MemoryManager.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. #include <Kernel/VM/PurgeableVMObject.h>
  13. //#define MM_DEBUG
  14. //#define PAGE_FAULT_DEBUG
  15. static MemoryManager* s_the;
  16. MemoryManager& MM
  17. {
  18. return *s_the;
  19. }
  20. MemoryManager::MemoryManager()
  21. {
  22. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  23. initialize_paging();
  24. kprintf("MM initialized.\n");
  25. }
  26. MemoryManager::~MemoryManager()
  27. {
  28. }
  29. void MemoryManager::initialize_paging()
  30. {
  31. if (!g_cpu_supports_pae) {
  32. kprintf("x86: Cannot boot on machines without PAE support.\n");
  33. hang();
  34. }
  35. #ifdef MM_DEBUG
  36. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  37. #endif
  38. // Disable execution from 0MB through 2MB (BIOS data, legacy things, ...)
  39. if (g_cpu_supports_nx)
  40. quickmap_pd(kernel_page_directory(), 0)[0].set_execute_disabled(true);
  41. #if 0
  42. // Disable writing to the kernel text and rodata segments.
  43. extern u32 start_of_kernel_text;
  44. extern u32 start_of_kernel_data;
  45. for (size_t i = (u32)&start_of_kernel_text; i < (u32)&start_of_kernel_data; i += PAGE_SIZE) {
  46. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  47. pte.set_writable(false);
  48. }
  49. if (g_cpu_supports_nx) {
  50. // Disable execution of the kernel data and bss segments.
  51. extern u32 end_of_kernel_bss;
  52. for (size_t i = (u32)&start_of_kernel_data; i < (u32)&end_of_kernel_bss; i += PAGE_SIZE) {
  53. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  54. pte.set_execute_disabled(true);
  55. }
  56. }
  57. #endif
  58. m_quickmap_addr = VirtualAddress(0xffe00000);
  59. #ifdef MM_DEBUG
  60. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  61. #endif
  62. parse_memory_map();
  63. #ifdef MM_DEBUG
  64. dbgprintf("MM: Installing page directory\n");
  65. #endif
  66. // Turn on CR4.PAE
  67. asm volatile(
  68. "mov %cr4, %eax\n"
  69. "orl $0x20, %eax\n"
  70. "mov %eax, %cr4\n");
  71. if (g_cpu_supports_pge) {
  72. // Turn on CR4.PGE so the CPU will respect the G bit in page tables.
  73. asm volatile(
  74. "mov %cr4, %eax\n"
  75. "orl $0x80, %eax\n"
  76. "mov %eax, %cr4\n");
  77. kprintf("x86: PGE support enabled\n");
  78. } else {
  79. kprintf("x86: PGE support not detected\n");
  80. }
  81. if (g_cpu_supports_smep) {
  82. // Turn on CR4.SMEP
  83. asm volatile(
  84. "mov %cr4, %eax\n"
  85. "orl $0x100000, %eax\n"
  86. "mov %eax, %cr4\n");
  87. kprintf("x86: SMEP support enabled\n");
  88. } else {
  89. kprintf("x86: SMEP support not detected\n");
  90. }
  91. if (g_cpu_supports_smap) {
  92. // Turn on CR4.SMAP
  93. kprintf("x86: Enabling SMAP\n");
  94. asm volatile(
  95. "mov %cr4, %eax\n"
  96. "orl $0x200000, %eax\n"
  97. "mov %eax, %cr4\n");
  98. kprintf("x86: SMAP support enabled\n");
  99. } else {
  100. kprintf("x86: SMAP support not detected\n");
  101. }
  102. if (g_cpu_supports_nx) {
  103. // Turn on IA32_EFER.NXE
  104. asm volatile(
  105. "movl $0xc0000080, %ecx\n"
  106. "rdmsr\n"
  107. "orl $0x800, %eax\n"
  108. "wrmsr\n");
  109. kprintf("x86: NX support enabled\n");
  110. } else {
  111. kprintf("x86: NX support not detected\n");
  112. }
  113. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  114. asm volatile(
  115. "movl %%cr0, %%eax\n"
  116. "orl $0x80010001, %%eax\n"
  117. "movl %%eax, %%cr0\n" ::
  118. : "%eax", "memory");
  119. #ifdef MM_DEBUG
  120. dbgprintf("MM: Paging initialized.\n");
  121. #endif
  122. }
  123. void MemoryManager::parse_memory_map()
  124. {
  125. RefPtr<PhysicalRegion> region;
  126. bool region_is_super = false;
  127. auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  128. for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  129. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  130. (u32)(mmap->addr >> 32),
  131. (u32)(mmap->addr & 0xffffffff),
  132. (u32)(mmap->len >> 32),
  133. (u32)(mmap->len & 0xffffffff),
  134. (u32)mmap->type);
  135. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  136. continue;
  137. // FIXME: Maybe make use of stuff below the 1MB mark?
  138. if (mmap->addr < (1 * MB))
  139. continue;
  140. if ((mmap->addr + mmap->len) > 0xffffffff)
  141. continue;
  142. auto diff = (u32)mmap->addr % PAGE_SIZE;
  143. if (diff != 0) {
  144. kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
  145. diff = PAGE_SIZE - diff;
  146. mmap->addr += diff;
  147. mmap->len -= diff;
  148. }
  149. if ((mmap->len % PAGE_SIZE) != 0) {
  150. kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
  151. mmap->len -= mmap->len % PAGE_SIZE;
  152. }
  153. if (mmap->len < PAGE_SIZE) {
  154. kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
  155. continue;
  156. }
  157. #ifdef MM_DEBUG
  158. kprintf("MM: considering memory at %p - %p\n",
  159. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  160. #endif
  161. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  162. auto addr = PhysicalAddress(page_base);
  163. if (page_base < 7 * MB) {
  164. // nothing
  165. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  166. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  167. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  168. region = m_super_physical_regions.last();
  169. region_is_super = true;
  170. } else {
  171. region->expand(region->lower(), addr);
  172. }
  173. } else {
  174. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  175. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  176. region = m_user_physical_regions.last();
  177. region_is_super = false;
  178. } else {
  179. region->expand(region->lower(), addr);
  180. }
  181. }
  182. }
  183. }
  184. for (auto& region : m_super_physical_regions)
  185. m_super_physical_pages += region.finalize_capacity();
  186. for (auto& region : m_user_physical_regions)
  187. m_user_physical_pages += region.finalize_capacity();
  188. }
  189. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  190. {
  191. ASSERT_INTERRUPTS_DISABLED();
  192. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  193. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  194. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  195. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  196. PageDirectoryEntry& pde = pd[page_directory_index];
  197. if (!pde.is_present()) {
  198. #ifdef MM_DEBUG
  199. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  200. #endif
  201. auto page_table = allocate_supervisor_physical_page();
  202. #ifdef MM_DEBUG
  203. dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
  204. &page_directory,
  205. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  206. page_directory.cr3(),
  207. page_directory_index,
  208. vaddr.get(),
  209. page_table->paddr().get());
  210. #endif
  211. pde.set_page_table_base(page_table->paddr().get());
  212. pde.set_user_allowed(true);
  213. pde.set_present(true);
  214. pde.set_writable(true);
  215. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  216. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  217. }
  218. return quickmap_pt(PhysicalAddress((u32)pde.page_table_base()))[page_table_index];
  219. }
  220. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  221. {
  222. InterruptDisabler disabler;
  223. ASSERT(vaddr.is_page_aligned());
  224. for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
  225. auto pte_address = vaddr.offset(offset);
  226. auto& pte = ensure_pte(kernel_page_directory(), pte_address);
  227. pte.set_physical_page_base(pte_address.get());
  228. pte.set_user_allowed(false);
  229. pte.set_present(false);
  230. pte.set_writable(false);
  231. flush_tlb(pte_address);
  232. }
  233. }
  234. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  235. {
  236. InterruptDisabler disabler;
  237. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  238. for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
  239. auto pte_address = vaddr.offset(offset);
  240. auto& pte = ensure_pte(page_directory, pte_address);
  241. pte.set_physical_page_base(pte_address.get());
  242. pte.set_user_allowed(false);
  243. pte.set_present(true);
  244. pte.set_writable(true);
  245. flush_tlb(pte_address);
  246. }
  247. }
  248. void MemoryManager::initialize()
  249. {
  250. s_the = new MemoryManager;
  251. }
  252. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  253. {
  254. if (vaddr.get() < 0xc0000000)
  255. return nullptr;
  256. for (auto& region : MM.m_kernel_regions) {
  257. if (region.contains(vaddr))
  258. return &region;
  259. }
  260. return nullptr;
  261. }
  262. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  263. {
  264. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  265. for (auto& region : process.m_regions) {
  266. if (region.contains(vaddr))
  267. return &region;
  268. }
  269. dbg() << process << " Couldn't find user region for " << vaddr;
  270. if (auto* kreg = kernel_region_from_vaddr(vaddr)) {
  271. dbg() << process << " OTOH, there is a kernel region: " << kreg->range() << ": " << kreg->name();
  272. } else {
  273. dbg() << process << " AND no kernel region either";
  274. }
  275. process.dump_regions();
  276. kprintf("Kernel regions:\n");
  277. kprintf("BEGIN END SIZE ACCESS NAME\n");
  278. for (auto& region : MM.m_kernel_regions) {
  279. kprintf("%08x -- %08x %08x %c%c%c%c%c%c %s\n",
  280. region.vaddr().get(),
  281. region.vaddr().offset(region.size() - 1).get(),
  282. region.size(),
  283. region.is_readable() ? 'R' : ' ',
  284. region.is_writable() ? 'W' : ' ',
  285. region.is_executable() ? 'X' : ' ',
  286. region.is_shared() ? 'S' : ' ',
  287. region.is_stack() ? 'T' : ' ',
  288. region.vmobject().is_purgeable() ? 'P' : ' ',
  289. region.name().characters());
  290. }
  291. return nullptr;
  292. }
  293. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  294. {
  295. if (auto* region = kernel_region_from_vaddr(vaddr))
  296. return region;
  297. return user_region_from_vaddr(process, vaddr);
  298. }
  299. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  300. {
  301. if (auto* region = kernel_region_from_vaddr(vaddr))
  302. return region;
  303. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  304. }
  305. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  306. {
  307. if (auto* region = kernel_region_from_vaddr(vaddr))
  308. return region;
  309. auto page_directory = PageDirectory::find_by_cr3(cpu_cr3());
  310. if (!page_directory)
  311. return nullptr;
  312. ASSERT(page_directory->process());
  313. return user_region_from_vaddr(*page_directory->process(), vaddr);
  314. }
  315. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  316. {
  317. ASSERT_INTERRUPTS_DISABLED();
  318. ASSERT(current);
  319. #ifdef PAGE_FAULT_DEBUG
  320. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  321. #endif
  322. ASSERT(fault.vaddr() != m_quickmap_addr);
  323. auto* region = region_from_vaddr(fault.vaddr());
  324. if (!region) {
  325. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  326. return PageFaultResponse::ShouldCrash;
  327. }
  328. return region->handle_fault(fault);
  329. }
  330. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  331. {
  332. InterruptDisabler disabler;
  333. ASSERT(!(size % PAGE_SIZE));
  334. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  335. ASSERT(range.is_valid());
  336. OwnPtr<Region> region;
  337. if (user_accessible)
  338. region = Region::create_user_accessible(range, name, access, cacheable);
  339. else
  340. region = Region::create_kernel_only(range, name, access, cacheable);
  341. region->set_page_directory(kernel_page_directory());
  342. // FIXME: It would be cool if these could zero-fill on demand instead.
  343. if (should_commit)
  344. region->commit();
  345. return region;
  346. }
  347. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  348. {
  349. InterruptDisabler disabler;
  350. ASSERT(!(size % PAGE_SIZE));
  351. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  352. ASSERT(range.is_valid());
  353. OwnPtr<Region> region;
  354. if (user_accessible)
  355. region = Region::create_user_accessible(range, AnonymousVMObject::create_for_physical_range(paddr, size), 0, name, access, cacheable);
  356. else
  357. region = Region::create_kernel_only(range, AnonymousVMObject::create_for_physical_range(paddr, size), 0, name, access, cacheable);
  358. region->map(kernel_page_directory());
  359. return region;
  360. }
  361. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  362. {
  363. return allocate_kernel_region(size, name, access, true, true, cacheable);
  364. }
  365. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  366. {
  367. InterruptDisabler disabler;
  368. ASSERT(!(size % PAGE_SIZE));
  369. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  370. ASSERT(range.is_valid());
  371. OwnPtr<Region> region;
  372. if (user_accessible)
  373. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  374. else
  375. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  376. region->map(kernel_page_directory());
  377. return region;
  378. }
  379. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  380. {
  381. for (auto& region : m_user_physical_regions) {
  382. if (!region.contains(page)) {
  383. kprintf(
  384. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  385. page.paddr().get(), region.lower().get(), region.upper().get());
  386. continue;
  387. }
  388. region.return_page(move(page));
  389. --m_user_physical_pages_used;
  390. return;
  391. }
  392. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr().get());
  393. ASSERT_NOT_REACHED();
  394. }
  395. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  396. {
  397. RefPtr<PhysicalPage> page;
  398. for (auto& region : m_user_physical_regions) {
  399. page = region.take_free_page(false);
  400. if (!page.is_null())
  401. break;
  402. }
  403. return page;
  404. }
  405. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  406. {
  407. InterruptDisabler disabler;
  408. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  409. if (!page) {
  410. if (m_user_physical_regions.is_empty()) {
  411. kprintf("MM: no user physical regions available (?)\n");
  412. }
  413. for_each_vmobject([&](auto& vmobject) {
  414. if (vmobject.is_purgeable()) {
  415. auto& purgeable_vmobject = static_cast<PurgeableVMObject&>(vmobject);
  416. int purged_page_count = purgeable_vmobject.purge_with_interrupts_disabled({});
  417. if (purged_page_count) {
  418. kprintf("MM: Purge saved the day! Purged %d pages from PurgeableVMObject{%p}\n", purged_page_count, &purgeable_vmobject);
  419. page = find_free_user_physical_page();
  420. ASSERT(page);
  421. return IterationDecision::Break;
  422. }
  423. }
  424. return IterationDecision::Continue;
  425. });
  426. if (!page) {
  427. kprintf("MM: no user physical pages available\n");
  428. ASSERT_NOT_REACHED();
  429. return {};
  430. }
  431. }
  432. #ifdef MM_DEBUG
  433. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  434. #endif
  435. if (should_zero_fill == ShouldZeroFill::Yes) {
  436. auto* ptr = (u32*)quickmap_page(*page);
  437. memset(ptr, 0, PAGE_SIZE);
  438. unquickmap_page();
  439. }
  440. ++m_user_physical_pages_used;
  441. return page;
  442. }
  443. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  444. {
  445. for (auto& region : m_super_physical_regions) {
  446. if (!region.contains(page)) {
  447. kprintf(
  448. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  449. page.paddr().get(), region.lower().get(), region.upper().get());
  450. continue;
  451. }
  452. region.return_page(move(page));
  453. --m_super_physical_pages_used;
  454. return;
  455. }
  456. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr().get());
  457. ASSERT_NOT_REACHED();
  458. }
  459. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  460. {
  461. InterruptDisabler disabler;
  462. RefPtr<PhysicalPage> page;
  463. for (auto& region : m_super_physical_regions) {
  464. page = region.take_free_page(true);
  465. if (page.is_null())
  466. continue;
  467. }
  468. if (!page) {
  469. if (m_super_physical_regions.is_empty()) {
  470. kprintf("MM: no super physical regions available (?)\n");
  471. }
  472. kprintf("MM: no super physical pages available\n");
  473. ASSERT_NOT_REACHED();
  474. return {};
  475. }
  476. #ifdef MM_DEBUG
  477. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  478. #endif
  479. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  480. ++m_super_physical_pages_used;
  481. return page;
  482. }
  483. void MemoryManager::enter_process_paging_scope(Process& process)
  484. {
  485. ASSERT(current);
  486. InterruptDisabler disabler;
  487. current->tss().cr3 = process.page_directory().cr3();
  488. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  489. : "memory");
  490. }
  491. void MemoryManager::flush_entire_tlb()
  492. {
  493. asm volatile(
  494. "mov %%cr3, %%eax\n"
  495. "mov %%eax, %%cr3\n" ::
  496. : "%eax", "memory");
  497. }
  498. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  499. {
  500. #ifdef MM_DEBUG
  501. dbgprintf("MM: Flush page V%p\n", vaddr.get());
  502. #endif
  503. asm volatile("invlpg %0"
  504. :
  505. : "m"(*(char*)vaddr.get())
  506. : "memory");
  507. }
  508. extern "C" PageTableEntry boot_pd3_pde1023_pt[1024];
  509. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  510. {
  511. auto& pte = boot_pd3_pde1023_pt[4];
  512. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  513. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  514. //dbgprintf("quickmap_pd: Mapping P%p at 0xffe04000 in pte @ %p\n", directory.m_directory_pages[pdpt_index]->paddr().as_ptr(), &pte);
  515. pte.set_physical_page_base(pd_paddr.get());
  516. pte.set_present(true);
  517. pte.set_writable(true);
  518. pte.set_user_allowed(false);
  519. flush_tlb(VirtualAddress(0xffe04000));
  520. }
  521. return (PageDirectoryEntry*)0xffe04000;
  522. }
  523. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  524. {
  525. auto& pte = boot_pd3_pde1023_pt[8];
  526. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  527. //dbgprintf("quickmap_pt: Mapping P%p at 0xffe08000 in pte @ %p\n", pt_paddr.as_ptr(), &pte);
  528. pte.set_physical_page_base(pt_paddr.get());
  529. pte.set_present(true);
  530. pte.set_writable(true);
  531. pte.set_user_allowed(false);
  532. flush_tlb(VirtualAddress(0xffe08000));
  533. }
  534. return (PageTableEntry*)0xffe08000;
  535. }
  536. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr, bool cache_disabled)
  537. {
  538. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  539. pte.set_physical_page_base(paddr.get());
  540. pte.set_present(true);
  541. pte.set_writable(true);
  542. pte.set_user_allowed(false);
  543. pte.set_cache_disabled(cache_disabled);
  544. flush_tlb(vaddr);
  545. }
  546. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  547. {
  548. ASSERT_INTERRUPTS_DISABLED();
  549. ASSERT(!m_quickmap_in_use);
  550. m_quickmap_in_use = true;
  551. auto page_vaddr = m_quickmap_addr;
  552. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  553. pte.set_physical_page_base(physical_page.paddr().get());
  554. pte.set_present(true);
  555. pte.set_writable(true);
  556. pte.set_user_allowed(false);
  557. flush_tlb(page_vaddr);
  558. ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
  559. #ifdef MM_DEBUG
  560. dbg() << "MM: >> quickmap_page " << page_vaddr << " => " << physical_page.paddr() << " @ PTE=" << (void*)pte.raw() << " {" << &pte << "}";
  561. #endif
  562. return page_vaddr.as_ptr();
  563. }
  564. void MemoryManager::unquickmap_page()
  565. {
  566. ASSERT_INTERRUPTS_DISABLED();
  567. ASSERT(m_quickmap_in_use);
  568. auto page_vaddr = m_quickmap_addr;
  569. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  570. #ifdef MM_DEBUG
  571. auto old_physical_address = pte.physical_page_base();
  572. #endif
  573. pte.set_physical_page_base(0);
  574. pte.set_present(false);
  575. pte.set_writable(false);
  576. flush_tlb(page_vaddr);
  577. #ifdef MM_DEBUG
  578. dbg() << "MM: >> unquickmap_page " << page_vaddr << " =/> " << old_physical_address;
  579. #endif
  580. m_quickmap_in_use = false;
  581. }
  582. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  583. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  584. {
  585. ASSERT(size);
  586. VirtualAddress vaddr = base_vaddr.page_base();
  587. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  588. if (end_vaddr < vaddr) {
  589. dbg() << *current << " Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  590. return false;
  591. }
  592. const Region* region = nullptr;
  593. while (vaddr <= end_vaddr) {
  594. if (!region || !region->contains(vaddr)) {
  595. if (space == AccessSpace::Kernel)
  596. region = kernel_region_from_vaddr(vaddr);
  597. if (!region || !region->contains(vaddr))
  598. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  599. if (!region
  600. || (space == AccessSpace::User && !region->is_user_accessible())
  601. || (access_type == AccessType::Read && !region->is_readable())
  602. || (access_type == AccessType::Write && !region->is_writable())) {
  603. return false;
  604. }
  605. }
  606. vaddr = vaddr.offset(PAGE_SIZE);
  607. }
  608. return true;
  609. }
  610. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  611. {
  612. if (!is_user_address(vaddr))
  613. return false;
  614. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  615. return region && region->is_user_accessible() && region->is_stack();
  616. }
  617. bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
  618. {
  619. return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
  620. }
  621. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
  622. {
  623. if (!is_user_address(vaddr))
  624. return false;
  625. return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
  626. }
  627. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
  628. {
  629. if (!is_user_address(vaddr))
  630. return false;
  631. return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
  632. }
  633. void MemoryManager::register_vmobject(VMObject& vmobject)
  634. {
  635. InterruptDisabler disabler;
  636. m_vmobjects.append(&vmobject);
  637. }
  638. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  639. {
  640. InterruptDisabler disabler;
  641. m_vmobjects.remove(&vmobject);
  642. }
  643. void MemoryManager::register_region(Region& region)
  644. {
  645. InterruptDisabler disabler;
  646. if (region.vaddr().get() >= 0xc0000000)
  647. m_kernel_regions.append(&region);
  648. else
  649. m_user_regions.append(&region);
  650. }
  651. void MemoryManager::unregister_region(Region& region)
  652. {
  653. InterruptDisabler disabler;
  654. if (region.vaddr().get() >= 0xc0000000)
  655. m_kernel_regions.remove(&region);
  656. else
  657. m_user_regions.remove(&region);
  658. }
  659. ProcessPagingScope::ProcessPagingScope(Process& process)
  660. {
  661. ASSERT(current);
  662. MM.enter_process_paging_scope(process);
  663. }
  664. ProcessPagingScope::~ProcessPagingScope()
  665. {
  666. MM.enter_process_paging_scope(current->process());
  667. }