Parser.cpp 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413
  1. /*
  2. * Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include "Parser.h"
  7. #include "Decoder.h"
  8. #include "Utilities.h"
  9. namespace Video::VP9 {
  10. #define RESERVED_ZERO \
  11. if (m_bit_stream->read_bit() != 0) \
  12. return false
  13. Parser::Parser(Decoder& decoder)
  14. : m_probability_tables(make<ProbabilityTables>())
  15. , m_tree_parser(make<TreeParser>(*this))
  16. , m_decoder(decoder)
  17. {
  18. }
  19. Parser::~Parser()
  20. {
  21. cleanup_tile_allocations();
  22. if (m_prev_segment_ids)
  23. free(m_prev_segment_ids);
  24. }
  25. void Parser::cleanup_tile_allocations()
  26. {
  27. if (m_skips)
  28. free(m_skips);
  29. if (m_tx_sizes)
  30. free(m_tx_sizes);
  31. if (m_mi_sizes)
  32. free(m_mi_sizes);
  33. if (m_y_modes)
  34. free(m_y_modes);
  35. if (m_segment_ids)
  36. free(m_segment_ids);
  37. if (m_ref_frames)
  38. free(m_ref_frames);
  39. if (m_interp_filters)
  40. free(m_interp_filters);
  41. if (m_mvs)
  42. free(m_mvs);
  43. if (m_sub_mvs)
  44. free(m_sub_mvs);
  45. if (m_sub_modes)
  46. free(m_sub_modes);
  47. }
  48. /* (6.1) */
  49. bool Parser::parse_frame(ByteBuffer const& frame_data)
  50. {
  51. m_bit_stream = make<BitStream>(frame_data.data(), frame_data.size());
  52. m_syntax_element_counter = make<SyntaxElementCounter>();
  53. SAFE_CALL(uncompressed_header());
  54. dbgln("Finished reading uncompressed header");
  55. SAFE_CALL(trailing_bits());
  56. if (m_header_size_in_bytes == 0) {
  57. dbgln("No header");
  58. return true;
  59. }
  60. m_probability_tables->load_probs(m_frame_context_idx);
  61. m_probability_tables->load_probs2(m_frame_context_idx);
  62. m_syntax_element_counter->clear_counts();
  63. SAFE_CALL(m_bit_stream->init_bool(m_header_size_in_bytes));
  64. dbgln("Reading compressed header");
  65. SAFE_CALL(compressed_header());
  66. dbgln("Finished reading compressed header");
  67. SAFE_CALL(m_bit_stream->exit_bool());
  68. SAFE_CALL(decode_tiles());
  69. SAFE_CALL(refresh_probs());
  70. dbgln("Finished reading frame!");
  71. return true;
  72. }
  73. bool Parser::trailing_bits()
  74. {
  75. while (m_bit_stream->get_position() & 7u)
  76. RESERVED_ZERO;
  77. return true;
  78. }
  79. bool Parser::refresh_probs()
  80. {
  81. if (!m_error_resilient_mode && !m_frame_parallel_decoding_mode) {
  82. m_probability_tables->load_probs(m_frame_context_idx);
  83. SAFE_CALL(m_decoder.adapt_coef_probs());
  84. if (!m_frame_is_intra) {
  85. m_probability_tables->load_probs2(m_frame_context_idx);
  86. SAFE_CALL(m_decoder.adapt_non_coef_probs());
  87. }
  88. }
  89. if (m_refresh_frame_context)
  90. m_probability_tables->save_probs(m_frame_context_idx);
  91. return true;
  92. }
  93. /* (6.2) */
  94. bool Parser::uncompressed_header()
  95. {
  96. auto frame_marker = m_bit_stream->read_f(2);
  97. if (frame_marker != 2)
  98. return false;
  99. auto profile_low_bit = m_bit_stream->read_bit();
  100. auto profile_high_bit = m_bit_stream->read_bit();
  101. m_profile = (profile_high_bit << 1u) + profile_low_bit;
  102. if (m_profile == 3)
  103. RESERVED_ZERO;
  104. auto show_existing_frame = m_bit_stream->read_bit();
  105. if (show_existing_frame) {
  106. m_frame_to_show_map_index = m_bit_stream->read_f(3);
  107. m_header_size_in_bytes = 0;
  108. m_refresh_frame_flags = 0;
  109. m_loop_filter_level = 0;
  110. return true;
  111. }
  112. m_last_frame_type = m_frame_type;
  113. m_frame_type = read_frame_type();
  114. m_show_frame = m_bit_stream->read_bit();
  115. m_error_resilient_mode = m_bit_stream->read_bit();
  116. if (m_frame_type == KeyFrame) {
  117. SAFE_CALL(frame_sync_code());
  118. SAFE_CALL(color_config());
  119. SAFE_CALL(frame_size());
  120. SAFE_CALL(render_size());
  121. m_refresh_frame_flags = 0xFF;
  122. m_frame_is_intra = true;
  123. } else {
  124. m_frame_is_intra = !m_show_frame && m_bit_stream->read_bit();
  125. if (!m_error_resilient_mode) {
  126. m_reset_frame_context = m_bit_stream->read_f(2);
  127. } else {
  128. m_reset_frame_context = 0;
  129. }
  130. if (m_frame_is_intra) {
  131. SAFE_CALL(frame_sync_code());
  132. if (m_profile > 0) {
  133. SAFE_CALL(color_config());
  134. } else {
  135. m_color_space = Bt601;
  136. m_subsampling_x = true;
  137. m_subsampling_y = true;
  138. m_bit_depth = 8;
  139. }
  140. m_refresh_frame_flags = m_bit_stream->read_f8();
  141. SAFE_CALL(frame_size());
  142. SAFE_CALL(render_size());
  143. } else {
  144. m_refresh_frame_flags = m_bit_stream->read_f8();
  145. for (auto i = 0; i < 3; i++) {
  146. m_ref_frame_idx[i] = m_bit_stream->read_f(3);
  147. m_ref_frame_sign_bias[LastFrame + i] = m_bit_stream->read_bit();
  148. }
  149. SAFE_CALL(frame_size_with_refs());
  150. m_allow_high_precision_mv = m_bit_stream->read_bit();
  151. SAFE_CALL(read_interpolation_filter());
  152. }
  153. }
  154. if (!m_error_resilient_mode) {
  155. m_refresh_frame_context = m_bit_stream->read_bit();
  156. m_frame_parallel_decoding_mode = m_bit_stream->read_bit();
  157. } else {
  158. m_refresh_frame_context = false;
  159. m_frame_parallel_decoding_mode = true;
  160. }
  161. m_frame_context_idx = m_bit_stream->read_f(2);
  162. if (m_frame_is_intra || m_error_resilient_mode) {
  163. SAFE_CALL(setup_past_independence());
  164. if (m_frame_type == KeyFrame || m_error_resilient_mode || m_reset_frame_context == 3) {
  165. for (auto i = 0; i < 4; i++) {
  166. m_probability_tables->save_probs(i);
  167. }
  168. } else if (m_reset_frame_context == 2) {
  169. m_probability_tables->save_probs(m_frame_context_idx);
  170. }
  171. m_frame_context_idx = 0;
  172. }
  173. SAFE_CALL(loop_filter_params());
  174. SAFE_CALL(quantization_params());
  175. SAFE_CALL(segmentation_params());
  176. SAFE_CALL(tile_info());
  177. m_header_size_in_bytes = m_bit_stream->read_f16();
  178. return true;
  179. }
  180. bool Parser::frame_sync_code()
  181. {
  182. if (m_bit_stream->read_byte() != 0x49)
  183. return false;
  184. if (m_bit_stream->read_byte() != 0x83)
  185. return false;
  186. return m_bit_stream->read_byte() == 0x42;
  187. }
  188. bool Parser::color_config()
  189. {
  190. if (m_profile >= 2) {
  191. m_bit_depth = m_bit_stream->read_bit() ? 12 : 10;
  192. } else {
  193. m_bit_depth = 8;
  194. }
  195. auto color_space = m_bit_stream->read_f(3);
  196. if (color_space > RGB)
  197. return false;
  198. m_color_space = static_cast<ColorSpace>(color_space);
  199. if (color_space != RGB) {
  200. m_color_range = read_color_range();
  201. if (m_profile == 1 || m_profile == 3) {
  202. m_subsampling_x = m_bit_stream->read_bit();
  203. m_subsampling_y = m_bit_stream->read_bit();
  204. RESERVED_ZERO;
  205. } else {
  206. m_subsampling_x = true;
  207. m_subsampling_y = true;
  208. }
  209. } else {
  210. m_color_range = FullSwing;
  211. if (m_profile == 1 || m_profile == 3) {
  212. m_subsampling_x = false;
  213. m_subsampling_y = false;
  214. RESERVED_ZERO;
  215. }
  216. }
  217. return true;
  218. }
  219. bool Parser::frame_size()
  220. {
  221. m_frame_width = m_bit_stream->read_f16() + 1;
  222. m_frame_height = m_bit_stream->read_f16() + 1;
  223. SAFE_CALL(compute_image_size());
  224. return true;
  225. }
  226. bool Parser::render_size()
  227. {
  228. if (m_bit_stream->read_bit()) {
  229. m_render_width = m_bit_stream->read_f16() + 1;
  230. m_render_height = m_bit_stream->read_f16() + 1;
  231. } else {
  232. m_render_width = m_frame_width;
  233. m_render_height = m_frame_height;
  234. }
  235. return true;
  236. }
  237. bool Parser::frame_size_with_refs()
  238. {
  239. bool found_ref;
  240. for (auto frame_index : m_ref_frame_idx) {
  241. found_ref = m_bit_stream->read_bit();
  242. if (found_ref) {
  243. dbgln("Reading size from ref frame {}", frame_index);
  244. m_frame_width = m_ref_frame_width[frame_index];
  245. m_frame_height = m_ref_frame_height[frame_index];
  246. break;
  247. }
  248. }
  249. if (!found_ref) {
  250. SAFE_CALL(frame_size());
  251. } else {
  252. SAFE_CALL(compute_image_size());
  253. }
  254. SAFE_CALL(render_size());
  255. return true;
  256. }
  257. bool Parser::compute_image_size()
  258. {
  259. m_mi_cols = (m_frame_width + 7u) >> 3u;
  260. m_mi_rows = (m_frame_height + 7u) >> 3u;
  261. m_sb64_cols = (m_mi_cols + 7u) >> 3u;
  262. m_sb64_rows = (m_mi_rows + 7u) >> 3u;
  263. return true;
  264. }
  265. bool Parser::read_interpolation_filter()
  266. {
  267. if (m_bit_stream->read_bit()) {
  268. m_interpolation_filter = Switchable;
  269. } else {
  270. m_interpolation_filter = literal_to_type[m_bit_stream->read_f(2)];
  271. }
  272. return true;
  273. }
  274. bool Parser::loop_filter_params()
  275. {
  276. m_loop_filter_level = m_bit_stream->read_f(6);
  277. m_loop_filter_sharpness = m_bit_stream->read_f(3);
  278. m_loop_filter_delta_enabled = m_bit_stream->read_bit();
  279. if (m_loop_filter_delta_enabled) {
  280. if (m_bit_stream->read_bit()) {
  281. for (auto& loop_filter_ref_delta : m_loop_filter_ref_deltas) {
  282. if (m_bit_stream->read_bit())
  283. loop_filter_ref_delta = m_bit_stream->read_s(6);
  284. }
  285. for (auto& loop_filter_mode_delta : m_loop_filter_mode_deltas) {
  286. if (m_bit_stream->read_bit())
  287. loop_filter_mode_delta = m_bit_stream->read_s(6);
  288. }
  289. }
  290. }
  291. return true;
  292. }
  293. bool Parser::quantization_params()
  294. {
  295. auto base_q_idx = m_bit_stream->read_byte();
  296. auto delta_q_y_dc = read_delta_q();
  297. auto delta_q_uv_dc = read_delta_q();
  298. auto delta_q_uv_ac = read_delta_q();
  299. m_lossless = base_q_idx == 0 && delta_q_y_dc == 0 && delta_q_uv_dc == 0 && delta_q_uv_ac == 0;
  300. return true;
  301. }
  302. i8 Parser::read_delta_q()
  303. {
  304. if (m_bit_stream->read_bit())
  305. return m_bit_stream->read_s(4);
  306. return 0;
  307. }
  308. bool Parser::segmentation_params()
  309. {
  310. m_segmentation_enabled = m_bit_stream->read_bit();
  311. if (!m_segmentation_enabled)
  312. return true;
  313. m_segmentation_update_map = m_bit_stream->read_bit();
  314. if (m_segmentation_update_map) {
  315. for (auto& segmentation_tree_prob : m_segmentation_tree_probs)
  316. segmentation_tree_prob = read_prob();
  317. m_segmentation_temporal_update = m_bit_stream->read_bit();
  318. for (auto& segmentation_pred_prob : m_segmentation_pred_prob)
  319. segmentation_pred_prob = m_segmentation_temporal_update ? read_prob() : 255;
  320. }
  321. SAFE_CALL(m_bit_stream->read_bit());
  322. m_segmentation_abs_or_delta_update = m_bit_stream->read_bit();
  323. for (auto i = 0; i < MAX_SEGMENTS; i++) {
  324. for (auto j = 0; j < SEG_LVL_MAX; j++) {
  325. auto feature_value = 0;
  326. auto feature_enabled = m_bit_stream->read_bit();
  327. m_feature_enabled[i][j] = feature_enabled;
  328. if (feature_enabled) {
  329. auto bits_to_read = segmentation_feature_bits[j];
  330. feature_value = m_bit_stream->read_f(bits_to_read);
  331. if (segmentation_feature_signed[j]) {
  332. if (m_bit_stream->read_bit())
  333. feature_value = -feature_value;
  334. }
  335. }
  336. m_feature_data[i][j] = feature_value;
  337. }
  338. }
  339. return true;
  340. }
  341. u8 Parser::read_prob()
  342. {
  343. if (m_bit_stream->read_bit())
  344. return m_bit_stream->read_byte();
  345. return 255;
  346. }
  347. bool Parser::tile_info()
  348. {
  349. auto min_log2_tile_cols = calc_min_log2_tile_cols();
  350. auto max_log2_tile_cols = calc_max_log2_tile_cols();
  351. m_tile_cols_log2 = min_log2_tile_cols;
  352. while (m_tile_cols_log2 < max_log2_tile_cols) {
  353. if (m_bit_stream->read_bit())
  354. m_tile_cols_log2++;
  355. else
  356. break;
  357. }
  358. m_tile_rows_log2 = m_bit_stream->read_bit();
  359. if (m_tile_rows_log2) {
  360. m_tile_rows_log2 += m_bit_stream->read_bit();
  361. }
  362. return true;
  363. }
  364. u16 Parser::calc_min_log2_tile_cols()
  365. {
  366. auto min_log_2 = 0u;
  367. while ((u32)(MAX_TILE_WIDTH_B64 << min_log_2) < m_sb64_cols)
  368. min_log_2++;
  369. return min_log_2;
  370. }
  371. u16 Parser::calc_max_log2_tile_cols()
  372. {
  373. u16 max_log_2 = 1;
  374. while ((m_sb64_cols >> max_log_2) >= MIN_TILE_WIDTH_B64)
  375. max_log_2++;
  376. return max_log_2 - 1;
  377. }
  378. bool Parser::setup_past_independence()
  379. {
  380. for (auto i = 0; i < 8; i++) {
  381. for (auto j = 0; j < 4; j++) {
  382. m_feature_data[i][j] = 0;
  383. m_feature_enabled[i][j] = false;
  384. }
  385. }
  386. m_segmentation_abs_or_delta_update = false;
  387. if (m_prev_segment_ids)
  388. free(m_prev_segment_ids);
  389. m_prev_segment_ids = static_cast<u8*>(malloc(m_mi_rows * m_mi_cols));
  390. m_loop_filter_delta_enabled = true;
  391. m_loop_filter_ref_deltas[IntraFrame] = 1;
  392. m_loop_filter_ref_deltas[LastFrame] = 0;
  393. m_loop_filter_ref_deltas[GoldenFrame] = -1;
  394. m_loop_filter_ref_deltas[AltRefFrame] = -1;
  395. for (auto& loop_filter_mode_delta : m_loop_filter_mode_deltas)
  396. loop_filter_mode_delta = 0;
  397. m_probability_tables->reset_probs();
  398. return true;
  399. }
  400. bool Parser::compressed_header()
  401. {
  402. SAFE_CALL(read_tx_mode());
  403. if (m_tx_mode == TXModeSelect)
  404. SAFE_CALL(tx_mode_probs());
  405. SAFE_CALL(read_coef_probs());
  406. SAFE_CALL(read_skip_prob());
  407. if (!m_frame_is_intra) {
  408. SAFE_CALL(read_inter_mode_probs());
  409. if (m_interpolation_filter == Switchable)
  410. SAFE_CALL(read_interp_filter_probs());
  411. SAFE_CALL(read_is_inter_probs());
  412. SAFE_CALL(frame_reference_mode());
  413. SAFE_CALL(frame_reference_mode_probs());
  414. SAFE_CALL(read_y_mode_probs());
  415. SAFE_CALL(read_partition_probs());
  416. SAFE_CALL(mv_probs());
  417. }
  418. return true;
  419. }
  420. bool Parser::read_tx_mode()
  421. {
  422. if (m_lossless) {
  423. m_tx_mode = Only_4x4;
  424. } else {
  425. auto tx_mode = m_bit_stream->read_literal(2);
  426. if (tx_mode == Allow_32x32)
  427. tx_mode += m_bit_stream->read_literal(1);
  428. m_tx_mode = static_cast<TXMode>(tx_mode);
  429. }
  430. return true;
  431. }
  432. bool Parser::tx_mode_probs()
  433. {
  434. auto& tx_probs = m_probability_tables->tx_probs();
  435. for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
  436. for (auto j = 0; j < TX_SIZES - 3; j++)
  437. tx_probs[TX_8x8][i][j] = diff_update_prob(tx_probs[TX_8x8][i][j]);
  438. }
  439. for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
  440. for (auto j = 0; j < TX_SIZES - 2; j++)
  441. tx_probs[TX_16x16][i][j] = diff_update_prob(tx_probs[TX_16x16][i][j]);
  442. }
  443. for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
  444. for (auto j = 0; j < TX_SIZES - 1; j++)
  445. tx_probs[TX_32x32][i][j] = diff_update_prob(tx_probs[TX_32x32][i][j]);
  446. }
  447. return true;
  448. }
  449. u8 Parser::diff_update_prob(u8 prob)
  450. {
  451. if (m_bit_stream->read_bool(252)) {
  452. auto delta_prob = decode_term_subexp();
  453. prob = inv_remap_prob(delta_prob, prob);
  454. }
  455. return prob;
  456. }
  457. u8 Parser::decode_term_subexp()
  458. {
  459. if (m_bit_stream->read_literal(1) == 0)
  460. return m_bit_stream->read_literal(4);
  461. if (m_bit_stream->read_literal(1) == 0)
  462. return m_bit_stream->read_literal(4) + 16;
  463. if (m_bit_stream->read_literal(1) == 0)
  464. return m_bit_stream->read_literal(4) + 32;
  465. auto v = m_bit_stream->read_literal(7);
  466. if (v < 65)
  467. return v + 64;
  468. return (v << 1u) - 1 + m_bit_stream->read_literal(1);
  469. }
  470. u8 Parser::inv_remap_prob(u8 delta_prob, u8 prob)
  471. {
  472. u8 m = prob - 1;
  473. auto v = inv_map_table[delta_prob];
  474. if ((m << 1u) <= 255)
  475. return 1 + inv_recenter_nonneg(v, m);
  476. return 255 - inv_recenter_nonneg(v, 254 - m);
  477. }
  478. u8 Parser::inv_recenter_nonneg(u8 v, u8 m)
  479. {
  480. if (v > 2 * m)
  481. return v;
  482. if (v & 1u)
  483. return m - ((v + 1u) >> 1u);
  484. return m + (v >> 1u);
  485. }
  486. bool Parser::read_coef_probs()
  487. {
  488. m_max_tx_size = tx_mode_to_biggest_tx_size[m_tx_mode];
  489. for (auto tx_size = TX_4x4; tx_size <= m_max_tx_size; tx_size = static_cast<TXSize>(static_cast<int>(tx_size) + 1)) {
  490. auto update_probs = m_bit_stream->read_literal(1);
  491. if (update_probs == 1) {
  492. for (auto i = 0; i < 2; i++) {
  493. for (auto j = 0; j < 2; j++) {
  494. for (auto k = 0; k < 6; k++) {
  495. auto max_l = (k == 0) ? 3 : 6;
  496. for (auto l = 0; l < max_l; l++) {
  497. for (auto m = 0; m < 3; m++) {
  498. auto& coef_probs = m_probability_tables->coef_probs()[tx_size];
  499. coef_probs[i][j][k][l][m] = diff_update_prob(coef_probs[i][j][k][l][m]);
  500. }
  501. }
  502. }
  503. }
  504. }
  505. }
  506. }
  507. return true;
  508. }
  509. bool Parser::read_skip_prob()
  510. {
  511. for (auto i = 0; i < SKIP_CONTEXTS; i++)
  512. m_probability_tables->skip_prob()[i] = diff_update_prob(m_probability_tables->skip_prob()[i]);
  513. return true;
  514. }
  515. bool Parser::read_inter_mode_probs()
  516. {
  517. for (auto i = 0; i < INTER_MODE_CONTEXTS; i++) {
  518. for (auto j = 0; j < INTER_MODES - 1; j++)
  519. m_probability_tables->inter_mode_probs()[i][j] = diff_update_prob(m_probability_tables->inter_mode_probs()[i][j]);
  520. }
  521. return true;
  522. }
  523. bool Parser::read_interp_filter_probs()
  524. {
  525. for (auto i = 0; i < INTERP_FILTER_CONTEXTS; i++) {
  526. for (auto j = 0; j < SWITCHABLE_FILTERS - 1; j++)
  527. m_probability_tables->interp_filter_probs()[i][j] = diff_update_prob(m_probability_tables->interp_filter_probs()[i][j]);
  528. }
  529. return true;
  530. }
  531. bool Parser::read_is_inter_probs()
  532. {
  533. for (auto i = 0; i < IS_INTER_CONTEXTS; i++)
  534. m_probability_tables->is_inter_prob()[i] = diff_update_prob(m_probability_tables->is_inter_prob()[i]);
  535. return true;
  536. }
  537. bool Parser::frame_reference_mode()
  538. {
  539. auto compound_reference_allowed = false;
  540. for (size_t i = 2; i <= REFS_PER_FRAME; i++) {
  541. if (m_ref_frame_sign_bias[i] != m_ref_frame_sign_bias[1])
  542. compound_reference_allowed = true;
  543. }
  544. if (compound_reference_allowed) {
  545. auto non_single_reference = m_bit_stream->read_literal(1);
  546. if (non_single_reference == 0) {
  547. m_reference_mode = SingleReference;
  548. } else {
  549. auto reference_select = m_bit_stream->read_literal(1);
  550. if (reference_select == 0)
  551. m_reference_mode = CompoundReference;
  552. else
  553. m_reference_mode = ReferenceModeSelect;
  554. SAFE_CALL(setup_compound_reference_mode());
  555. }
  556. } else {
  557. m_reference_mode = SingleReference;
  558. }
  559. return true;
  560. }
  561. bool Parser::frame_reference_mode_probs()
  562. {
  563. if (m_reference_mode == ReferenceModeSelect) {
  564. for (auto i = 0; i < COMP_MODE_CONTEXTS; i++) {
  565. auto& comp_mode_prob = m_probability_tables->comp_mode_prob();
  566. comp_mode_prob[i] = diff_update_prob(comp_mode_prob[i]);
  567. }
  568. }
  569. if (m_reference_mode != CompoundReference) {
  570. for (auto i = 0; i < REF_CONTEXTS; i++) {
  571. auto& single_ref_prob = m_probability_tables->single_ref_prob();
  572. single_ref_prob[i][0] = diff_update_prob(single_ref_prob[i][0]);
  573. single_ref_prob[i][1] = diff_update_prob(single_ref_prob[i][1]);
  574. }
  575. }
  576. if (m_reference_mode != SingleReference) {
  577. for (auto i = 0; i < REF_CONTEXTS; i++) {
  578. auto& comp_ref_prob = m_probability_tables->comp_ref_prob();
  579. comp_ref_prob[i] = diff_update_prob(comp_ref_prob[i]);
  580. }
  581. }
  582. return true;
  583. }
  584. bool Parser::read_y_mode_probs()
  585. {
  586. for (auto i = 0; i < BLOCK_SIZE_GROUPS; i++) {
  587. for (auto j = 0; j < INTRA_MODES - 1; j++) {
  588. auto& y_mode_probs = m_probability_tables->y_mode_probs();
  589. y_mode_probs[i][j] = diff_update_prob(y_mode_probs[i][j]);
  590. }
  591. }
  592. return true;
  593. }
  594. bool Parser::read_partition_probs()
  595. {
  596. for (auto i = 0; i < PARTITION_CONTEXTS; i++) {
  597. for (auto j = 0; j < PARTITION_TYPES - 1; j++) {
  598. auto& partition_probs = m_probability_tables->partition_probs();
  599. partition_probs[i][j] = diff_update_prob(partition_probs[i][j]);
  600. }
  601. }
  602. return true;
  603. }
  604. bool Parser::mv_probs()
  605. {
  606. for (auto j = 0; j < MV_JOINTS - 1; j++) {
  607. auto& mv_joint_probs = m_probability_tables->mv_joint_probs();
  608. mv_joint_probs[j] = update_mv_prob(mv_joint_probs[j]);
  609. }
  610. for (auto i = 0; i < 2; i++) {
  611. auto& mv_sign_prob = m_probability_tables->mv_sign_prob();
  612. mv_sign_prob[i] = update_mv_prob(mv_sign_prob[i]);
  613. for (auto j = 0; j < MV_CLASSES - 1; j++) {
  614. auto& mv_class_probs = m_probability_tables->mv_class_probs();
  615. mv_class_probs[i][j] = update_mv_prob(mv_class_probs[i][j]);
  616. }
  617. auto& mv_class0_bit_prob = m_probability_tables->mv_class0_bit_prob();
  618. mv_class0_bit_prob[i] = update_mv_prob(mv_class0_bit_prob[i]);
  619. for (auto j = 0; j < MV_OFFSET_BITS; j++) {
  620. auto& mv_bits_prob = m_probability_tables->mv_bits_prob();
  621. mv_bits_prob[i][j] = update_mv_prob(mv_bits_prob[i][j]);
  622. }
  623. }
  624. for (auto i = 0; i < 2; i++) {
  625. for (auto j = 0; j < CLASS0_SIZE; j++) {
  626. for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
  627. auto& mv_class0_fr_probs = m_probability_tables->mv_class0_fr_probs();
  628. mv_class0_fr_probs[i][j][k] = update_mv_prob(mv_class0_fr_probs[i][j][k]);
  629. }
  630. }
  631. for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
  632. auto& mv_fr_probs = m_probability_tables->mv_fr_probs();
  633. mv_fr_probs[i][k] = update_mv_prob(mv_fr_probs[i][k]);
  634. }
  635. }
  636. if (m_allow_high_precision_mv) {
  637. for (auto i = 0; i < 2; i++) {
  638. auto& mv_class0_hp_prob = m_probability_tables->mv_class0_hp_prob();
  639. auto& mv_hp_prob = m_probability_tables->mv_hp_prob();
  640. mv_class0_hp_prob[i] = update_mv_prob(mv_class0_hp_prob[i]);
  641. mv_hp_prob[i] = update_mv_prob(mv_hp_prob[i]);
  642. }
  643. }
  644. return true;
  645. }
  646. u8 Parser::update_mv_prob(u8 prob)
  647. {
  648. if (m_bit_stream->read_bool(252)) {
  649. return (m_bit_stream->read_literal(7) << 1u) | 1u;
  650. }
  651. return prob;
  652. }
  653. bool Parser::setup_compound_reference_mode()
  654. {
  655. if (m_ref_frame_sign_bias[LastFrame] == m_ref_frame_sign_bias[GoldenFrame]) {
  656. m_comp_fixed_ref = AltRefFrame;
  657. m_comp_var_ref[0] = LastFrame;
  658. m_comp_var_ref[1] = GoldenFrame;
  659. } else if (m_ref_frame_sign_bias[LastFrame] == m_ref_frame_sign_bias[AltRefFrame]) {
  660. m_comp_fixed_ref = GoldenFrame;
  661. m_comp_var_ref[0] = LastFrame;
  662. m_comp_var_ref[1] = AltRefFrame;
  663. } else {
  664. m_comp_fixed_ref = LastFrame;
  665. m_comp_var_ref[0] = GoldenFrame;
  666. m_comp_var_ref[1] = AltRefFrame;
  667. }
  668. return true;
  669. }
  670. void Parser::allocate_tile_data()
  671. {
  672. auto dimensions = m_mi_rows * m_mi_cols;
  673. if (dimensions == m_allocated_dimensions)
  674. return;
  675. cleanup_tile_allocations();
  676. m_skips = static_cast<bool*>(malloc(sizeof(bool) * dimensions));
  677. m_tx_sizes = static_cast<TXSize*>(malloc(sizeof(TXSize) * dimensions));
  678. m_mi_sizes = static_cast<u32*>(malloc(sizeof(u32) * dimensions));
  679. m_y_modes = static_cast<u8*>(malloc(sizeof(u8) * dimensions));
  680. m_segment_ids = static_cast<u8*>(malloc(sizeof(u8) * dimensions));
  681. m_ref_frames = static_cast<ReferenceFrame*>(malloc(sizeof(ReferenceFrame) * dimensions * 2));
  682. m_interp_filters = static_cast<InterpolationFilter*>(malloc(sizeof(InterpolationFilter) * dimensions));
  683. m_mvs = static_cast<MV*>(malloc(sizeof(MV) * dimensions * 2));
  684. m_sub_mvs = static_cast<MV*>(malloc(sizeof(MV) * dimensions * 2 * 4));
  685. m_sub_modes = static_cast<IntraMode*>(malloc(sizeof(IntraMode) * dimensions * 4));
  686. m_allocated_dimensions = dimensions;
  687. }
  688. bool Parser::decode_tiles()
  689. {
  690. auto tile_cols = 1 << m_tile_cols_log2;
  691. auto tile_rows = 1 << m_tile_rows_log2;
  692. allocate_tile_data();
  693. SAFE_CALL(clear_above_context());
  694. for (auto tile_row = 0; tile_row < tile_rows; tile_row++) {
  695. for (auto tile_col = 0; tile_col < tile_cols; tile_col++) {
  696. auto last_tile = (tile_row == tile_rows - 1) && (tile_col == tile_cols - 1);
  697. auto tile_size = last_tile ? m_bit_stream->bytes_remaining() : m_bit_stream->read_f(32);
  698. m_mi_row_start = get_tile_offset(tile_row, m_mi_rows, m_tile_rows_log2);
  699. m_mi_row_end = get_tile_offset(tile_row + 1, m_mi_rows, m_tile_rows_log2);
  700. m_mi_col_start = get_tile_offset(tile_col, m_mi_cols, m_tile_cols_log2);
  701. m_mi_col_end = get_tile_offset(tile_col + 1, m_mi_cols, m_tile_cols_log2);
  702. SAFE_CALL(m_bit_stream->init_bool(tile_size));
  703. SAFE_CALL(decode_tile());
  704. SAFE_CALL(m_bit_stream->exit_bool());
  705. }
  706. }
  707. return true;
  708. }
  709. void Parser::clear_context(Vector<u8>& context, size_t size)
  710. {
  711. context.resize_and_keep_capacity(size);
  712. __builtin_memset(context.data(), 0, sizeof(u8) * size);
  713. }
  714. void Parser::clear_context(Vector<Vector<u8>>& context, size_t outer_size, size_t inner_size)
  715. {
  716. if (context.size() < outer_size)
  717. context.resize(outer_size);
  718. for (auto& sub_vector : context)
  719. clear_context(sub_vector, inner_size);
  720. }
  721. bool Parser::clear_above_context()
  722. {
  723. clear_context(m_above_nonzero_context, 3, 2 * m_mi_cols);
  724. clear_context(m_above_seg_pred_context, m_mi_cols);
  725. clear_context(m_above_partition_context, m_sb64_cols * 8);
  726. return true;
  727. }
  728. u32 Parser::get_tile_offset(u32 tile_num, u32 mis, u32 tile_size_log2)
  729. {
  730. u32 super_blocks = (mis + 7) >> 3u;
  731. u32 offset = ((tile_num * super_blocks) >> tile_size_log2) << 3u;
  732. return min(offset, mis);
  733. }
  734. bool Parser::decode_tile()
  735. {
  736. for (auto row = m_mi_row_start; row < m_mi_row_end; row += 8) {
  737. SAFE_CALL(clear_left_context());
  738. m_row = row;
  739. for (auto col = m_mi_col_start; col < m_mi_col_end; col += 8) {
  740. m_col = col;
  741. SAFE_CALL(decode_partition(row, col, Block_64x64));
  742. }
  743. }
  744. return true;
  745. }
  746. bool Parser::clear_left_context()
  747. {
  748. clear_context(m_left_nonzero_context, 3, 2 * m_mi_rows);
  749. clear_context(m_left_seg_pred_context, m_mi_rows);
  750. clear_context(m_left_partition_context, m_sb64_rows * 8);
  751. return true;
  752. }
  753. bool Parser::decode_partition(u32 row, u32 col, u8 block_subsize)
  754. {
  755. if (row >= m_mi_rows || col >= m_mi_cols)
  756. return false;
  757. m_block_subsize = block_subsize;
  758. m_num_8x8 = num_8x8_blocks_wide_lookup[block_subsize];
  759. auto half_block_8x8 = m_num_8x8 >> 1;
  760. m_has_rows = (row + half_block_8x8) < m_mi_rows;
  761. m_has_cols = (col + half_block_8x8) < m_mi_cols;
  762. auto partition = m_tree_parser->parse_tree(SyntaxElementType::Partition);
  763. auto subsize = subsize_lookup[partition][block_subsize];
  764. if (subsize < Block_8x8 || partition == PartitionNone) {
  765. SAFE_CALL(decode_block(row, col, subsize));
  766. } else if (partition == PartitionHorizontal) {
  767. SAFE_CALL(decode_block(row, col, subsize));
  768. if (m_has_rows)
  769. SAFE_CALL(decode_block(row + half_block_8x8, col, subsize));
  770. } else if (partition == PartitionVertical) {
  771. SAFE_CALL(decode_block(row, col, subsize));
  772. if (m_has_cols)
  773. SAFE_CALL(decode_block(row, col + half_block_8x8, subsize));
  774. } else {
  775. SAFE_CALL(decode_partition(row, col, subsize));
  776. SAFE_CALL(decode_partition(row, col + half_block_8x8, subsize));
  777. SAFE_CALL(decode_partition(row + half_block_8x8, col, subsize));
  778. SAFE_CALL(decode_partition(row + half_block_8x8, col + half_block_8x8, subsize));
  779. }
  780. if (block_subsize == Block_8x8 || partition != PartitionSplit) {
  781. for (size_t i = 0; i < m_num_8x8; i++) {
  782. m_above_partition_context[col + i] = 15 >> b_width_log2_lookup[subsize];
  783. m_left_partition_context[row + i] = 15 >> b_width_log2_lookup[subsize];
  784. }
  785. }
  786. return true;
  787. }
  788. bool Parser::decode_block(u32 row, u32 col, u8 subsize)
  789. {
  790. m_mi_row = row;
  791. m_mi_col = col;
  792. m_mi_size = subsize;
  793. m_available_u = row > 0;
  794. m_available_l = col > m_mi_col_start;
  795. SAFE_CALL(mode_info());
  796. m_eob_total = 0;
  797. SAFE_CALL(residual());
  798. if (m_is_inter && subsize >= Block_8x8 && m_eob_total == 0)
  799. m_skip = true;
  800. for (size_t y = 0; y < num_8x8_blocks_high_lookup[subsize]; y++) {
  801. for (size_t x = 0; x < num_8x8_blocks_wide_lookup[subsize]; x++) {
  802. auto pos = (row + y) * m_mi_cols + (col + x);
  803. m_skips[pos] = m_skip;
  804. m_tx_sizes[pos] = m_tx_size;
  805. m_mi_sizes[pos] = m_mi_size;
  806. m_y_modes[pos] = m_y_mode;
  807. m_segment_ids[pos] = m_segment_id;
  808. for (size_t ref_list = 0; ref_list < 2; ref_list++)
  809. m_ref_frames[(pos * 2) + ref_list] = m_ref_frame[ref_list];
  810. if (m_is_inter) {
  811. m_interp_filters[pos] = m_interp_filter;
  812. for (size_t ref_list = 0; ref_list < 2; ref_list++) {
  813. auto pos_with_ref_list = (pos * 2 + ref_list) * sizeof(MV);
  814. m_mvs[pos_with_ref_list] = m_block_mvs[ref_list][3];
  815. for (size_t b = 0; b < 4; b++)
  816. m_sub_mvs[pos_with_ref_list * 4 + b * sizeof(MV)] = m_block_mvs[ref_list][b];
  817. }
  818. } else {
  819. for (size_t b = 0; b < 4; b++)
  820. m_sub_modes[pos * 4 + b] = static_cast<IntraMode>(m_block_sub_modes[b]);
  821. }
  822. }
  823. }
  824. return true;
  825. }
  826. bool Parser::mode_info()
  827. {
  828. if (m_frame_is_intra)
  829. return intra_frame_mode_info();
  830. return inter_frame_mode_info();
  831. }
  832. bool Parser::intra_frame_mode_info()
  833. {
  834. SAFE_CALL(intra_segment_id());
  835. SAFE_CALL(read_skip());
  836. SAFE_CALL(read_tx_size(true));
  837. m_ref_frame[0] = IntraFrame;
  838. m_ref_frame[1] = None;
  839. m_is_inter = false;
  840. if (m_mi_size >= Block_8x8) {
  841. m_default_intra_mode = m_tree_parser->parse_tree<IntraMode>(SyntaxElementType::DefaultIntraMode);
  842. m_y_mode = m_default_intra_mode;
  843. for (auto& block_sub_mode : m_block_sub_modes)
  844. block_sub_mode = m_y_mode;
  845. } else {
  846. m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
  847. m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
  848. for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
  849. for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
  850. m_tree_parser->set_default_intra_mode_variables(idx, idy);
  851. m_default_intra_mode = m_tree_parser->parse_tree<IntraMode>(SyntaxElementType::DefaultIntraMode);
  852. for (auto y = 0; y < m_num_4x4_h; y++) {
  853. for (auto x = 0; x < m_num_4x4_w; x++) {
  854. auto index = (idy + y) * 2 + idx + x;
  855. if (index > 3)
  856. dbgln("Trying to access index {} on m_sub_modes", index);
  857. m_block_sub_modes[index] = m_default_intra_mode;
  858. }
  859. }
  860. }
  861. }
  862. m_y_mode = m_default_intra_mode;
  863. }
  864. m_uv_mode = m_tree_parser->parse_tree<u8>(SyntaxElementType::DefaultUVMode);
  865. return true;
  866. }
  867. bool Parser::intra_segment_id()
  868. {
  869. if (m_segmentation_enabled && m_segmentation_update_map)
  870. m_segment_id = m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID);
  871. else
  872. m_segment_id = 0;
  873. return true;
  874. }
  875. bool Parser::read_skip()
  876. {
  877. if (seg_feature_active(SEG_LVL_SKIP))
  878. m_skip = true;
  879. else
  880. m_skip = m_tree_parser->parse_tree<bool>(SyntaxElementType::Skip);
  881. return true;
  882. }
  883. bool Parser::seg_feature_active(u8 feature)
  884. {
  885. return m_segmentation_enabled && m_feature_enabled[m_segment_id][feature];
  886. }
  887. bool Parser::read_tx_size(bool allow_select)
  888. {
  889. m_max_tx_size = max_txsize_lookup[m_mi_size];
  890. if (allow_select && m_tx_mode == TXModeSelect && m_mi_size >= Block_8x8)
  891. m_tx_size = m_tree_parser->parse_tree<TXSize>(SyntaxElementType::TXSize);
  892. else
  893. m_tx_size = min(m_max_tx_size, tx_mode_to_biggest_tx_size[m_tx_mode]);
  894. return true;
  895. }
  896. bool Parser::inter_frame_mode_info()
  897. {
  898. m_left_ref_frame[0] = m_available_l ? m_ref_frames[m_mi_row * m_mi_cols + (m_mi_col - 1)] : IntraFrame;
  899. m_above_ref_frame[0] = m_available_u ? m_ref_frames[(m_mi_row - 1) * m_mi_cols + m_mi_col] : IntraFrame;
  900. m_left_ref_frame[1] = m_available_l ? m_ref_frames[m_mi_row * m_mi_cols + (m_mi_col - 1) + 1] : None;
  901. m_above_ref_frame[1] = m_available_u ? m_ref_frames[(m_mi_row - 1) * m_mi_cols + m_mi_col + 1] : None;
  902. m_left_intra = m_left_ref_frame[0] <= IntraFrame;
  903. m_above_intra = m_above_ref_frame[0] <= IntraFrame;
  904. m_left_single = m_left_ref_frame[1] <= None;
  905. m_above_single = m_above_ref_frame[1] <= None;
  906. SAFE_CALL(inter_segment_id());
  907. SAFE_CALL(read_skip());
  908. SAFE_CALL(read_is_inter());
  909. SAFE_CALL(read_tx_size(!m_skip || !m_is_inter));
  910. if (m_is_inter) {
  911. SAFE_CALL(inter_block_mode_info());
  912. } else {
  913. SAFE_CALL(intra_block_mode_info());
  914. }
  915. return true;
  916. }
  917. bool Parser::inter_segment_id()
  918. {
  919. if (!m_segmentation_enabled) {
  920. m_segment_id = 0;
  921. return true;
  922. }
  923. auto predicted_segment_id = get_segment_id();
  924. if (!m_segmentation_update_map) {
  925. m_segment_id = predicted_segment_id;
  926. return true;
  927. }
  928. if (!m_segmentation_temporal_update) {
  929. m_segment_id = m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID);
  930. return true;
  931. }
  932. auto seg_id_predicted = m_tree_parser->parse_tree<bool>(SyntaxElementType::SegIDPredicted);
  933. if (seg_id_predicted)
  934. m_segment_id = predicted_segment_id;
  935. else
  936. m_segment_id = m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID);
  937. for (size_t i = 0; i < num_8x8_blocks_wide_lookup[m_mi_size]; i++)
  938. m_above_seg_pred_context[m_mi_col + i] = seg_id_predicted;
  939. for (size_t i = 0; i < num_8x8_blocks_high_lookup[m_mi_size]; i++)
  940. m_left_seg_pred_context[m_mi_row + i] = seg_id_predicted;
  941. return true;
  942. }
  943. u8 Parser::get_segment_id()
  944. {
  945. auto bw = num_8x8_blocks_wide_lookup[m_mi_size];
  946. auto bh = num_8x8_blocks_high_lookup[m_mi_size];
  947. auto xmis = min(m_mi_cols - m_mi_col, (u32)bw);
  948. auto ymis = min(m_mi_rows - m_mi_row, (u32)bh);
  949. u8 segment = 7;
  950. for (size_t y = 0; y < ymis; y++) {
  951. for (size_t x = 0; x < xmis; x++) {
  952. segment = min(segment, m_prev_segment_ids[(m_mi_row + y) + (m_mi_col + x)]);
  953. }
  954. }
  955. return segment;
  956. }
  957. bool Parser::read_is_inter()
  958. {
  959. if (seg_feature_active(SEG_LVL_REF_FRAME))
  960. m_is_inter = m_feature_data[m_segment_id][SEG_LVL_REF_FRAME] != IntraFrame;
  961. else
  962. m_is_inter = m_tree_parser->parse_tree<bool>(SyntaxElementType::IsInter);
  963. return true;
  964. }
  965. bool Parser::intra_block_mode_info()
  966. {
  967. m_ref_frame[0] = IntraFrame;
  968. m_ref_frame[1] = None;
  969. if (m_mi_size >= Block_8x8) {
  970. m_y_mode = m_tree_parser->parse_tree<u8>(SyntaxElementType::IntraMode);
  971. for (auto& block_sub_mode : m_block_sub_modes)
  972. block_sub_mode = m_y_mode;
  973. } else {
  974. m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
  975. m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
  976. u8 sub_intra_mode;
  977. for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
  978. for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
  979. sub_intra_mode = m_tree_parser->parse_tree<u8>(SyntaxElementType::SubIntraMode);
  980. for (auto y = 0; y < m_num_4x4_h; y++) {
  981. for (auto x = 0; x < m_num_4x4_w; x++)
  982. m_block_sub_modes[(idy + y) * 2 + idx + x] = sub_intra_mode;
  983. }
  984. }
  985. }
  986. m_y_mode = sub_intra_mode;
  987. }
  988. m_uv_mode = m_tree_parser->parse_tree<u8>(SyntaxElementType::UVMode);
  989. return true;
  990. }
  991. bool Parser::inter_block_mode_info()
  992. {
  993. SAFE_CALL(read_ref_frames());
  994. for (auto j = 0; j < 2; j++) {
  995. if (m_ref_frame[j] > IntraFrame) {
  996. SAFE_CALL(find_mv_refs(m_ref_frame[j], -1));
  997. SAFE_CALL(find_best_ref_mvs(j));
  998. }
  999. }
  1000. auto is_compound = m_ref_frame[1] > IntraFrame;
  1001. if (seg_feature_active(SEG_LVL_SKIP)) {
  1002. m_y_mode = ZeroMv;
  1003. } else if (m_mi_size >= Block_8x8) {
  1004. auto inter_mode = m_tree_parser->parse_tree(SyntaxElementType::InterMode);
  1005. m_y_mode = NearestMv + inter_mode;
  1006. }
  1007. if (m_interpolation_filter == Switchable)
  1008. m_interp_filter = m_tree_parser->parse_tree<InterpolationFilter>(SyntaxElementType::InterpFilter);
  1009. else
  1010. m_interp_filter = m_interpolation_filter;
  1011. if (m_mi_size < Block_8x8) {
  1012. m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
  1013. m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
  1014. for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
  1015. for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
  1016. auto inter_mode = m_tree_parser->parse_tree(SyntaxElementType::InterMode);
  1017. m_y_mode = NearestMv + inter_mode;
  1018. if (m_y_mode == NearestMv || m_y_mode == NearMv) {
  1019. for (auto j = 0; j < 1 + is_compound; j++)
  1020. SAFE_CALL(append_sub8x8_mvs(idy * 2 + idx, j));
  1021. }
  1022. SAFE_CALL(assign_mv(is_compound));
  1023. for (auto y = 0; y < m_num_4x4_h; y++) {
  1024. for (auto x = 0; x < m_num_4x4_w; x++) {
  1025. auto block = (idy + y) * 2 + idx + x;
  1026. for (auto ref_list = 0; ref_list < 1 + is_compound; ref_list++) {
  1027. m_block_mvs[ref_list][block] = m_mv[ref_list];
  1028. }
  1029. }
  1030. }
  1031. }
  1032. }
  1033. return true;
  1034. }
  1035. SAFE_CALL(assign_mv(is_compound));
  1036. for (auto ref_list = 0; ref_list < 1 + is_compound; ref_list++) {
  1037. for (auto block = 0; block < 4; block++) {
  1038. m_block_mvs[ref_list][block] = m_mv[ref_list];
  1039. }
  1040. }
  1041. return true;
  1042. }
  1043. bool Parser::read_ref_frames()
  1044. {
  1045. if (seg_feature_active(SEG_LVL_REF_FRAME)) {
  1046. m_ref_frame[0] = static_cast<ReferenceFrame>(m_feature_data[m_segment_id][SEG_LVL_REF_FRAME]);
  1047. m_ref_frame[1] = None;
  1048. return true;
  1049. }
  1050. ReferenceMode comp_mode;
  1051. if (m_reference_mode == ReferenceModeSelect)
  1052. comp_mode = m_tree_parser->parse_tree<ReferenceMode>(SyntaxElementType::CompMode);
  1053. else
  1054. comp_mode = m_reference_mode;
  1055. if (comp_mode == CompoundReference) {
  1056. auto idx = m_ref_frame_sign_bias[m_comp_fixed_ref];
  1057. auto comp_ref = m_tree_parser->parse_tree(SyntaxElementType::CompRef);
  1058. m_ref_frame[idx] = m_comp_fixed_ref;
  1059. m_ref_frame[!idx] = m_comp_var_ref[comp_ref];
  1060. return true;
  1061. }
  1062. auto single_ref_p1 = m_tree_parser->parse_tree<bool>(SyntaxElementType::SingleRefP1);
  1063. if (single_ref_p1) {
  1064. auto single_ref_p2 = m_tree_parser->parse_tree<bool>(SyntaxElementType::SingleRefP2);
  1065. m_ref_frame[0] = single_ref_p2 ? AltRefFrame : GoldenFrame;
  1066. } else {
  1067. m_ref_frame[0] = LastFrame;
  1068. }
  1069. m_ref_frame[1] = None;
  1070. return true;
  1071. }
  1072. bool Parser::assign_mv(bool is_compound)
  1073. {
  1074. m_mv[1] = 0;
  1075. for (auto i = 0; i < 1 + is_compound; i++) {
  1076. if (m_y_mode == NewMv) {
  1077. SAFE_CALL(read_mv(i));
  1078. } else if (m_y_mode == NearestMv) {
  1079. m_mv[i] = m_nearest_mv[i];
  1080. } else if (m_y_mode == NearMv) {
  1081. m_mv[i] = m_near_mv[i];
  1082. } else {
  1083. m_mv[i] = 0;
  1084. }
  1085. }
  1086. return true;
  1087. }
  1088. bool Parser::read_mv(u8 ref)
  1089. {
  1090. m_use_hp = m_allow_high_precision_mv && use_mv_hp(m_best_mv[ref]);
  1091. MV diff_mv;
  1092. auto mv_joint = m_tree_parser->parse_tree<MvJoint>(SyntaxElementType::MVJoint);
  1093. if (mv_joint == MvJointHzvnz || mv_joint == MvJointHnzvnz)
  1094. diff_mv.set_row(read_mv_component(0));
  1095. if (mv_joint == MvJointHnzvz || mv_joint == MvJointHnzvnz)
  1096. diff_mv.set_col(read_mv_component(1));
  1097. m_mv[ref] = m_best_mv[ref] + diff_mv;
  1098. return true;
  1099. }
  1100. i32 Parser::read_mv_component(u8)
  1101. {
  1102. auto mv_sign = m_tree_parser->parse_tree<bool>(SyntaxElementType::MVSign);
  1103. auto mv_class = m_tree_parser->parse_tree<MvClass>(SyntaxElementType::MVClass);
  1104. u32 mag;
  1105. if (mv_class == MvClass0) {
  1106. auto mv_class0_bit = m_tree_parser->parse_tree<u32>(SyntaxElementType::MVClass0Bit);
  1107. auto mv_class0_fr = m_tree_parser->parse_tree<u32>(SyntaxElementType::MVClass0FR);
  1108. auto mv_class0_hp = m_tree_parser->parse_tree<u32>(SyntaxElementType::MVClass0HP);
  1109. mag = ((mv_class0_bit << 3) | (mv_class0_fr << 1) | mv_class0_hp) + 1;
  1110. } else {
  1111. auto d = 0;
  1112. for (size_t i = 0; i < mv_class; i++) {
  1113. auto mv_bit = m_tree_parser->parse_tree<bool>(SyntaxElementType::MVBit);
  1114. d |= mv_bit << i;
  1115. }
  1116. mag = CLASS0_SIZE << (mv_class + 2);
  1117. auto mv_fr = m_tree_parser->parse_tree<u32>(SyntaxElementType::MVFR);
  1118. auto mv_hp = m_tree_parser->parse_tree<u32>(SyntaxElementType::MVHP);
  1119. mag += ((d << 3) | (mv_fr << 1) | mv_hp) + 1;
  1120. }
  1121. return mv_sign ? -static_cast<i32>(mag) : static_cast<i32>(mag);
  1122. }
  1123. bool Parser::residual()
  1124. {
  1125. auto block_size = m_mi_size < Block_8x8 ? Block_8x8 : static_cast<BlockSubsize>(m_mi_size);
  1126. for (size_t plane = 0; plane < 3; plane++) {
  1127. auto tx_size = (plane > 0) ? get_uv_tx_size() : m_tx_size;
  1128. auto step = 1 << tx_size;
  1129. auto plane_size = get_plane_block_size(block_size, plane);
  1130. auto num_4x4_w = num_4x4_blocks_wide_lookup[plane_size];
  1131. auto num_4x4_h = num_4x4_blocks_high_lookup[plane_size];
  1132. auto sub_x = (plane > 0) ? m_subsampling_x : 0;
  1133. auto sub_y = (plane > 0) ? m_subsampling_y : 0;
  1134. auto base_x = (m_mi_col * 8) >> sub_x;
  1135. auto base_y = (m_mi_row * 8) >> sub_y;
  1136. if (m_is_inter) {
  1137. if (m_mi_size < Block_8x8) {
  1138. for (auto y = 0; y < num_4x4_h; y++) {
  1139. for (auto x = 0; x < num_4x4_w; x++) {
  1140. SAFE_CALL(m_decoder.predict_inter(plane, base_x + (4 * x), base_y + (4 * y), 4, 4, (y * num_4x4_w) + x));
  1141. }
  1142. }
  1143. } else {
  1144. SAFE_CALL(m_decoder.predict_inter(plane, base_x, base_y, num_4x4_w * 4, num_4x4_h * 4, 0));
  1145. }
  1146. }
  1147. auto max_x = (m_mi_cols * 8) >> sub_x;
  1148. auto max_y = (m_mi_rows * 8) >> sub_y;
  1149. auto block_index = 0;
  1150. for (auto y = 0; y < num_4x4_h; y += step) {
  1151. for (auto x = 0; x < num_4x4_w; x += step) {
  1152. auto start_x = base_x + (4 * x);
  1153. auto start_y = base_y + (4 * y);
  1154. auto non_zero = false;
  1155. if (start_x < max_x && start_y < max_y) {
  1156. if (!m_is_inter)
  1157. SAFE_CALL(m_decoder.predict_intra(plane, start_x, start_y, m_available_l || x > 0, m_available_u || y > 0, (x + step) < num_4x4_w, tx_size, block_index));
  1158. if (!m_skip) {
  1159. non_zero = tokens(plane, start_x, start_y, tx_size, block_index);
  1160. SAFE_CALL(m_decoder.reconstruct(plane, start_x, start_y, tx_size));
  1161. }
  1162. }
  1163. auto above_sub_context = m_above_nonzero_context[plane];
  1164. auto left_sub_context = m_left_nonzero_context[plane];
  1165. above_sub_context.resize_and_keep_capacity((start_x >> 2) + step);
  1166. left_sub_context.resize_and_keep_capacity((start_y >> 2) + step);
  1167. for (auto i = 0; i < step; i++) {
  1168. above_sub_context[(start_x >> 2) + i] = non_zero;
  1169. left_sub_context[(start_y >> 2) + i] = non_zero;
  1170. }
  1171. block_index++;
  1172. }
  1173. }
  1174. }
  1175. return true;
  1176. }
  1177. TXSize Parser::get_uv_tx_size()
  1178. {
  1179. if (m_mi_size < Block_8x8)
  1180. return TX_4x4;
  1181. return min(m_tx_size, max_txsize_lookup[get_plane_block_size(m_mi_size, 1)]);
  1182. }
  1183. BlockSubsize Parser::get_plane_block_size(u32 subsize, u8 plane)
  1184. {
  1185. auto sub_x = (plane > 0) ? m_subsampling_x : 0;
  1186. auto sub_y = (plane > 0) ? m_subsampling_y : 0;
  1187. return ss_size_lookup[subsize][sub_x][sub_y];
  1188. }
  1189. bool Parser::tokens(size_t plane, u32 start_x, u32 start_y, TXSize tx_size, u32 block_index)
  1190. {
  1191. m_tree_parser->set_start_x_and_y(start_x, start_y);
  1192. size_t segment_eob = 16 << (tx_size << 1);
  1193. auto scan = get_scan(plane, tx_size, block_index);
  1194. auto check_eob = true;
  1195. size_t c = 0;
  1196. for (; c < segment_eob; c++) {
  1197. auto pos = scan[c];
  1198. auto band = (tx_size == TX_4x4) ? coefband_4x4[c] : coefband_8x8plus[c];
  1199. m_tree_parser->set_tokens_variables(band, c, plane, tx_size, pos);
  1200. if (check_eob) {
  1201. auto more_coefs = m_tree_parser->parse_tree<bool>(SyntaxElementType::MoreCoefs);
  1202. if (!more_coefs)
  1203. break;
  1204. }
  1205. auto token = m_tree_parser->parse_tree<Token>(SyntaxElementType::Token);
  1206. m_token_cache[pos] = energy_class[token];
  1207. if (token == ZeroToken) {
  1208. m_tokens[pos] = 0;
  1209. check_eob = false;
  1210. } else {
  1211. i32 coef = static_cast<i32>(read_coef(token));
  1212. auto sign_bit = m_bit_stream->read_literal(1);
  1213. m_tokens[pos] = sign_bit ? -coef : coef;
  1214. check_eob = true;
  1215. }
  1216. }
  1217. auto non_zero = c > 0;
  1218. m_eob_total += non_zero;
  1219. for (size_t i = c; i < segment_eob; i++)
  1220. m_tokens[scan[i]] = 0;
  1221. return non_zero;
  1222. }
  1223. u32 const* Parser::get_scan(size_t plane, TXSize tx_size, u32 block_index)
  1224. {
  1225. if (plane > 0 || tx_size == TX_32x32) {
  1226. m_tx_type = DCT_DCT;
  1227. } else if (tx_size == TX_4x4) {
  1228. if (m_lossless || m_is_inter)
  1229. m_tx_type = DCT_DCT;
  1230. else
  1231. m_tx_type = mode_to_txfm_map[m_mi_size < Block_8x8 ? m_block_sub_modes[block_index] : m_y_mode];
  1232. } else {
  1233. m_tx_type = mode_to_txfm_map[m_y_mode];
  1234. }
  1235. if (tx_size == TX_4x4) {
  1236. if (m_tx_type == ADST_DCT)
  1237. return row_scan_4x4;
  1238. if (m_tx_type == DCT_ADST)
  1239. return col_scan_4x4;
  1240. return default_scan_4x4;
  1241. }
  1242. if (tx_size == TX_8x8) {
  1243. if (m_tx_type == ADST_DCT)
  1244. return row_scan_8x8;
  1245. if (m_tx_type == DCT_ADST)
  1246. return col_scan_8x8;
  1247. return default_scan_8x8;
  1248. }
  1249. if (tx_size == TX_16x16) {
  1250. if (m_tx_type == ADST_DCT)
  1251. return row_scan_16x16;
  1252. if (m_tx_type == DCT_ADST)
  1253. return col_scan_16x16;
  1254. return default_scan_16x16;
  1255. }
  1256. return default_scan_32x32;
  1257. }
  1258. u32 Parser::read_coef(Token token)
  1259. {
  1260. auto cat = extra_bits[token][0];
  1261. auto num_extra = extra_bits[token][1];
  1262. auto coef = extra_bits[token][2];
  1263. if (token == DctValCat6) {
  1264. for (size_t e = 0; e < (u8)(m_bit_depth - 8); e++) {
  1265. auto high_bit = m_bit_stream->read_bool(255);
  1266. coef += high_bit << (5 + m_bit_depth - e);
  1267. }
  1268. }
  1269. for (size_t e = 0; e < num_extra; e++) {
  1270. auto coef_bit = m_bit_stream->read_bool(cat_probs[cat][e]);
  1271. coef += coef_bit << (num_extra - 1 - e);
  1272. }
  1273. return coef;
  1274. }
  1275. bool Parser::find_mv_refs(ReferenceFrame, int)
  1276. {
  1277. // TODO: Implement
  1278. return true;
  1279. }
  1280. bool Parser::find_best_ref_mvs(int)
  1281. {
  1282. // TODO: Implement
  1283. return true;
  1284. }
  1285. bool Parser::append_sub8x8_mvs(u8, u8)
  1286. {
  1287. // TODO: Implement
  1288. return true;
  1289. }
  1290. bool Parser::use_mv_hp(const MV&)
  1291. {
  1292. // TODO: Implement
  1293. return true;
  1294. }
  1295. void Parser::dump_info()
  1296. {
  1297. outln("Frame dimensions: {}x{}", m_frame_width, m_frame_height);
  1298. outln("Render dimensions: {}x{}", m_render_width, m_render_height);
  1299. outln("Bit depth: {}", m_bit_depth);
  1300. outln("Interpolation filter: {}", (u8)m_interpolation_filter);
  1301. }
  1302. }