MathObject.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
  4. * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/Function.h>
  9. #include <AK/Random.h>
  10. #include <LibJS/Runtime/GlobalObject.h>
  11. #include <LibJS/Runtime/MathObject.h>
  12. #include <math.h>
  13. namespace JS {
  14. MathObject::MathObject(GlobalObject& global_object)
  15. : Object(*global_object.object_prototype())
  16. {
  17. }
  18. void MathObject::initialize(GlobalObject& global_object)
  19. {
  20. auto& vm = this->vm();
  21. Object::initialize(global_object);
  22. u8 attr = Attribute::Writable | Attribute::Configurable;
  23. define_native_function(vm.names.abs, abs, 1, attr);
  24. define_native_function(vm.names.random, random, 0, attr);
  25. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  26. define_native_function(vm.names.floor, floor, 1, attr);
  27. define_native_function(vm.names.ceil, ceil, 1, attr);
  28. define_native_function(vm.names.round, round, 1, attr);
  29. define_native_function(vm.names.max, max, 2, attr);
  30. define_native_function(vm.names.min, min, 2, attr);
  31. define_native_function(vm.names.trunc, trunc, 1, attr);
  32. define_native_function(vm.names.sin, sin, 1, attr);
  33. define_native_function(vm.names.cos, cos, 1, attr);
  34. define_native_function(vm.names.tan, tan, 1, attr);
  35. define_native_function(vm.names.pow, pow, 2, attr);
  36. define_native_function(vm.names.exp, exp, 1, attr);
  37. define_native_function(vm.names.expm1, expm1, 1, attr);
  38. define_native_function(vm.names.sign, sign, 1, attr);
  39. define_native_function(vm.names.clz32, clz32, 1, attr);
  40. define_native_function(vm.names.acos, acos, 1, attr);
  41. define_native_function(vm.names.acosh, acosh, 1, attr);
  42. define_native_function(vm.names.asin, asin, 1, attr);
  43. define_native_function(vm.names.asinh, asinh, 1, attr);
  44. define_native_function(vm.names.atan, atan, 1, attr);
  45. define_native_function(vm.names.atanh, atanh, 1, attr);
  46. define_native_function(vm.names.log1p, log1p, 1, attr);
  47. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  48. define_native_function(vm.names.atan2, atan2, 2, attr);
  49. define_native_function(vm.names.fround, fround, 1, attr);
  50. define_native_function(vm.names.hypot, hypot, 2, attr);
  51. define_native_function(vm.names.imul, imul, 2, attr);
  52. define_native_function(vm.names.log, log, 1, attr);
  53. define_native_function(vm.names.log2, log2, 1, attr);
  54. define_native_function(vm.names.log10, log10, 1, attr);
  55. define_native_function(vm.names.sinh, sinh, 1, attr);
  56. define_native_function(vm.names.cosh, cosh, 1, attr);
  57. define_native_function(vm.names.tanh, tanh, 1, attr);
  58. // 21.3.1 Value Properties of the Math Object, https://tc39.es/ecma262/#sec-value-properties-of-the-math-object
  59. define_direct_property(vm.names.E, Value(M_E), 0);
  60. define_direct_property(vm.names.LN2, Value(M_LN2), 0);
  61. define_direct_property(vm.names.LN10, Value(M_LN10), 0);
  62. define_direct_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  63. define_direct_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  64. define_direct_property(vm.names.PI, Value(M_PI), 0);
  65. define_direct_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  66. define_direct_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  67. // 21.3.1.9 Math [ @@toStringTag ], https://tc39.es/ecma262/#sec-math-@@tostringtag
  68. define_direct_property(*vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), vm.names.Math.as_string()), Attribute::Configurable);
  69. }
  70. MathObject::~MathObject()
  71. {
  72. }
  73. // 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs
  74. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  75. {
  76. auto number = vm.argument(0).to_number(global_object);
  77. if (vm.exception())
  78. return {};
  79. if (number.is_nan())
  80. return js_nan();
  81. if (number.is_negative_zero())
  82. return Value(0);
  83. if (number.is_negative_infinity())
  84. return js_infinity();
  85. return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
  86. }
  87. // 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random
  88. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  89. {
  90. #ifdef __serenity__
  91. double r = (double)get_random<u32>() / (double)UINT32_MAX;
  92. #else
  93. double r = (double)rand() / (double)RAND_MAX;
  94. #endif
  95. return Value(r);
  96. }
  97. // 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
  98. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  99. {
  100. auto number = vm.argument(0).to_number(global_object);
  101. if (vm.exception())
  102. return {};
  103. if (number.is_nan())
  104. return js_nan();
  105. return Value(::sqrt(number.as_double()));
  106. }
  107. // 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
  108. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  109. {
  110. auto number = vm.argument(0).to_number(global_object);
  111. if (vm.exception())
  112. return {};
  113. if (number.is_nan())
  114. return js_nan();
  115. return Value(::floor(number.as_double()));
  116. }
  117. // 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
  118. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  119. {
  120. auto number = vm.argument(0).to_number(global_object);
  121. if (vm.exception())
  122. return {};
  123. if (number.is_nan())
  124. return js_nan();
  125. auto number_double = number.as_double();
  126. if (number_double < 0 && number_double > -1)
  127. return Value(-0.f);
  128. return Value(::ceil(number.as_double()));
  129. }
  130. // 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
  131. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  132. {
  133. auto number = vm.argument(0).to_number(global_object);
  134. if (vm.exception())
  135. return {};
  136. auto value = number.as_double();
  137. double integer = ::ceil(value);
  138. if (integer - 0.5 > value)
  139. integer--;
  140. return Value(integer);
  141. }
  142. // 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max
  143. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  144. {
  145. Vector<Value> coerced;
  146. for (size_t i = 0; i < vm.argument_count(); ++i) {
  147. auto number = vm.argument(i).to_number(global_object);
  148. if (vm.exception())
  149. return {};
  150. coerced.append(number);
  151. }
  152. auto highest = js_negative_infinity();
  153. for (auto& number : coerced) {
  154. if (number.is_nan())
  155. return js_nan();
  156. if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double())
  157. highest = number;
  158. }
  159. return highest;
  160. }
  161. // 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min
  162. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  163. {
  164. Vector<Value> coerced;
  165. for (size_t i = 0; i < vm.argument_count(); ++i) {
  166. auto number = vm.argument(i).to_number(global_object);
  167. if (vm.exception())
  168. return {};
  169. coerced.append(number);
  170. }
  171. auto lowest = js_infinity();
  172. for (auto& number : coerced) {
  173. if (number.is_nan())
  174. return js_nan();
  175. if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double())
  176. lowest = number;
  177. }
  178. return lowest;
  179. }
  180. // 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
  181. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  182. {
  183. auto number = vm.argument(0).to_number(global_object);
  184. if (vm.exception())
  185. return {};
  186. if (number.is_nan())
  187. return js_nan();
  188. if (number.as_double() < 0)
  189. return MathObject::ceil(vm, global_object);
  190. return MathObject::floor(vm, global_object);
  191. }
  192. // 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin
  193. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  194. {
  195. auto number = vm.argument(0).to_number(global_object);
  196. if (vm.exception())
  197. return {};
  198. if (number.is_nan())
  199. return js_nan();
  200. return Value(::sin(number.as_double()));
  201. }
  202. // 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos
  203. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  204. {
  205. auto number = vm.argument(0).to_number(global_object);
  206. if (vm.exception())
  207. return {};
  208. if (number.is_nan())
  209. return js_nan();
  210. return Value(::cos(number.as_double()));
  211. }
  212. // 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan
  213. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  214. {
  215. auto number = vm.argument(0).to_number(global_object);
  216. if (vm.exception())
  217. return {};
  218. if (number.is_nan())
  219. return js_nan();
  220. return Value(::tan(number.as_double()));
  221. }
  222. // 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
  223. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  224. {
  225. auto base = vm.argument(0).to_number(global_object);
  226. if (vm.exception())
  227. return {};
  228. auto exponent = vm.argument(1).to_number(global_object);
  229. if (vm.exception())
  230. return {};
  231. if (exponent.is_nan())
  232. return js_nan();
  233. if (exponent.is_positive_zero() || exponent.is_negative_zero())
  234. return Value(1);
  235. if (base.is_nan())
  236. return js_nan();
  237. if (base.is_positive_infinity())
  238. return exponent.as_double() > 0 ? js_infinity() : Value(0);
  239. if (base.is_negative_infinity()) {
  240. auto is_odd_integral_number = exponent.is_integral_number() && (exponent.as_i32() % 2 != 0);
  241. if (exponent.as_double() > 0)
  242. return is_odd_integral_number ? js_negative_infinity() : js_infinity();
  243. else
  244. return is_odd_integral_number ? Value(-0.0) : Value(0);
  245. }
  246. if (base.is_positive_zero())
  247. return exponent.as_double() > 0 ? Value(0) : js_infinity();
  248. if (base.is_negative_zero()) {
  249. auto is_odd_integral_number = exponent.is_integral_number() && (exponent.as_i32() % 2 != 0);
  250. if (exponent.as_double() > 0)
  251. return is_odd_integral_number ? Value(-0.0) : Value(0);
  252. else
  253. return is_odd_integral_number ? js_negative_infinity() : js_infinity();
  254. }
  255. VERIFY(base.is_finite_number() && !base.is_positive_zero() && !base.is_negative_zero());
  256. if (exponent.is_positive_infinity()) {
  257. auto absolute_base = fabs(base.as_double());
  258. if (absolute_base > 1)
  259. return js_infinity();
  260. else if (absolute_base == 1)
  261. return js_nan();
  262. else if (absolute_base < 1)
  263. return Value(0);
  264. }
  265. if (exponent.is_negative_infinity()) {
  266. auto absolute_base = fabs(base.as_double());
  267. if (absolute_base > 1)
  268. return Value(0);
  269. else if (absolute_base == 1)
  270. return js_nan();
  271. else if (absolute_base < 1)
  272. return js_infinity();
  273. }
  274. VERIFY(exponent.is_finite_number() && !exponent.is_positive_zero() && !exponent.is_negative_zero());
  275. if (base.as_double() < 0 && !exponent.is_integral_number())
  276. return js_nan();
  277. return Value(::pow(base.as_double(), exponent.as_double()));
  278. }
  279. // 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
  280. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  281. {
  282. auto number = vm.argument(0).to_number(global_object);
  283. if (vm.exception())
  284. return {};
  285. if (number.is_nan())
  286. return js_nan();
  287. return Value(::exp(number.as_double()));
  288. }
  289. // 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
  290. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  291. {
  292. auto number = vm.argument(0).to_number(global_object);
  293. if (vm.exception())
  294. return {};
  295. if (number.is_nan())
  296. return js_nan();
  297. return Value(::expm1(number.as_double()));
  298. }
  299. // 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
  300. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  301. {
  302. auto number = vm.argument(0).to_number(global_object);
  303. if (vm.exception())
  304. return {};
  305. if (number.is_positive_zero())
  306. return Value(0);
  307. if (number.is_negative_zero())
  308. return Value(-0.0);
  309. if (number.as_double() > 0)
  310. return Value(1);
  311. if (number.as_double() < 0)
  312. return Value(-1);
  313. return js_nan();
  314. }
  315. // 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
  316. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  317. {
  318. auto number = vm.argument(0).to_number(global_object);
  319. if (vm.exception())
  320. return {};
  321. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  322. return Value(32);
  323. return Value(__builtin_clz((unsigned)number.as_double()));
  324. }
  325. // 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos
  326. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  327. {
  328. auto number = vm.argument(0).to_number(global_object);
  329. if (vm.exception())
  330. return {};
  331. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  332. return js_nan();
  333. if (number.as_double() == 1)
  334. return Value(0);
  335. return Value(::acos(number.as_double()));
  336. }
  337. // 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh
  338. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  339. {
  340. auto number = vm.argument(0).to_number(global_object);
  341. if (vm.exception())
  342. return {};
  343. if (number.as_double() < 1)
  344. return js_nan();
  345. return Value(::acosh(number.as_double()));
  346. }
  347. // 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin
  348. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  349. {
  350. auto number = vm.argument(0).to_number(global_object);
  351. if (vm.exception())
  352. return {};
  353. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  354. return number;
  355. return Value(::asin(number.as_double()));
  356. }
  357. // 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh
  358. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  359. {
  360. auto number = vm.argument(0).to_number(global_object);
  361. if (vm.exception())
  362. return {};
  363. return Value(::asinh(number.as_double()));
  364. }
  365. // 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan
  366. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  367. {
  368. auto number = vm.argument(0).to_number(global_object);
  369. if (vm.exception())
  370. return {};
  371. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  372. return number;
  373. if (number.is_positive_infinity())
  374. return Value(M_PI_2);
  375. if (number.is_negative_infinity())
  376. return Value(-M_PI_2);
  377. return Value(::atan(number.as_double()));
  378. }
  379. // 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh
  380. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  381. {
  382. auto number = vm.argument(0).to_number(global_object);
  383. if (vm.exception())
  384. return {};
  385. if (number.as_double() > 1 || number.as_double() < -1)
  386. return js_nan();
  387. return Value(::atanh(number.as_double()));
  388. }
  389. // 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
  390. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  391. {
  392. auto number = vm.argument(0).to_number(global_object);
  393. if (vm.exception())
  394. return {};
  395. if (number.as_double() < -1)
  396. return js_nan();
  397. return Value(::log1p(number.as_double()));
  398. }
  399. // 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
  400. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  401. {
  402. auto number = vm.argument(0).to_number(global_object);
  403. if (vm.exception())
  404. return {};
  405. return Value(::cbrt(number.as_double()));
  406. }
  407. // 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2
  408. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
  409. {
  410. auto constexpr three_quarters_pi = M_PI_4 + M_PI_2;
  411. auto y = vm.argument(0).to_number(global_object);
  412. if (vm.exception())
  413. return {};
  414. auto x = vm.argument(1).to_number(global_object);
  415. if (vm.exception())
  416. return {};
  417. if (y.is_nan() || x.is_nan())
  418. return js_nan();
  419. if (y.is_positive_infinity()) {
  420. if (x.is_positive_infinity())
  421. return Value(M_PI_4);
  422. else if (x.is_negative_infinity())
  423. return Value(three_quarters_pi);
  424. else
  425. return Value(M_PI_2);
  426. }
  427. if (y.is_negative_infinity()) {
  428. if (x.is_positive_infinity())
  429. return Value(-M_PI_4);
  430. else if (x.is_negative_infinity())
  431. return Value(-three_quarters_pi);
  432. else
  433. return Value(-M_PI_2);
  434. }
  435. if (y.is_positive_zero()) {
  436. if (x.as_double() > 0 || x.is_positive_zero())
  437. return Value(0.0);
  438. else
  439. return Value(M_PI);
  440. }
  441. if (y.is_negative_zero()) {
  442. if (x.as_double() > 0 || x.is_positive_zero())
  443. return Value(-0.0);
  444. else
  445. return Value(-M_PI);
  446. }
  447. VERIFY(y.is_finite_number() && !y.is_positive_zero() && !y.is_negative_zero());
  448. if (y.as_double() > 0) {
  449. if (x.is_positive_infinity())
  450. return Value(0);
  451. else if (x.is_negative_infinity())
  452. return Value(M_PI);
  453. else if (x.is_positive_zero() || x.is_negative_zero())
  454. return Value(M_PI_2);
  455. }
  456. if (y.as_double() < 0) {
  457. if (x.is_positive_infinity())
  458. return Value(-0.0);
  459. else if (x.is_negative_infinity())
  460. return Value(-M_PI);
  461. else if (x.is_positive_zero() || x.is_negative_zero())
  462. return Value(-M_PI_2);
  463. }
  464. VERIFY(x.is_finite_number() && !x.is_positive_zero() && !x.is_negative_zero());
  465. return Value(::atan2(y.as_double(), x.as_double()));
  466. }
  467. // 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround
  468. JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
  469. {
  470. auto number = vm.argument(0).to_number(global_object);
  471. if (vm.exception())
  472. return {};
  473. if (number.is_nan())
  474. return js_nan();
  475. return Value((float)number.as_double());
  476. }
  477. // 21.3.2.18 Math.hypot ( ...args ), https://tc39.es/ecma262/#sec-math.hypot
  478. JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
  479. {
  480. Vector<Value> coerced;
  481. for (size_t i = 0; i < vm.argument_count(); ++i) {
  482. auto number = vm.argument(i).to_number(global_object);
  483. if (vm.exception())
  484. return {};
  485. coerced.append(number);
  486. }
  487. for (auto& number : coerced) {
  488. if (number.is_positive_infinity() || number.is_negative_infinity())
  489. return js_infinity();
  490. }
  491. auto only_zero = true;
  492. double sum_of_squares = 0;
  493. for (auto& number : coerced) {
  494. if (number.is_nan() || number.is_positive_infinity())
  495. return number;
  496. if (number.is_negative_infinity())
  497. return js_infinity();
  498. if (!number.is_positive_zero() && !number.is_negative_zero())
  499. only_zero = false;
  500. sum_of_squares += number.as_double() * number.as_double();
  501. }
  502. if (only_zero)
  503. return Value(0);
  504. return Value(::sqrt(sum_of_squares));
  505. }
  506. // 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul
  507. JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
  508. {
  509. auto a = vm.argument(0).to_u32(global_object);
  510. if (vm.exception())
  511. return {};
  512. auto b = vm.argument(1).to_u32(global_object);
  513. if (vm.exception())
  514. return {};
  515. return Value(static_cast<i32>(a * b));
  516. }
  517. // 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log
  518. JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
  519. {
  520. auto number = vm.argument(0).to_number(global_object);
  521. if (vm.exception())
  522. return {};
  523. if (number.as_double() < 0)
  524. return js_nan();
  525. return Value(::log(number.as_double()));
  526. }
  527. // 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
  528. JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
  529. {
  530. auto number = vm.argument(0).to_number(global_object);
  531. if (vm.exception())
  532. return {};
  533. if (number.as_double() < 0)
  534. return js_nan();
  535. return Value(::log2(number.as_double()));
  536. }
  537. // 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10
  538. JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
  539. {
  540. auto number = vm.argument(0).to_number(global_object);
  541. if (vm.exception())
  542. return {};
  543. if (number.as_double() < 0)
  544. return js_nan();
  545. return Value(::log10(number.as_double()));
  546. }
  547. // 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh
  548. JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
  549. {
  550. auto number = vm.argument(0).to_number(global_object);
  551. if (vm.exception())
  552. return {};
  553. if (number.is_nan())
  554. return js_nan();
  555. return Value(::sinh(number.as_double()));
  556. }
  557. // 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh
  558. JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
  559. {
  560. auto number = vm.argument(0).to_number(global_object);
  561. if (vm.exception())
  562. return {};
  563. if (number.is_nan())
  564. return js_nan();
  565. return Value(::cosh(number.as_double()));
  566. }
  567. // 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh
  568. JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
  569. {
  570. auto number = vm.argument(0).to_number(global_object);
  571. if (vm.exception())
  572. return {};
  573. if (number.is_nan())
  574. return js_nan();
  575. if (number.is_positive_infinity())
  576. return Value(1);
  577. if (number.is_negative_infinity())
  578. return Value(-1);
  579. return Value(::tanh(number.as_double()));
  580. }
  581. }