel page tables for 0xC0000000-0xFFFFFFFF
  36. for (int i = 768; i < 1024; ++i)
  37. page_directory.entries()[i].copy_from({}, kernel_page_directory().entries()[i]);
  38. }
  39. void MemoryManager::initialize_paging()
  40. {
  41. memset(m_page_table_zero, 0, PAGE_SIZE);
  42. memset(m_page_table_one, 0, PAGE_SIZE);
  43. #ifdef MM_DEBUG
  44. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  45. #endif
  46. #ifdef MM_DEBUG
  47. dbgprintf("MM: Protect against null dereferences\n");
  48. #endif
  49. // Make null dereferences crash.
  50. map_protected(VirtualAddress(0), PAGE_SIZE);
  51. #ifdef MM_DEBUG
  52. dbgprintf("MM: Identity map bottom 5MB\n");
  53. #endif
  54. // The bottom 5 MB (except for the null page) are identity mapped & supervisor only.
  55. // Every process shares these mappings.
  56. create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (5 * MB) - PAGE_SIZE);
  57. // Basic memory map:
  58. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  59. // (last page before 1MB) Used by quickmap_page().
  60. // 1 MB -> 3 MB kmalloc_eternal() space.
  61. // 3 MB -> 4 MB kmalloc() space.
  62. // 4 MB -> 5 MB Supervisor physical pages (available for allocation!)
  63. // 5 MB -> 0xc0000000 Userspace physical pages (available for allocation!)
  64. // 0xc0000000-0xffffffff Kernel-only virtual address space
  65. #ifdef MM_DEBUG
  66. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  67. #endif
  68. m_quickmap_addr = VirtualAddress((1 * MB) - PAGE_SIZE);
  69. RefPtr<PhysicalRegion> region;
  70. bool region_is_super = false;
  71. for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  72. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  73. (u32)(mmap->addr >> 32),
  74. (u32)(mmap->addr & 0xffffffff),
  75. (u32)(mmap->len >> 32),
  76. (u32)(mmap->len & 0xffffffff),
  77. (u32)mmap->type);
  78. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  79. continue;
  80. // FIXME: Maybe make use of stuff below the 1MB mark?
  81. if (mmap->addr < (1 * MB))
  82. continue;
  83. if ((mmap->addr + mmap->len) > 0xffffffff)
  84. continue;
  85. #ifdef MM_DEBUG
  86. kprintf("MM: considering memory at %p - %p\n",
  87. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  88. #endif
  89. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  90. auto addr = PhysicalAddress(page_base);
  91. if (page_base < 4 * MB) {
  92. // nothing
  93. } else if (page_base >= 4 * MB && page_base < 5 * MB) {
  94. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  95. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  96. region = m_super_physical_regions.last();
  97. region_is_super = true;
  98. } else {
  99. region->expand(region->lower(), addr);
  100. }
  101. } else {
  102. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  103. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  104. region = &m_user_physical_regions.last();
  105. region_is_super = false;
  106. } else {
  107. region->expand(region->lower(), addr);
  108. }
  109. }
  110. }
  111. }
  112. for (auto& region : m_super_physical_regions)
  113. m_super_physical_pages += region.finalize_capacity();
  114. for (auto& region : m_user_physical_regions)
  115. m_user_physical_pages += region.finalize_capacity();
  116. #ifdef MM_DEBUG
  117. dbgprintf("MM: Installing page directory\n");
  118. #endif
  119. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  120. asm volatile(
  121. "movl %%cr0, %%eax\n"
  122. "orl $0x80000001, %%eax\n"
  123. "movl %%eax, %%cr0\n" ::
  124. : "%eax", "memory");
  125. #ifdef MM_DEBUG
  126. dbgprintf("MM: Paging initialized.\n");
  127. #endif
  128. }
  129. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  130. {
  131. ASSERT_INTERRUPTS_DISABLED();
  132. u32 page_directory_index = (vaddr.get() >> 22) & 0x3ff;
  133. u32 page_table_index = (vaddr.get() >> 12) & 0x3ff;
  134. PageDirectoryEntry& pde = page_directory.entries()[page_directory_index];
  135. if (!pde.is_present()) {
  136. #ifdef MM_DEBUG
  137. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  138. #endif
  139. if (page_directory_index == 0) {
  140. ASSERT(&page_directory == m_kernel_page_directory);
  141. pde.set_page_table_base((u32)m_page_table_zero);
  142. pde.set_user_allowed(false);
  143. pde.set_present(true);
  144. pde.set_writable(true);
  145. } else if (page_directory_index == 1) {
  146. ASSERT(&page_directory == m_kernel_page_directory);
  147. pde.set_page_table_base((u32)m_page_table_one);
  148. pde.set_user_allowed(false);
  149. pde.set_present(true);
  150. pde.set_writable(true);
  151. } else {
  152. //ASSERT(&page_directory != m_kernel_page_directory.ptr());
  153. auto page_table = allocate_supervisor_physical_page();
  154. #ifdef MM_DEBUG
  155. dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
  156. &page_directory,
  157. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  158. page_directory.cr3(),
  159. page_directory_index,
  160. vaddr.get(),
  161. page_table->paddr().get());
  162. #endif
  163. pde.set_page_table_base(page_table->paddr().get());
  164. pde.set_user_allowed(true);
  165. pde.set_present(true);
  166. pde.set_writable(true);
  167. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  168. }
  169. }
  170. return pde.page_table_base()[page_table_index];
  171. }
  172. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  173. {
  174. InterruptDisabler disabler;
  175. ASSERT(vaddr.is_page_aligned());
  176. for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
  177. auto pte_address = vaddr.offset(offset);
  178. auto& pte = ensure_pte(kernel_page_directory(), pte_address);
  179. pte.set_physical_page_base(pte_address.get());
  180. pte.set_user_allowed(false);
  181. pte.set_present(false);
  182. pte.set_writable(false);
  183. flush_tlb(pte_address);
  184. }
  185. }
  186. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  187. {
  188. InterruptDisabler disabler;
  189. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  190. for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
  191. auto pte_address = vaddr.offset(offset);
  192. auto& pte = ensure_pte(page_directory, pte_address);
  193. pte.set_physical_page_base(pte_address.get());
  194. pte.set_user_allowed(false);
  195. pte.set_present(true);
  196. pte.set_writable(true);
  197. page_directory.flush(pte_address);
  198. }
  199. }
  200. void MemoryManager::initialize()
  201. {
  202. s_the = new MemoryManager;
  203. }
  204. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  205. {
  206. if (vaddr.get() < 0xc0000000)
  207. return nullptr;
  208. for (auto& region : MM.m_kernel_regions) {
  209. if (region.contains(vaddr))
  210. return &region;
  211. }
  212. return nullptr;
  213. }
  214. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  215. {
  216. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  217. for (auto& region : process.m_regions) {
  218. if (region.contains(vaddr))
  219. return &region;
  220. }
  221. dbg() << process << " Couldn't find user region for " << vaddr;
  222. return nullptr;
  223. }
  224. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  225. {
  226. ASSERT_INTERRUPTS_DISABLED();
  227. if (auto* region = kernel_region_from_vaddr(vaddr))
  228. return region;
  229. return user_region_from_vaddr(process, vaddr);
  230. }
  231. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  232. {
  233. if (auto* region = kernel_region_from_vaddr(vaddr))
  234. return region;
  235. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  236. }
  237. bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
  238. {
  239. ASSERT_INTERRUPTS_DISABLED();
  240. auto& vmo = region.vmobject();
  241. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  242. sti();
  243. LOCKER(vmo.m_paging_lock);
  244. cli();
  245. if (!vmo_page.is_null()) {
  246. #ifdef PAGE_FAULT_DEBUG
  247. dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
  248. #endif
  249. remap_region_page(region, page_index_in_region);
  250. return true;
  251. }
  252. auto physical_page = allocate_user_physical_page(ShouldZeroFill::Yes);
  253. #ifdef PAGE_FAULT_DEBUG
  254. dbgprintf(" >> ZERO P%p\n", physical_page->paddr().get());
  255. #endif
  256. region.set_should_cow(page_index_in_region, false);
  257. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  258. remap_region_page(region, page_index_in_region);
  259. return true;
  260. }
  261. bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
  262. {
  263. ASSERT_INTERRUPTS_DISABLED();
  264. auto& vmo = region.vmobject();
  265. if (vmo.physical_pages()[page_index_in_region]->ref_count() == 1) {
  266. #ifdef PAGE_FAULT_DEBUG
  267. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  268. #endif
  269. region.set_should_cow(page_index_in_region, false);
  270. remap_region_page(region, page_index_in_region);
  271. return true;
  272. }
  273. #ifdef PAGE_FAULT_DEBUG
  274. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  275. #endif
  276. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  277. auto physical_page = allocate_user_physical_page(ShouldZeroFill::No);
  278. u8* dest_ptr = quickmap_page(*physical_page);
  279. const u8* src_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  280. #ifdef PAGE_FAULT_DEBUG
  281. dbgprintf(" >> COW P%p <- P%p\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  282. #endif
  283. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  284. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  285. unquickmap_page();
  286. region.set_should_cow(page_index_in_region, false);
  287. remap_region_page(region, page_index_in_region);
  288. return true;
  289. }
  290. bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
  291. {
  292. ASSERT(region.page_directory());
  293. auto& vmo = region.vmobject();
  294. ASSERT(vmo.is_inode());
  295. auto& inode_vmobject = static_cast<InodeVMObject&>(vmo);
  296. auto& vmo_page = inode_vmobject.physical_pages()[region.first_page_index() + page_index_in_region];
  297. InterruptFlagSaver saver;
  298. sti();
  299. LOCKER(vmo.m_paging_lock);
  300. cli();
  301. if (!vmo_page.is_null()) {
  302. #ifdef PAGE_FAULT_DEBUG
  303. dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
  304. #endif
  305. remap_region_page(region, page_index_in_region);
  306. return true;
  307. }
  308. #ifdef MM_DEBUG
  309. dbgprintf("MM: page_in_from_inode ready to read from inode\n");
  310. #endif
  311. sti();
  312. u8 page_buffer[PAGE_SIZE];
  313. auto& inode = inode_vmobject.inode();
  314. auto nread = inode.read_bytes((region.first_page_index() + page_index_in_region) * PAGE_SIZE, PAGE_SIZE, page_buffer, nullptr);
  315. if (nread < 0) {
  316. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  317. return false;
  318. }
  319. if (nread < PAGE_SIZE) {
  320. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  321. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  322. }
  323. cli();
  324. vmo_page = allocate_user_physical_page(ShouldZeroFill::No);
  325. if (vmo_page.is_null()) {
  326. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  327. return false;
  328. }
  329. remap_region_page(region, page_index_in_region);
  330. u8* dest_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  331. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  332. return true;
  333. }
  334. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  335. {
  336. if (auto* region = kernel_region_from_vaddr(vaddr))
  337. return region;
  338. auto page_directory = PageDirectory::find_by_pdb(cpu_cr3());
  339. if (!page_directory)
  340. return nullptr;
  341. ASSERT(page_directory->process());
  342. return user_region_from_vaddr(*page_directory->process(), vaddr);
  343. }
  344. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  345. {
  346. ASSERT_INTERRUPTS_DISABLED();
  347. ASSERT(current);
  348. #ifdef PAGE_FAULT_DEBUG
  349. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  350. #endif
  351. ASSERT(fault.vaddr() != m_quickmap_addr);
  352. if (fault.type() == PageFault::Type::PageNotPresent && fault.vaddr().get() >= 0xc0000000) {
  353. auto* current_page_directory = reinterpret_cast<PageDirectoryEntry*>(cpu_cr3());
  354. u32 page_directory_index = (fault.vaddr().get() >> 22) & 0x3ff;
  355. auto& kernel_pde = kernel_page_directory().entries()[page_directory_index];
  356. auto& current_pde = current_page_directory[page_directory_index];
  357. if (kernel_pde.is_present() && !current_pde.is_present()) {
  358. dbg() << "NP(kernel): Copying new kernel mapping for " << fault.vaddr() << " into current page directory";
  359. current_pde.copy_from({}, kernel_pde);
  360. flush_tlb(fault.vaddr().page_base());
  361. return PageFaultResponse::Continue;
  362. }
  363. }
  364. auto* region = region_from_vaddr(fault.vaddr());
  365. if (!region) {
  366. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  367. return PageFaultResponse::ShouldCrash;
  368. }
  369. auto page_index_in_region = region->page_index_from_address(fault.vaddr());
  370. if (fault.type() == PageFault::Type::PageNotPresent) {
  371. if (region->vmobject().is_inode()) {
  372. #ifdef PAGE_FAULT_DEBUG
  373. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  374. #endif
  375. page_in_from_inode(*region, page_index_in_region);
  376. return PageFaultResponse::Continue;
  377. }
  378. #ifdef PAGE_FAULT_DEBUG
  379. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  380. #endif
  381. zero_page(*region, page_index_in_region);
  382. return PageFaultResponse::Continue;
  383. }
  384. ASSERT(fault.type() == PageFault::Type::ProtectionViolation);
  385. if (fault.access() == PageFault::Access::Write && region->should_cow(page_index_in_region)) {
  386. #ifdef PAGE_FAULT_DEBUG
  387. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  388. #endif
  389. bool success = copy_on_write(*region, page_index_in_region);
  390. ASSERT(success);
  391. return PageFaultResponse::Continue;
  392. }
  393. kprintf("PV(error) fault in Region{%p}[%u] at V%p\n", region, page_index_in_region, fault.vaddr().get());
  394. return PageFaultResponse::ShouldCrash;
  395. }
  396. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, bool user_accessible, bool should_commit)
  397. {
  398. InterruptDisabler disabler;
  399. ASSERT(!(size % PAGE_SIZE));
  400. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  401. ASSERT(range.is_valid());
  402. OwnPtr<Region> region;
  403. if (user_accessible)
  404. region = Region::create_user_accessible(range, name, PROT_READ | PROT_WRITE | PROT_EXEC, false);
  405. else
  406. region = Region::create_kernel_only(range, name, PROT_READ | PROT_WRITE | PROT_EXEC, false);
  407. MM.map_region_at_address(*m_kernel_page_directory, *region, range.base());
  408. // FIXME: It would be cool if these could zero-fill on demand instead.
  409. if (should_commit)
  410. region->commit();
  411. return region;
  412. }
  413. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name)
  414. {
  415. return allocate_kernel_region(size, name, true);
  416. }
  417. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  418. {
  419. for (auto& region : m_user_physical_regions) {
  420. if (!region.contains(page)) {
  421. kprintf(
  422. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  423. page.paddr(), region.lower().get(), region.upper().get());
  424. continue;
  425. }
  426. region.return_page(move(page));
  427. --m_user_physical_pages_used;
  428. return;
  429. }
  430. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr());
  431. ASSERT_NOT_REACHED();
  432. }
  433. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  434. {
  435. InterruptDisabler disabler;
  436. RefPtr<PhysicalPage> page;
  437. for (auto& region : m_user_physical_regions) {
  438. page = region.take_free_page(false);
  439. if (page.is_null())
  440. continue;
  441. }
  442. if (!page) {
  443. if (m_user_physical_regions.is_empty()) {
  444. kprintf("MM: no user physical regions available (?)\n");
  445. }
  446. kprintf("MM: no user physical pages available\n");
  447. ASSERT_NOT_REACHED();
  448. return {};
  449. }
  450. #ifdef MM_DEBUG
  451. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  452. #endif
  453. if (should_zero_fill == ShouldZeroFill::Yes) {
  454. auto* ptr = (u32*)quickmap_page(*page);
  455. fast_u32_fill(ptr, 0, PAGE_SIZE / sizeof(u32));
  456. unquickmap_page();
  457. }
  458. ++m_user_physical_pages_used;
  459. return page;
  460. }
  461. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  462. {
  463. for (auto& region : m_super_physical_regions) {
  464. if (!region.contains(page)) {
  465. kprintf(
  466. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  467. page.paddr(), region.lower().get(), region.upper().get());
  468. continue;
  469. }
  470. region.return_page(move(page));
  471. --m_super_physical_pages_used;
  472. return;
  473. }
  474. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr());
  475. ASSERT_NOT_REACHED();
  476. }
  477. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  478. {
  479. InterruptDisabler disabler;
  480. RefPtr<PhysicalPage> page;
  481. for (auto& region : m_super_physical_regions) {
  482. page = region.take_free_page(true);
  483. if (page.is_null())
  484. continue;
  485. }
  486. if (!page) {
  487. if (m_super_physical_regions.is_empty()) {
  488. kprintf("MM: no super physical regions available (?)\n");
  489. }
  490. kprintf("MM: no super physical pages available\n");
  491. ASSERT_NOT_REACHED();
  492. return {};
  493. }
  494. #ifdef MM_DEBUG
  495. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  496. #endif
  497. fast_u32_fill((u32*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  498. ++m_super_physical_pages_used;
  499. return page;
  500. }
  501. void MemoryManager::enter_process_paging_scope(Process& process)
  502. {
  503. ASSERT(current);
  504. InterruptDisabler disabler;
  505. current->tss().cr3 = process.page_directory().cr3();
  506. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  507. : "memory");
  508. }
  509. void MemoryManager::flush_entire_tlb()
  510. {
  511. asm volatile(
  512. "mov %%cr3, %%eax\n"
  513. "mov %%eax, %%cr3\n" ::
  514. : "%eax", "memory");
  515. }
  516. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  517. {
  518. asm volatile("invlpg %0"
  519. :
  520. : "m"(*(char*)vaddr.get())
  521. : "memory");
  522. }
  523. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr)
  524. {
  525. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  526. pte.set_physical_page_base(paddr.get());
  527. pte.set_present(true);
  528. pte.set_writable(true);
  529. pte.set_user_allowed(false);
  530. flush_tlb(vaddr);
  531. }
  532. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  533. {
  534. ASSERT_INTERRUPTS_DISABLED();
  535. ASSERT(!m_quickmap_in_use);
  536. m_quickmap_in_use = true;
  537. auto page_vaddr = m_quickmap_addr;
  538. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  539. pte.set_physical_page_base(physical_page.paddr().get());
  540. pte.set_present(true);
  541. pte.set_writable(true);
  542. pte.set_user_allowed(false);
  543. flush_tlb(page_vaddr);
  544. ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
  545. #ifdef MM_DEBUG
  546. dbg() << "MM: >> quickmap_page " << page_vaddr << " => " << physical_page.paddr() << " @ PTE=" << (void*)pte.raw() << " {" << &pte << "}";
  547. #endif
  548. return page_vaddr.as_ptr();
  549. }
  550. void MemoryManager::unquickmap_page()
  551. {
  552. ASSERT_INTERRUPTS_DISABLED();
  553. ASSERT(m_quickmap_in_use);
  554. auto page_vaddr = m_quickmap_addr;
  555. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  556. #ifdef MM_DEBUG
  557. auto old_physical_address = pte.physical_page_base();
  558. #endif
  559. pte.set_physical_page_base(0);
  560. pte.set_present(false);
  561. pte.set_writable(false);
  562. flush_tlb(page_vaddr);
  563. #ifdef MM_DEBUG
  564. dbg() << "MM: >> unquickmap_page " << page_vaddr << " =/> " << old_physical_address;
  565. #endif
  566. m_quickmap_in_use = false;
  567. }
  568. void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_region)
  569. {
  570. ASSERT(region.page_directory());
  571. InterruptDisabler disabler;
  572. auto page_vaddr = region.vaddr().offset(page_index_in_region * PAGE_SIZE);
  573. auto& pte = ensure_pte(*region.page_directory(), page_vaddr);
  574. auto& physical_page = region.vmobject().physical_pages()[page_index_in_region];
  575. ASSERT(physical_page);
  576. pte.set_physical_page_base(physical_page->paddr().get());
  577. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  578. if (region.should_cow(page_index_in_region))
  579. pte.set_writable(false);
  580. else
  581. pte.set_writable(region.is_writable());
  582. pte.set_user_allowed(region.is_user_accessible());
  583. region.page_directory()->flush(page_vaddr);
  584. #ifdef MM_DEBUG
  585. dbg() << "MM: >> remap_region_page (PD=" << region.page_directory()->cr3() << ", PTE=" << (void*)pte.raw() << "{" << &pte << "}) " << region.name() << " " << page_vaddr << " => " << physical_page->paddr() << " (@" << physical_page.ptr() << ")";
  586. #endif
  587. }
  588. void MemoryManager::remap_region(PageDirectory& page_directory, Region& region)
  589. {
  590. InterruptDisabler disabler;
  591. ASSERT(region.page_directory() == &page_directory);
  592. map_region_at_address(page_directory, region, region.vaddr());
  593. }
  594. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, VirtualAddress vaddr)
  595. {
  596. InterruptDisabler disabler;
  597. region.set_page_directory(page_directory);
  598. auto& vmo = region.vmobject();
  599. #ifdef MM_DEBUG
  600. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  601. #endif
  602. for (size_t i = 0; i < region.page_count(); ++i) {
  603. auto page_vaddr = vaddr.offset(i * PAGE_SIZE);
  604. auto& pte = ensure_pte(page_directory, page_vaddr);
  605. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  606. if (physical_page) {
  607. pte.set_physical_page_base(physical_page->paddr().get());
  608. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  609. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  610. if (region.should_cow(region.first_page_index() + i))
  611. pte.set_writable(false);
  612. else
  613. pte.set_writable(region.is_writable());
  614. } else {
  615. pte.set_physical_page_base(0);
  616. pte.set_present(false);
  617. pte.set_writable(region.is_writable());
  618. }
  619. pte.set_user_allowed(region.is_user_accessible());
  620. page_directory.flush(page_vaddr);
  621. #ifdef MM_DEBUG
  622. dbgprintf("MM: >> map_region_at_address (PD=%p) '%s' V%p => P%p (@%p)\n", &page_directory, region.name().characters(), page_vaddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  623. #endif
  624. }
  625. }
  626. bool MemoryManager::unmap_region(Region& region)
  627. {
  628. ASSERT(region.page_directory());
  629. InterruptDisabler disabler;
  630. for (size_t i = 0; i < region.page_count(); ++i) {
  631. auto vaddr = region.vaddr().offset(i * PAGE_SIZE);
  632. auto& pte = ensure_pte(*region.page_directory(), vaddr);
  633. pte.set_physical_page_base(0);
  634. pte.set_present(false);
  635. pte.set_writable(false);
  636. pte.set_user_allowed(false);
  637. region.page_directory()->flush(vaddr);
  638. #ifdef MM_DEBUG
  639. auto& physical_page = region.vmobject().physical_pages()[region.first_page_index() + i];
  640. dbgprintf("MM: >> Unmapped V%p => P%p <<\n", vaddr, physical_page ? physical_page->paddr().get() : 0);
  641. #endif
  642. }
  643. region.page_directory()->range_allocator().deallocate({ region.vaddr(), region.size() });
  644. region.release_page_directory();
  645. return true;
  646. }
  647. bool MemoryManager::map_region(Process& process, Region& region)
  648. {
  649. map_region_at_address(process.page_directory(), region, region.vaddr());
  650. return true;
  651. }
  652. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
  653. {
  654. auto* region = region_from_vaddr(process, vaddr);
  655. return region && region->is_readable();
  656. }
  657. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
  658. {
  659. auto* region = region_from_vaddr(process, vaddr);
  660. return region && region->is_writable();
  661. }
  662. void MemoryManager::register_vmo(VMObject& vmo)
  663. {
  664. InterruptDisabler disabler;
  665. m_vmobjects.append(&vmo);
  666. }
  667. void MemoryManager::unregister_vmo(VMObject& vmo)
  668. {
  669. InterruptDisabler disabler;
  670. m_vmobjects.remove(&vmo);
  671. }
  672. void MemoryManager::register_region(Region& region)
  673. {
  674. InterruptDisabler disabler;
  675. if (region.vaddr().get() >= 0xc0000000)
  676. m_kernel_regions.append(&region);
  677. else
  678. m_user_regions.append(&region);
  679. }
  680. void MemoryManager::unregister_region(Region& region)
  681. {
  682. InterruptDisabler disabler;
  683. if (region.vaddr().get() >= 0xc0000000)
  684. m_kernel_regions.remove(&region);
  685. else
  686. m_user_regions.remove(&region);
  687. }
  688. ProcessPagingScope::ProcessPagingScope(Process& process)
  689. {
  690. ASSERT(current);
  691. MM.enter_process_paging_scope(process);
  692. }
  693. ProcessPagingScope::~ProcessPagingScope()
  694. {
  695. MM.enter_process_paging_scope(current->process());
  696. }